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Abstract: The methods that use memory using accelerating parameters for computing multiple roots
are almost non-existent in the literature. Furthermore, the only paper available in this direction
showed an increase in the order of convergence of 0.5 from the without memory to the with memory
extension. In this paper, we introduce a new fifth-order without memory method, which we subse-
quently extend to two higher-order with memory methods using a self-accelerating parameter. The
proposed with memory methods extension demonstrate a significant improvement in the order of
convergence from 5 to 7, making this the first paper to achieve at least a 2-order improvement. In
addition to this improvement, our paper is also the first to use Hermite interpolating polynomials to
approximate the accelerating parameter in the proposed with memory methods for multiple roots.
We also provide rigorous theoretical proofs of convergence theorems to establish the order of the
proposed methods. Finally, we demonstrate the potential impact of the proposed methods through
numerical experimentation on a diverse range of problems. Overall, we believe that our proposed
methods have significant potential for various applications in science and engineering.

Keywords: multiple roots; nonlinear equation; with memory methods; Hermite interpolating
polynomial

MSC: 65H05; 41A25; 65D99; 28A80

1. Introduction

The quest for efficient and accurate methods for finding the roots of nonlinear equa-
tions is a continuous endeavour in the field of numerical computation. One of the primary
objectives in this pursuit is to develop methods that are both efficient and have a simple
structure. Iterative methods are favoured for finding the roots of nonlinear equations
because they can be easily implemented using computer software and provide results up
to a desired accuracy, despite not always yielding exact roots. As a result, they are practical
and versatile tools for solving nonlinear equations of the form:

Ω(sn) = 0, (1)

where Ω : D ⊆ C→ C is a function defined in an open interval D having multiple roots
ξ with multiplicity m > 1. These equations are often encountered in various fields of
science, engineering, and mathematics, and their solutions are important for understanding
complex systems and phenomena. The modified Newton–Raphson method is a widely
known iterative method for finding multiple roots of (1), and it is given by

sn+1 = sn −m
Ω(sn)

Ω′(sn)
, n = 0, 1, 2, . . . . (2)
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Equation (2) has a quadratic order of convergence for m ≥ 1. While there exist
numerous with and without memory iterative methods for computing simple roots [1–6],
the task of developing efficient methods for finding multiple roots remains challenging.
Despite the availability of several without memory iterative methods for multiple roots
(see [7–10] and the references therein), there is a paucity of methods that utilise multiple
points with memory and accelerating parameters for computing multiple roots.

The authors in [11] recently extended existing optimal-order without memory
methods [12,13] for multiple roots to include memory using an accelerating parameter.
The with memory extension of the optimal fourth-order method is given below:

yn =sn −m
Ω(sn)

Ω′(sn) + αnΩ(sn)
,

sn+1 =yn −munW(un)
Ω(sn)

Ω′(sn) + 2αnΩ(sn)
, (3)

where un =
(

Ω(yn)
Ω(sn)

) 1
m

. This method (3) has the error equations given by

en,y =
(αn + c1)

m
e2

n + O(e3
n), (4)

en+1 = −(αn + c1)
A

2m3 e4
n + O(e5

n), (5)

where ci=
m!

(m+i)!
Ω(m+i)(ξ)

Ω(m)(ξ)
, i = 1, 2, . . . , en = sn − ξ is the error at the nth iteration, A =

α2
n(W ′′(0)− 4) + 2αnc1(W ′′(0)− 7) + (W ′′(0)− 9−m)c2

1 + 2mc2. The accelerating param-
eter αn is calculated as follows:

αn = −c1 = − 1
m + 1

N(m+1)
2 (sn)

Ω(m)(sn)
, (6)

where N(m+1)
2 (sn) is calculated using a Newton interpolating polynomial.

However, the R-order of convergence of these methods increases from 2 to 2.4142, 4 to
4.2361, and 4 to 4.5616 only, which is a modest improvement. As far as we know, this is the
first and only paper that to discuss the with memory iterative method for finding multiple
roots using an accelerating parameter.

Motivated by the approach using the self-accelerating technique, we plan to develop
new higher-order with memory iterative methods for finding multiple roots of nonlinear
equations using an accelerating parameter.

This paper presents new parametric families of two-point with and without memory
iterative methods for finding multiple roots of nonlinear equations. The family of without
memory methods employs the weight function technique with a real parameter to achieve
the fifth order of convergence, while the extended family of with memory methods utilises
an accelerating parameter to achieve a two-order improvement in the convergence order.
The with memory methods demonstrate an increase in convergence orders from 5 to 7 and
7.2749. To ensure efficiency, we approximated the accelerating parameter using Hermite
interpolating polynomials.

The manuscript is structured as follows. Section 2 outlines the development of meth-
ods utilising both weight function techniques and the accelerating parameter, with par-
ticular attention paid to analysing the order of convergence of the new methods through
theorems and lemmas. In Section 3, we present the results of numerical tests comparing
the proposed methods with other known methods. Finally, Section 4 provides concluding
remarks on the study.
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2. Construction of New Iterative Schemes and Their Convergence Analysis

In this section, we present the new parametric families of two-point with and without mem-
ory methods for finding multiple roots having multiplicity m > 1 in two separate subsections.

2.1. Parametric Family of Two-Point without Memory Methods and Its Convergence Analysis

Here, we introduce a new fifth-order parametric family of two-point without memory
methods for finding multiple roots with multiplicity m > 1. The newly proposed parametric
family of without memory methods is defined as follows, which we denote as PFM:

yn = sn −m
Ω(sn)

Ω′(sn) + αΩ(sn)
, α ∈ R− {0}

sn+1 = yn −mW(tn)
Ω(yn)

Ω′(yn) + αΩ(yn)
, (7)

where W : C → C is an analytic function in the neighbourhood of 0 with tn =
(

Ω′(yn)
Ω′(sn)

) 1
m−1 .

This new family (7) requires two functions and two first derivative evaluations at each iteration.

Theorem 1. Let s = ξ be a multiple zero with multiplicity m > 1 of a function Ω : C→ C in the
region enclosing ξ. Then, the new parametric family of methods (PFM) defined by (7) has the fifth
order of convergence if the following conditions are fulfilled:

W(0) = 1; W ′(0) = 0; W ′′(0) = 2; |W(3)(0)| < ∞. (8)

This satisfies the following error equation:

en+1 =
(α + c1)

2

6(m− 1)m4

(
(1−m)(12mc2 + α2(−6 + W(3)(0))) + 2αc1(m(12−W(3)(0))

+ W(3)(0)) + c2
1(6 + 6m2 −m(−12 + W(3)(0) + W(3)(0)))

)
e5

n + O(e6
n), (9)

where en = sn − ξ is the error at the nth iteration.

Proof of Theorem 1. Let s = ξ be the multiple roots of Ω(s) = 0 with multiplicity m > 1
such that en = sn − ξ is the error at the nth iteration. We expand Ω(sn) and Ω′(sn) in
powers of en by Taylor’s series expansion as follows:

Ω(sn) =
Ω(m)(ξ)

m!
em

n

(
1 + c1en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + O(e6

n)
)

, (10)

and Ω′(sn) =
Ω(m)(ξ)

m!
em−1

n

(
m + (m + 1)c1en + (m + 2)c2e2

n + (m + 3)c3e3
n

+ (m + 4)c4e4
n + (m + 5)c5e5

n + O(e6
n)
)

, (11)

where ci =
m!

(m+i)!
Ω(m+i)(ξ)

Ω(m)(ξ)
, i = 1, 2, 3, . . . . Using the above Equations (10) and (11) in the

first step of Equation (7), we obtain

yn − ξ =
α + c1

m
e2

n −
1

m2

(
α2 + 2αc1 + (1 + m)c2

1 − 2mc2
)
e3

n +
1

∑
i=0

Siei+4
n + O(e6

n), (12)

where Si, i = 0, 1 are given in terms of α, m, c1, c2, c3, c4, i.e., S0 = 1
m3

(
α3 + (3 + 2m)αc2

1 +

(1+m)2c3
1− 4mαc2 + c1(3α2−m(4+ 3m)c2)+ 3m2c3

)
, S1 = − 1

m4

(
α4 + 2(2+ 3m+m2)αc3

1+

(1+m)3c4
1− 6mα2c2 + 2m2(2+m)c2

2− c2
1(−3(2+m)α2 + 2m(3+ 5m+ 2m2)c2) + 6m2αc3 +

2c1(2α3 − 3m(2 + m)αc2 + m2(3 + 2m)c3)− 4m3c4
)
.
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Then, using Equation (12), Ω(yn) and Ω′(yn) can be obtained as follows:

Ω(yn) =
Ω(m)(ξ)

m!
e2m

n

(
α + c1

m

)m[
1− 1

α + c1

(
α2 + 2αc1 + (1 + m)c2

1 − 2mc2
)
en

+
3

∑
i=0

Kiei+2
n + O(e6

n)

]
, (13)

where Ki, i = 0, 1, 2, 3 are given in terms of α, m, c1, c2, c3, c4, i.e.,

K0 = 1
2m(α+c1)2

(
2c1(α + c1)

3 + (−1 + m)(α2 + 2αc1 + (1 + m)c2
1 − 2mc2)

2 + 2(α +

c1)(α
3 + (3 + 2m)αc2

1 + (1 + m)2c3
1 − 4mαc2 + c1(3α2 −m(4 + 3m)c2) + 3m2c3)

)
, etc.

In a similar manner, Ω′(yn) can be written as follows:

Ω′(yn) =
Ω(m)(ξ)

(m− 1)!

(
α + c1

m

)m−1
e2(m−1)

n

[
1− (m− 1)

m(α + c1)
(α2 + 2αc1 + (1 + m)c2

1 − 2mc2)en

+
3

∑
i=0

Miei+2
n + O(e6

n)

]
, (14)

where Mi, i = 0, 1, 2, 3 are given in terms of α, m, c1, c2, c3, c4.
Applying Equations (11) and (14), we obtain

tn =

(
Ω′(yn)

Ω′(sn)

) 1
m−1

=
α + c1

m
en +

1
(m− 1)m2

(
(α− 3mα)c1 −m(1 + m)c2

1

+ (m− 1)(−α2 + 2mc2)
)

e2
n +

2

∑
i=0

Niei+3
n + O(e6

n), (15)

where Ni, i = 0, 1, 2 are given in terms of α, m, c1, c2, c3, c4.
Expanding the weight function W(tn) in the neighbourhood of origin by Taylor’s

series expansion up to second-order terms gives

W(tn) ≈W(0) + tnW ′(0) +
t2
n

2!
W ′′(0). (16)

Now, substituting the expressions (12)–(16) in the last step of Equation (7), the error
equation is obtained as follows:

en+1 =
1
m
(1−W(0))(α + c1)e2

n +
1

m2

(
2m(1−W(0))c2 + α2(−1 + W(0)

−W ′(0)) + 2αc1(−1 + W(0)−W ′(0)) + c2
1(−1 + m(−1 + W(0))

+ W(0)−W ′(0))
)

e3
n + ... + O(e6

n). (17)

Now, putting the conditions W(0) = 1, W ′(0) = 0, and W ′′(0) = 2 in (17), the error
equation becomes

en+1 =
(α + c1)

2

6(m− 1)m4

(
(1−m)(12mc2 + α2(−6 + W(3)(0))) + 2αc1(m(12−W(3)(0))

+ W(3)(0)) + c2
1(6 + 6m2 −m(−12 + W(3)(0) + W(3)(0)))

)
e5

n + O(e6
n).

From the above error equation, we can conclude that the newly proposed family of
iterative methods (PFM) is of fifth order. This completes the proof.
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Some Particular Cases of the Weight Function, W(tn):

Based on the conditions on W(tn) as shown in Theorem 1, we can generate numerous
methods of the family (7). However, we restricted this to the following simple forms:

Case 1. Let W(tn) be a polynomial function of degree two of the form:

W(tn) = a0 + a1tn + a2t2
n.

Then, using the conditions (8) of Theorem 1, we obtain a0 = a2 = 1 and a1 = 0. Thus,
W(tn) becomes

W(tn) = 1 + t2
n. (18)

Case 2. Consider W(tn) as a rational function of the form:

W(tn) =
1 + a0tn

1 + a1tn + a2t2
n

.

Then, using the conditions (8) of Theorem 1, we obtain a0 = a1 = λ and a2 = −1.
Thus, W(tn) becomes

W(tn) =
1 + λtn

1 + λtn − t2
n

, λ ∈ R. (19)

Case 3. Let W(tn) be another rational function of the form:

W(tn) =
1 + a0t2

n
1 + a1t2

n
.

Then, using the conditions (8) of Theorem 1, we obtain a0 = 2 and a1 = 1. Thus,
W(tn) becomes

W(tn) =
1 + 2t2

n
1 + t2

n
. (20)

Case 4. Let W(tn) be a function of the form:

W(tn) = (1− tn)ea0tn + a1t2
n.

Then, using the conditions (8) of Theorem 1, we obtain a0 = 1 and a1 = 3
2 . Thus,

W(tn) becomes

W(tn) = (1− tn)etn +
3
2

t2
n. (21)

2.2. Parametric Families of Two-Point with Memory Methods and Their Convergence Analysis

Here, we propose new parametric families of two-point with memory methods, which
are an extension of the new fifth-order parametric family of without memory methods
(PFM) (7).

By analysing the error Equation (9) of Theorem 1, we found that the convergence

order of PFM (7) can be increased from 5 to 7 if we set α = −c1, where c1 = m!
(m+1)!

Ω(m+1)(ξ)

Ω(m)(ξ)
,

m > 1. However, since the exact values of Ω(m+1)(ξ) and Ω(m)(ξ) are not available, we
used some approximations and replaced α by αn, where αn is an accelerating parameter
computed using available information from the current and previous iterations to satisfy
the following condition:
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lim
n→∞

αn = − m!
(m + 1)!

Ω(m+1)(ξ)

Ω(m)(ξ)
. (22)

To be precise, we employed Hermite interpolating polynomial for the computation of
αn as follows:

FORM 1. We computed αn as follows:

αn = −
H(m+1)

3 (sn)

(m + 1)Ω(m)(sn)
, (23)

where

H3(s) =Ω(sn) + Ω[sn, sn](s− sn) + Ω[sn, sn, sn](s− sn)
2 + · · ·+ Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸

m+1

, yn−1]×

(s− sn)
m+1 + Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸

m+1

, yn−1, yn−1](s− sn)
m+1(s− yn−1)

+ Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸
m+1

, yn−1, yn−1, sn−1](s− sn)
m+1(s− yn−1)

2

and

H(m+1)
3 (sn) =Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸

m+1

, yn−1](m + 1)! + Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸
m+1

, yn−1, yn−1](m + 1)!×

(sn − yn−1) + Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸
m+1

, yn−1, yn−1, sn−1](m + 1)!(sn − yn−1)
2.

Remark 1. The Hermite interpolating polynomial Hk(s), k = 3, 4 satisfies the condition H′k(sn) =
Ω′(sn), k = 3, 4.

Now, substituting αn from (23) in Equation (7), we obtain the following parametric
family of with memory methods, which we denote as PFWM1:

yn = sn −m
Ω(sn)

Ω′(sn) + αnΩ(sn)
, αn = −

H(m+1)
3 (sn)

(m + 1)Ω(m)(sn)
,

sn+1 = yn −mW(tn)
Ω(yn)

Ω′(yn) + αnΩ(yn)
. (24)

FORM 2. We computed αn as follows:

αn = −
H(m+1)

4 (sn)

(m + 1)Ω(m)(sn)
, (25)

where

H4(s) =Ω(sn) + Ω[sn, sn](s− sn) + Ω[sn, sn, sn](s− sn)
2 + · · ·+

Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸
m+1

, yn−1](s− sn)
m+1 + Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸

m+1

, yn−1, yn−1](s− sn)
m+1×

(s− yn−1) + Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸
m+1

, yn−1, yn−1, sn−1](s− sn)
m+1(s− yn−1)

2

+ Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸
m+1

, yn−1, yn−1, sn−1, sn−1](s− sn)
m+1(s− yn−1)

2(s− sn−1)
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and

H(m+1)
4 (sn) =Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸

m+1

, yn−1](m + 1)! + Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸
m+1

, yn−1, yn−1](m + 1)!×

(sn − yn−1) + Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸
m+1

, yn−1, yn−1, sn−1](m + 1)!(sn − yn−1)
2

+ Ω[sn, sn, sn, . . . , sn︸ ︷︷ ︸
m+1

, yn−1, yn−1, sn−1, sn−1](m + 1)!(sn − yn−1)
2(sn − sn−1).

Now, substituting αn from (25) in Equation (7), we obtain the following parametric
family of with memory methods, which we denote as PFWM2:

yn = sn −m
Ω(sn)

Ω′(sn) + αnΩ(sn)
, αn = −

H(m+1)
4 (sn)

(m + 1)Ω(m)(sn)
,

sn+1 = yn −mW(tn)
Ω(yn)

Ω′(yn) + αnΩ(yn)
. (26)

Thus, PFWM1 and PFWM2 preserve the efficiency properties of the corresponding
without memory methods (PFM) and result in the increase of the convergence order of the
with memory methods from 5 to at least 7, resulting in at least a 2-order improvement.

Lemma 1. If αn = − H(m+1)
3 (sn)

(m+1)Ω(m)(sn)
, n = 1, 2, 3, . . . , then the given estimation:

αn + c1 ∼ c4e2
n−1,yen−1 (27)

holds, where en = sn − ξ, en,y = yn − ξ, and c4 is an asymptotic constant.

Proof of Lemma 1. The error of Hermite interpolation can be expressed as follows:

Ω(s)−H3(s) =
Ω(m+4)(δ)

(m + 4)!
(s− sn)

(m+1)(s− yn−1)
2(s− sn−1). (28)

Now, after differentiating (28) (m + 1) times at the point s = sn and rearranging, we
obtain the expression:

H(m+1)
3 (sn) = Ω(m+1)(sn)−

Ω(m+4)(δ)

(m + 4)!
(m + 1)!(sn − yn−1)

2(sn − sn−1). (29)

Now, for the multiple roots ξ, we have the following Taylor series of function Ω at the
point sn:

Ω(sn) =
Ω(m)(ξ)

m!

(
em

n + c1em+1
n + c2em+2

n + c3em+3
n + O(em+4

n )
)

. (30)

Then, after differentiating (m + 1) times, we have

Ω(m+1)(sn) =
Ω(m)(ξ)

m!

(
(m + 1)!c1 + (m + 2)!c2en + O(e2

n)
)

. (31)

Similarly,

Ω(m+4)(δ) =
Ω(m)(ξ)

m!

(
(m + 4)!c4 + (m + 5)!c5eδ + O(e2

δ)
)

, (32)
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where eδ = δ− ξ. Thus, using Equations (31) and (32) in (29) and excluding the terms of en
and eδ, we can obtain

H(m+1)
3 (sn) ∼

Ω(m)(ξ)

m!
(m + 1)!c1 −

Ω(m)(ξ)

m!
c4(m + 1)!(sn − yn−1)

2(sn − sn−1). (33)

After solving this, we have

H(m+1)
3 (sn) ∼ Ω(m)(ξ)

(
m + 1

)(
c1 − c4(sn − yn−1)

2(sn − sn−1)
)

, (34)

which implies

−
H(m+1)

3 (sn)

(m + 1)Ω(m)(sn)
∼ −

(
c1 − c4(sn − yn−1)

2(sn − sn−1)
)

(35)

or

αn ∼ −c1 + c4(sn − yn−1)
2(sn − sn−1). (36)

Finally, we have
αn + c1 ∼ c4e2

n−1,yen−1. (37)

This completes the proof for Lemma 1.

Theorem 2. Suppose Ω : C → C is a function in the neighbourhood of the multiple roots ξ of
Ω(s) = 0 of multiplicity m > 1. If s0 is sufficiently close to ξ, then the R-order of convergence of
the iterative method (24) with the parameter αn calculated by (23) is at least seven.

Proof of Theorem 2. Let the iterative method (IM) generates the sequence of {sn}, which
converges to the root ξ of Ω(s); by means of R-order OR(IM, ξ) ≥ r, we express

en+1 ∼Dn,rer
n (38)

and

en ∼Dn−1,rer
n−1. (39)

Next, Dn,r will tend to the asymptotic error constant Dr of IM by taking n→ ∞. Then,

en+1 ∼ Dn,r(Dn−1,rer
n−1)

r = Dn,rDr
n−1,rer2

n−1. (40)

The resulting error expression of the with memory scheme (24) can be obtained
using (12) and (9) and the varying parameter αn as follows:

en,y = yn − ξ ∼ αn + c1

m
e2

n (41)

and

en+1 = sn+1 − ξ ∼ 1
6(m− 1)m4 (αn + c1)

2
(
(1−m)(12mc2 + α2

n(−6 + W(3)(0)))

+ 2αnc1(m(12−W(3)(0)) + W(3)(0)) + c2
1(6 + 6m2

−m(−12 + W(3)(0) + W(3)(0)))
)

e5
n. (42)

Here, the higher-order terms in Equations (41) and (42) are excluded.
Now, let p be the R-order of convergence of the iterative sequence {yn}. Then,

en,y ∼ Dn,pep
n ∼ Dn,p(Dn−1,rer

n−1)
p ∼ Dn,pDp

n−1,rerp
n−1 (43)
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and
en−1,y ∼ Dn−1,pep

n−1. (44)

Now, by Equations (37), (41) and (44), we obtain

en,y ∼
αn + c1

m
e2

n ∼
( c4e2

n−1,yen−1

m

)
(Dn−1,rer

n−1)
2

∼
( c4(Dn−1,pep

n−1)
2en−1

m

)
(Dn−1,rer

n−1)
2

∼
c4D2

n−1,pD2
n−1,r

m
e2p+2r+1

n−1 . (45)

Again, by (37), (42) and (44), we have

en+1 ∼
1

6(m− 1)m4 (αn + c1)
2Gne5

n

∼ 1
6(m− 1)m4 (c4e2

n−1,yen−1)
2Gn(Dn−1,rer

n−1)
5

∼ 1
6(m− 1)m4

(
c4(Dn−1,pep

n−1)
2en−1

)2
Gn(Dn−1,rer

n−1)
5

∼ 1
6(m− 1)m4

(
c2

4D4
n−1,pGnD5

n−1,r

)
e4p+5r+2

n−1 , (46)

where Gn originates from (42).
Since r > p, by equating the exponents of en−1 present in the set of relations (43)–(45)

and (40)–(46), we attain the resulting system of equations:

rp = 2r + 2p + 1,

r2 = 5r + 4p + 2. (47)

The positive solutions of the system of Equation (47) are r = 7 and p = 3. As a result,
the R-order of convergence of the with memory iterative method (24) is at least r = 7.

Lemma 2. If αn = − H(m+1)
4 (sn)

(m+1)Ω(m)(sn)
, n = 1, 2, 3, . . . , then the given estimation:

αn + c1 ∼ c5e2
n−1,ye2

n−1 (48)

holds, where en = sn − ξ, en,y = yn − ξ, and c5 is an asymptotic constant.

Proof of Lemma 2. The error of Hermite interpolation can be expressed as follows:

Ω(s)−H4(s) =
Ω(m+5)(δ)

(m + 5)!
(s− sn)

(m+1)(s− yn−1)
2(s− sn−1)

2. (49)

Then, after differentiating (49) (m + 1) times at the point s = sn and rearranging, we
obtain the expression below:

H(m+1)
4 (sn) = Ω(m+1)(sn)−

Ω(m+5)(δ)

(m + 5)!
(m + 1)!(sn − yn−1)

2(sn − sn−1)
2. (50)

Now, for the multiple roots ξ, we have the following Taylor series of function Ω at the
point sn:

Ω(sn) =
Ω(m)(ξ)

m!

(
em

n + c1em+1
n + c2em+2

n + c3em+3
n + O(em+4

n )
)

. (51)
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Then, after differentiating (m + 1) times, we have

Ω(m+1)(sn) =
Ω(m)(ξ)

m!

(
(m + 1)!c1 + (m + 2)!c2en + O(e2

n)
)

. (52)

Similarly,

Ω(m+5)(δ) =
Ω(m)(ξ)

m!

(
(m + 5)!c5 + (m + 6)!c6eδ + O(e2

δ)
)

, (53)

where eδ = δ− ξ. Thus, using Equations (52) and (53) in (50) and excluding the terms of en
and eδ, we can obtain

H(m+1)
4 (sn) ∼

Ω(m)(ξ)

m!
(m + 1)!c1 −

Ω(m)(ξ)

m!
c5(m + 1)!(sn − yn−1)

2(sn − sn−1)
2. (54)

After solving this, we have

H(m+1)
4 (sn) ∼ Ω(m)(ξ)

(
m + 1

)(
c1 − c5(sn − yn−1)

2(sn − sn−1)
2
)

, (55)

which implies

−
H(m+1)

4 (sn)

(m + 1)Ω(m)(sn)
∼ −

(
c1 − c5(sn − yn−1)

2(sn − sn−1)
2
)

(56)

or

αn ∼ −c1 + c5(sn − yn−1)
2(sn − sn−1)

2. (57)

Finally, we have
αn + c1 ∼ c5e2

n−1,ye2
n−1. (58)

This completes the proof for Lemma 2.

Theorem 3. Suppose Ω : C → C is a function in the neighbourhood of the multiple roots ξ of
Ω(s) = 0 of multiplicity m > 1. If s0 is sufficiently close to ξ, then the R-order of convergence of the
iterative method (26) with the parameter αn calculated by (25) is at least (7 +

√
57)/2 ≈ 7.2749.

Proof of Theorem 3. Let the iterative method (IM) generates the sequence of {sn}, which
converges to the root ξ of Ω(s); by means of R-order OR(IM, ξ) ≥ r, we express

en+1 ∼Dn,rer
n (59)

and

en ∼Dn−1,rer
n−1. (60)

Next, Dn,r will tend to the asymptotic error constant Dr of IM by taking n→ ∞. Then,

en+1 ∼ Dn,r(Dn−1,rer
n−1)

r = Dn,rDr
n−1,rer2

n−1. (61)

The resulting error expression of the with memory scheme (26) can be obtained
using (12) and (9) and the varying parameter αn as follows:

en,y = yn − ξ ∼ αn + c1

m
e2

n (62)
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and

en+1 = sn+1 − ξ ∼ 1
6(m− 1)m4 (αn + c1)

2
(
(1−m)(12mc2

+ α2
n(−6 + W(3)(0))) + 2αnc1(m(12−W(3)(0)) + W(3)(0))

+ c2
1(6 + 6m2 −m(−12 + W(3)(0) + W(3)(0)))

)
e5

n. (63)

Here, the higher-order terms in Equations (62) and (63) are excluded.
Now, let p be the R-order convergence of the iterative sequences {yn}. Then,

en,y ∼ Dn,pep
n ∼ Dn,p(Dn−1,rer

n−1)
p ∼ Dn,pDp

n−1,rerp
n−1 (64)

and
en−1,y ∼ Dn−1,pep

n−1. (65)

Then, by Equations (58), (62) and (65), we obtain

en,y ∼
αn + c1

m
e2

n ∼
( c5e2

n−1,ye2
n−1

m

)
(Dn−1,rer

n−1)
2

∼
( c5(Dn−1,pep

n−1)
2e2

n−1
m

)
(Dn−1,rer

n−1)
2

∼
c5D2

n−1,pD2
n−1,r

m
e2p+2r+2

n−1 . (66)

Again, by (58), (63) and (65), we have

en+1 ∼
1

6(m− 1)m4 (αn + c1)
2Gne5

n

∼ 1
6(m− 1)m4 (c5e2

n−1,ye2
n−1)

2Gn(Dn−1,rer
n−1)

5

∼ 1
6(m− 1)m4

(
c5(Dn−1,pep

n−1)
2e2

n−1

)2
Gn(Dn−1,rer

n−1)
5

∼ 1
6(m− 1)m4

(
c2

5D4
n−1,pGnD5

n−1,r

)
e4p+5r+4

n−1 , (67)

where Gn originates from (63).
Since r > p, by equating the exponents of en−1 present in the set of relations (64)–(66)

and (61)–(67), we attain the resulting system of equations:

rp = 2r + 2p + 2,

r2 = 5r + 4p + 4. (68)

The positive solutions of the system of Equation (68) are r = (7+
√

57)/2 and p = (5+√
57)/4. As a result, the R-order of convergence of the with memory iterative method (26)

is at least r = (7 +
√

57)/2 ≈ 7.2749.

3. Numerical Results

In this section, we assess the performance and computational efficiency of the newly de-
veloped families of methods PFM, PFWM1 and PFWM2, which were discussed in Section 2.
As for the weight function W(tn), we use the particular case given in Equation (18) through-
out the whole computation. Additionally, we compare these methods with other similar
approaches described in existing literature. The objective of this analysis is to provide
a comprehensive evaluation of the proposed families of methods and to validate their
theoretical results. By conducting this comparison, we aim to gain a better understanding
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of the effectiveness and practicality of these new methods and their potential utility for
various applications.

Now, let us consider some existing methods for finding multiple roots available in
literature for the comparison.

A subcase of the third-order method given by Vinay Kanwar et al. [7], which was de-
veloped in March, 2023. The method is denoted as VKM, and the expression is given below:

sn+1 = sn −
( 2

2− L f

) mΩ(sn)

Ω′(sn)−mλΩ(sn)
, (69)

where λ = 1, L f =
mΩ(sn)

(
Ω′′(sn)+mλ2Ω(sn)

)
−Ω′(sn)2(m−1)−2mλΩ(sn)Ω′(sn)(

Ω′(sn)−mλΩ(sn)
)2 .

A particular case of the with memory methods from Equation (3), which was devel-
oped in February 2023 [11]. The method is denoted as XZM, and it is given below:

αn =− 1
m + 1

N(m+1)
2 (sn)

Ω(m)(sn)
,

yn =sn −m
Ω(sn)

Ω′(sn) + αnΩ(sn)
,

sn+1 =yn −mun

(
1 + 4un

(1 + un)2

)
Ω(sn)

Ω′(sn) + 2αnΩ(sn)
, (70)

where un =
(

Ω(yn)
Ω(sn)

) 1
m

.
A subcase of the fifth order methods given by Chanu-Panday-Dwivedi [14], which

was developed in the year 2021. The method is denoted as CPDM, and it is given below:

yn = sn + m
Ω(sn)

Ω′(sn)
,

zn = sn −
m
2m

Ω(yn)

Ω′(sn)
, (71)

sn+1 = zn −m
(

1− 2
m

+
4

m2 +
( 4

m
− 8

m2

)
h +

( 4
m2 −

2
m

)
h2
)

Ω(zn)

Ω′(zn)
,

where h = 2m Ω(sn)
Ω(yn)

.
A subcase of the fifth order methods given by Sharma-Arora [10], which was devel-

oped in the year 2021. The method is denoted as SAM, and it is given below:

yn = sn −m
Ω(sn)

Ω′(sn)
,

sn+1 = yn −m

(
1 +

(
Ω(yn)
Ω(sn)

) 1
m
+
(

Ω(yn)
Ω(sn)

) 2
m

1 +
(

Ω(yn)
Ω(sn)

) 1
m

)
Ω(yn)

Ω′(yn)
. (72)

A subcase of the fifth-order methods given by Singh-Arora-Jäntschi [15], which was
developed in January 2023. The method is denoted as SAJM, and it is given below:

yn = sn −m
Ω(sn)

Ω′(sn)
,

sn+1 = yn −m(1 + v2)
Ω(yn)

Ω′(yn)
, (73)
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where v = u
1+λu , u =

(
Ω(yn)
Ω(sn)

) 1
m

, λ = −1.
A subcase of the sixth-order methods given by Geum-Kim-Neta [8], which was devel-

oped in 2015. The method is denoted as GKNM, and it is given below:

yn = sn −m
Ω(sn)

Ω′(sn)
,

sn+1 = yn −
( m + a1u
(1 + b1u + b2u2)2

)( 1
1 + 2(m− 1)t

) Ω(yn)

Ω′(yn)
, (74)

where u =
(

Ω(yn)
Ω(sn)

) 1
m

, t =
(

Ω′(yn)
Ω′(sn)

) 1
m−1

, a1 = 2m(4m4−16m3+31m2−30m+13)
(m−1)(4m2−8m+7) ,

b1 = 4(2m2−4m+3)
(m−1)(4m2−8m+7) , b2 = − 4m2−8m+3

4m2−8m+7 .
We performed all numerical tests using Mathematica 12.2, a multi-precision arithmetic

programming software. To ensure consistency across all test functions, we set the initial
parameter value to α0 = −1 to initiate the iteration.

The test functions consisted of some academic and real-life engineering examples,
each with multiple roots (ξ) and corresponding initial guesses (s0). These functions and
their associated roots and initial guesses are listed below.

Example 1. A standard academic test function given by

Ω1(s) =
(
4 + 3 sin s− 2s2)4.

It has the multiple roots ξ = 2 with multiplicity m = 4. We used s0 = 2.2 as the initial guess,
and the results are displayed in Table 1.

Table 1. Comparison results of the methods for Ω1(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω(s3)| COC

VKM 6 0.33008 1.5207× 10−2 9.7604× 10−7 1.9584× 10−71 3.0000
XZM 6 0.34505 2.3864× 10−4 2.6415× 10−10 1.4426× 10−194 1.9972

CPDM 5 0.34522 6.5995× 10−5 1.5798× 10−22 1.1084× 10−436 5.0000
SAM 5 0.34504 2.5032× 10−4 1.5353× 10−19 1.4727× 10−376 5.0000
SAJM 5 0.34514 1.4499× 10−4 4.2323× 10−21 3.0144× 10−409 5.0000

GKNM 5 0.34517 1.2267× 10−4 1.7184× 10−24 1.3290× 10−568 6.0000
PFM 5 0.34528 1.3324× 10−5 5.4270× 10−27 6.3786× 10−530 5.0000

PFWM1 4 0.34528 1.3324× 10−5 5.3785× 10−35 4.0310× 10−957 7.0000
PFWM2 4 0.34528 1.3324× 10−5 4.9818× 10−35 3.2264× 10−958 7.0000

Example 2. A standard academic test function given by

Ω2(s) =
(

sin2 s + s
)5.

It has the multiple roots ξ = 0 with multiplicity m = 5. We used s0 = 0.6 as the initial guess,
and the results are displayed in Table 2.

Table 2. Comparison results of the methods for Ω2(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω(s3)| COC

VKM 7 0.45485 1.4360× 10−1 1.5518× 10−3 2.2780× 10−44 3.0000
XZM 6 0.58388 1.6122× 10−2 2.3381× 10−9 3.8284× 10−107 3.0017

CPDM 5 0.59039 9.6112× 10−3 8.7442× 10−10 8.6888× 10−222 5.0000
SAM 5 0.59002 9.9759× 10−3 4.5553× 10−10 9.0715× 10−231 5.0000
SAJM 5 0.59138 8.6160× 10−3 9.0956× 10−11 2.9921× 10−250 5.0000

GKNM 6 0.59236 7.6391× 10−3 7.8345× 10−12 1.2782× 10−325 6.0000
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Table 2. Cont.

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω(s3)| COC

PFM 5 0.59660 3.4028× 10−3 1.1488× 10−12 3.7027× 10−297 5.0000
PFWM1 5 0.59660 3.4028× 10−3 1.2404× 10−15 1.3157× 10−510 7.0000
PFWM2 5 0.59660 3.4028× 10−3 1.0346× 10−15 1.8921× 10−513 7.0000

Example 3. A standard academic test function given by

Ω3(s) =
(
e−s2+s+3 − s + 2

)9.

It has the multiple roots ξ ≈ 2.4905398276083051 with multiplicity m = 9. We used s0 = 2.6
as the initial guess, and the results are displayed in Table 3.

Table 3. Comparison results of the methods for Ω3(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω(s3)| COC

VKM 6 0.10680 2.6650× 10−3 3.5814× 10−8 4.7372× 10−195 3.0000
XZM 7 0.14985 4.1261× 10−2 7.2813× 10−6 1.8238× 10−107 2.9992

CPDM 5 0.10774 1.7225× 10−3 2.0111× 10−12 9.8289× 10−504 5.0000
SAM 5 0.10948 1.6599× 10−4 2.2757× 10−15 1.6903× 10−684 3.9991
SAJM 5 0.10941 3.0955× 10−4 2.4209× 10−14 4.9884× 10−611 3.9991

GKNM 6 0.11076 3.5248× 10−3 1.5277× 10−7 3.9790× 10−178 7.4893
PFM 5 0.10931 1.5165× 10−4 5.5816× 10−19 2.6128× 10−810 5.0000

PFWM1 4 0.10931 1.5165× 10−4 2.0972× 10−24 1.6827× 10−1450 6.9999
PFWM2 4 0.10931 1.5165× 10−4 3.4644× 10−24 1.3666× 10−1444 7.0000

Example 4 (Manning equation for fluid dynamics [16]). The equation is given below:

Ω4(s) =

[
tan−1

(√
5

2

)
− tan−1

(√
s2 − 1

)
+
√

6

(
tan−1

(√
s2 − 1

6

)
− tan−1

(
1
2

√
5
6

))
− 11

63

]7

. (75)

It has the multiple roots ξ ≈ 1.8411294068501996 with multiplicity m = 7. We used s0 = 1.2
as the initial guess, and the results are displayed in Table 4.

Table 4. Comparison results of the methods for Ω4(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω(s3)| COC

VKM 7 0.50271 1.3682× 10−1 1.5989× 10−3 1.1713× 10−62 3.0000
XZM 6 0.70523 6.5936× 10−2 2.8688× 10−4 1.0602× 10−75 2.0024

CPDM 5 0.64191 1.0894× 10−3 3.6165× 10−17 1.0565× 10−589 5.0000
SAM 5 0.63813 3.5058× 10−3 2.7647× 10−13 2.2144× 10−375 3.9978
SAJM 5 0.63791 4.6433× 10−3 8.5166× 10−13 1.0630× 10−361 3.9978

GKNM 6 0.44125 5.4541× 10−4 6.4964× 10−12 1.5113× 10−247 3.0028
PFM 5 0.64075 3.7793× 10−4 1.4359× 10−19 1.9352× 10−674 5.0000

PFWM1 4 0.64075 3.7793× 10−4 2.0608× 10−25 1.1797× 10−1215 7.0000
PFWM2 4 0.64075 3.7793× 10−4 1.2603× 10−25 3.5869× 10−1229 7.0000

Example 5 (Van der Waals equation of state [17]). The Van der Waals equation of state is a
modification of the ideal gas law, which takes into account the forces of attraction between gas
molecules and the finite size of the molecules themselves. It is given by the following equation:

(
p +

an2

v2

)
(v− nb) = nRT, (76)

where p is the pressure, v is the volume, R is the gas constant, T is the temperature, n is the
number of moles, a is a parameter that represents the strength of the intermolecular forces, and b
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is a parameter that represents the size of the molecules. This equation is useful for describing the
behaviour of real gases, which deviate from the ideal gas law at high pressures and low temperatures.

To solve for the volume v in terms of the other parameters, we can rearrange the Van der Waals
equation of state to obtain a cubic equation:

pv3 − (nbp + nRT)v2 + an2v = abn3. (77)

Let us consider a gas with n = 0.1807 moles, a = 278.3 atm L2/mol2, and b = 3.2104 L/mol,
at a pressure of 1 atm and a temperature of 313 K. Using the universal gas constant R = 0.08206
atm L/mol K, we can plug these values into the cubic equation above and solve for the volume v.
Then, we have

Ω5(s) = s3 − 5.22s2 + 9.0825s− 5.2675, (78)

where s = v, yielding the multiple roots ξ = 1.75 with multiplicity m = 2. We used s0 = 2.5 as
the initial guess, and the results are displayed in Table 5.

Table 5. Comparison results of the methods for Ω5(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω(s3)| COC

VKM 9 0.54909 1.7090× 10−1 2.8013× 10−2 1.2682× 10−7 3.0000
XZM 6 0.71596 3.3325× 10−2 7.1065× 10−4 3.0773× 10−23 5.0000

CPDM 6 0.70133 4.8193× 10−2 4.7547× 10−4 3.0603× 10−28 6.0000
SAM 6 0.68022 6.7340× 10−2 2.4441× 10−3 2.0299× 10−17 5.0000
SAJM 6 0.68454 6.3596× 10−2 1.8660× 10−3 4.8728× 10−19 5.0000

GKNM 6 0.68637 6.1983× 10−2 1.6473× 10−3 1.0720× 10−20 6.0000
PFM 6 0.73275 1.7174× 10−2 7.3647× 10−5 5.5190× 10−32 5.0000

PFWM1 5 0.73277 1.7235× 10−2 1.2844× 10−5 4.6789× 10−53 7.0000
PFWM2 5 0.73275 1.7235× 10−2 1.2844× 10−5 4.6789× 10−53 7.0000

Example 6 (Beam designing model [16]). Here, we deal with a beam that is positioned at an
angle towards the edge of a cubic box. The length of the beam is denoted as “r” units, while each side
of the box measures one unit. The beam is inclined in a manner such that one end touches the wall,
while the other end touches the floor, as depicted in Figure 1.

y

x

Figure 1. Beam designing model [16].

The objective of this problem is to determine the distance between the base of the wall and the
floor along the bottom of the beam. Let us assume that “y” is the distance between the beam and the
floor, measured along the edge of the box. Similarly, “s = x” is the distance between the bottom of
the box and the beam. For a specific value of “r”, the following equation holds true:

Ω6(s) = s4 + 4s3 − 24s2 + 16s + 16. (79)

The equation has a non-negative root, namely ξ = 2, which has a multiplicity of m = 2. We
used s0 = 1.2 as the initial guess, and the results are displayed in Table 6.
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Table 6. Comparison results of the methods for Ω6(s).

Methods n |s1− s0| |s2− s1| |s3− s2| |Ω(s3)| COC

VKM 7 0.71037 8.9411× 10−2 2.1557× 10−4 2.5102× 10−22 3.0000
XZM 6 0.79736 2.6375× 10−3 1.7127× 10−8 2.7065× 10−82 1.9986

CPDM 5 0.82797 2.7966× 10−2 1.8836× 10−12 8.5982× 10−145 6.0000
SAM 5 0.76907 3.0928× 10−2 3.9147× 10−10 3.4391× 10−97 5.0000
SAJM 6 0.48555 3.1425× 10−1 1.9359× 10−4 1.0868× 10−39 5.0000

GKNM 6 1.5402 7.3961× 10−1 5.6854× 10−4 2.7009× 10−41 6.0000
PFM 5 0.80258 2.5811× 10−3 1.6437× 10−15 7.0888× 10−151 5.0000

PFWM1 5 0.80274 2.5811× 10−3 2.7609× 10−21 4.6947× 10−292 7.0000
PFWM2 5 0.80258 2.5811× 10−3 2.7609× 10−21 4.6947× 10−292 7.0000

Tables 1–6 summarise the numerical results of the compared methods on the test
examples. In these tables, we report the number of iterations (n) needed to converge to the
multiple roots with a stopping criterion of

|sn − sn−1|+ |Ω(sn)| < 10−150 (80)

along with the estimated error in consecutive iterations |sn − sn−1| during the first three
iterations. Additionally, we provide the absolute residual error of the function |Ω(sn)| and
the computational order of convergence (COC), which we calculated using the following
formula [18]:

COC =
log | Ω(sn)/Ω(sn−1) |

log | Ω(sn−1)/Ω(sn−2) |
. (81)

The computational results presented in Tables 1–6 demonstrate that our proposed
methods outperformed existing methods in terms of the error in consecutive iterations and
the residual error with the minimal number of iterations required for convergence towards
the root after the stopping criterion (80) is satisfied. In Figure 2, we provide the comparison
of the methods based on the error in the consecutive iterations, |sn − sn−1|, after the first
three iterations. While the methods XZM, CPDM, SAM, SAJM, and GKNM have better
results than the method VKM, they do not always retain their order of convergence. In
contrast, our proposed methods PFM, PFWM1, and PFWM2 demonstrated higher preci-
sion and maintained their order of convergence, thus confirming their theoretical results.
Overall, our proposed methods offer improved performance and accuracy compared to
existing methods.
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Figure 2. Comparison of the methods based on the error in consecutive iterations, |sn−sn−1|, after
the first three iterations.
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4. Conclusions

We introduced new parametric families of two-point with and without memory
methods for solving nonlinear equations with multiple zeros. These methods are based
on the weight function approach and self-accelerating technique. Our proposed family of
the without memory methods, PFM, achieved fifth-order convergence with two function
and two derivative evaluations per iteration, while the with memory methods PFWM1
and PFWM2 achieved R-orders of convergence of 7 and 7.2749, respectively, using a
self-accelerating parameter. Additionally, the use of an accelerating parameter not only
improved the convergence order, but also increased the efficiency and accuracy. We verified
our theoretical results through numerous numerical examples and compared our methods
with existing methods. The results demonstrated the robustness and superior performance
of our proposed methods, with fewer iterations required to converge to the root, minimal
residual errors, and minimal errors in consecutive iterations.
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