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Abstract: Survival after out-of-hospital cardiac arrest (OHCA) is contingent on time-sensitive inter-
ventions taken by onlookers, emergency call operators, first responders, emergency medical services
(EMS) personnel, and hospital healthcare staff. By building integrated cardiac resuscitation systems
of care, measurement systems, and techniques for assuring the correct execution of evidence-based
treatments by bystanders, EMS professionals, and hospital employees, survival results can be im-
proved. To aid in OHCA prognosis and treatment, we develop a hybrid agnostic explanation TabNet
(HAE-TabNet) model to predict OHCA patient survival. According to the results, the HAE-TabNet
model has an “Area under the receiver operating characteristic curve value” (ROC AUC) score of
0.9934 (95% confidence interval 0.9933–0.9935), which outperformed other machine learning models
in the previous study, such as XGBoost, k-nearest neighbors, random forest, decision trees, and
logistic regression. In order to achieve model prediction explainability for a non-expert in the artificial
intelligence field, we combined the HAE-TabNet model with a LIME-based explainable model. This
HAE-TabNet model may assist medical professionals in the prognosis and treatment of OHCA
patients effectively.

Keywords: hybrid model; TabNet; machine learning; LIME; explainable AI; out-of-hospital cardiac
arrest (OHCA)

MSC: 68T01; 68T09; 68T07

1. Introduction

Sudden cardiac arrest, also known as out-of-hospital cardiac arrest (OHCA), happens when
a person’s heart suddenly stops beating for no apparent reason outside of a medical facility.
OHCA is considered a serious public health burden across the world, with around 30,000 cases
handled by emergency medical services (EMS) in the Republic of Korea each year [1]. Only 10%
of approximately 400,000 Americans who have this illness survive [2]. OHCA causes more
premature deaths for men (2.04 million years) and women (1.29 million years) than all other
malignancies and most other main causes of mortality [3]. OHCA is the patient’s initial and
sole sign of cardiovascular illness in many circumstances [4]. Due to its abrupt onset, high
prevalence, and low resuscitation success rates, OHCA is an urgent public health problem
that has to be addressed.

Survival after cardiac arrest is contingent on time-sensitive interventions taken by
onlookers, emergency call operators, first responders, emergency medical services (EMS)
personnel, and hospital healthcare staff. By building integrated cardiac resuscitation sys-
tems of care, measurement systems, and techniques for assuring the correct execution of
evidence-based treatments by bystanders, EMS professionals, and hospital employees,
survival results can be improved [5]. The “chain of survival” for OHCA outcomes includes
important “bridges” of intervention, such as witnessed arrest, bystander-initiated cardiopul-
monary resuscitation (CPR), community-accessible defibrillation, dispatcher-assisted CPR,
shorter EMS response intervals, initial defibrillate cardiac rhythm, the quality of CPR,
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return of spontaneous circulation (ROSC) in the field, and post-resuscitation care [6,7]. To
enhance survival outcomes, research goals might be directed by identifying sensitive points
throughout the continuum of care.

In recent years, deep learning methods have demonstrated superior performance in ar-
eas of critical care, such as hospital cardiac arrest prediction, severity evaluation, and OHCA
outcome prediction [8–12]. Cho et al. [8] proposed a deep learning-based early warning
system with 0.865 of the area under the receiver operating characteristic curve (ROC AUC)
and 0.066 of the area under the precision-recall curve (PRC AUC), which outperformed
the modified early warning score (ROC AUC: 0.682, PRC AUC: 0.010) and decreased the
number of examines needed and the mean alarm count per day by 69.2% and 59.6%, re-
spectively. Additionally, an algorithm based on deep learning [9] outperformed traditional
triage tools and effectively predicted patients’ requirements to obtain critical care during
emergency medical services. The ROC AUC of the algorithm to predict critical care was
0.867, which outperformed the emergency severity index (0.839), the Korean triage and
acuity system (0.824), the national early warning score (0.741), and the modified early
warning score (0.696). Kwon et al. [10] developed a deep learning-based out-of-hospital
cardiac arrest prognostic system (DCAPS) for predicting neurologic recovery and survival
to discharge. The ROC AUC of DCAPS for predicting neurologic recovery was 0.953,
whereas it was 0.901 for predicting survival discharge. In another study, Kwon et al. [11]
validated that a deep learning-based triage and acuity score identifies high-risk patients
more accurately than existing triage and acuity scores using a large national dataset. A
multicenter study [12] utilized a deep learning-based early warning system to identify
patients at risk of in-hospital cardiac arrest, achieving great sensitivity and a low false-alarm
rate. This deep learning-based early warning system (ROC AUC: 0.850, PRC AUC: 0.044)
outperformed the modified early warning score (ROC AUC: 0.603, AUPRC: 0.003), the
random forest model (ROC AUC: 0.780, PRC AUC: 0.014), and logistic regression model
(ROC AUC: 0.613, PRC AUC: 0.007). Moreover, this model reduced the number of alarms
by 82.2%, 13.5%, and 42.1% compared with the modified early warning system, random
forest, and logistic regression, respectively, at the same sensitivity. The capacity of deep
learning models to automatically learn features from input data is a key attribute [11].
Consequently, a predictive system for OHCA may be constructed by combining deep
learning and patient and paramedic data to predict OHCA patient outcomes and assist
medical professionals in making therapeutic decisions.

Although deep learning models are capable of learning complicated data structures,
deep networks generalize less well on tabular datasets than other traditional machine
learning models [13]. To solve the restrictions of deep learning models on tabular data,
Arik et al. [14] introduced TabNet, a revolutionary canonical deep tabular learning architec-
ture. TabNet uses single deep learning, multi-step processing, sequential attention, and
gradient descent to build a novel architecture that achieves both high accuracy and model
interpretability in contrast to more conventional deep learning methods. Recent medi-
cal research has utilized TabNet to predict outcomes such as pulmonary embolism [15],
concomitant epilepsy [16], breast cancer [17], tacrolimus daily dosage in kidney trans-
plant recipients [18], lapatinib dosing regimen in breast cancer patients [19], and memory
development. In several of these studies, TabNet was found to perform better than the
competing models. This is because of the advantages of the TabNet model’s design [14],
which develops a sequential multi-step architecture in which each phase, contributes to
decision-making on the selection of critical attributes. TabNet is quite similar to ensemble
models since it can build larger dimensions and more stages. Nevertheless, increasing the
number of phases would increase model complexity. In addition, like other deep learning
models, TabNet is hyperparameter-sensitive. Therefore, hyperparameter fine-tuning is
essential for achieving more outstanding outcomes.

In addition to making accurate predictions from tabular data, TabNet is also inter-
pretable [14]. This addresses a major problem with the complicated, non-linear, and
uninterpretable “black-box” design typically used in deep learning [20]. Even if a “black-
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box” model produces positive outcomes, there may be concerns about its reliability and
transparency, particularly in the healthcare industry. According to model dependency,
eXplainable Artificial Intelligence (XAI) interpretability approaches are classified as model-
agnostic or model-specific [21]. TabNet belongs to the model-specific group of intrinsic
interpretability methods. Knowing the inner workings of a model-specific interpretable
model, such as TabNet, allows us to have a deeper understanding of the outcomes [14].
However, the model would need to be retrained in order to regain the explanations [22].
If not properly optimized, this might affect the model performance in a real-world set-
ting. Contrarily, model-agnostic approaches ignore model structure. It may be applied to
any machine learning or deep learning classifiers considered “black-box” models without
affecting their performance [23].

The recently developed framework known as the local interpretable model-agnostic
explanation (LIME) may be used with any black-box classification model to generate an
explanation for a singular manifestation [24]. This technique finds the fewest features that
most strongly influence the likelihood of a single-class outcome for a single observation
while also presenting a local explanation for the classification. Although the LIME has been
utilized in the previous classification models in healthcare, it is still being determined how
well healthcare practitioners would comprehend and accept LIME explanations.

In this research, we developed a hybrid agnostic explanation TabNet (HAE-TabNet)
model to predict the survival outcome of OHCA patients. HAE-TabNet combined a
LIME-based explainability model with the TabNet model. Our combined model could be
interpreted more easily and intuitively than the native interpretation feature of the TabNet
model in the local explanation. We also compared HAE-TabNet with other traditional
machine learning models.

2. Materials and Methods
2.1. Data Source

The current study utilized data from the Out-of-Hospital Cardiac Arrest Surveillance
database, which is maintained by the Korean Centers for Disease Control and Prevention
(Korean CDC) in South Korea. The Out-of-Hospital Cardiac Arrest Surveillance database is
introduced on the website (https://www.kdca.go.kr/ accessed on 23 April 2023). OHCA
data are national statistics; therefore, the data cannot be utilized publicly and can only be
used after submitting an IRB and research plan to the Ministry of Health and Welfare of
the Republic of Korea and gaining approval for data usage. The study was designed as a
retrospective, nationwide, population-based observational analysis, covering the period
from January to December 2018. The Korean CDC Institutional Review Board approved the
study in 2018 after it adhered to the Declaration of Helsinki’s requirements (IRB protocol
code 0439001, date of approval 31 January 2018). Due to the retrospective nature of the
study and the examination of anonymous clinical data, informed consent was waived.
Improving the Reporting of Observational Studies in Epidemiology produced a checklist
for observational studies, which was included in the study’s approach. The Out-of-Hospital
Cardiac Arrest Surveillance database is a population-based registry of out-of-hospital car-
diac arrest patients that are assessed by emergency medical services. The Korean CDC
provided clinical data on out-of-hospital cardiac arrest patients for hospital management
and discharge outcomes. Information on out-of-hospital cardiac arrest patients was ac-
quired from emergency medical services records. Korean CDC medical record reviewers
analyzed the medical records of all out-of-hospital cardiac arrest patients admitted to
emergency rooms and hospitals. Patient demographic information such as age, sex, and
underlying diseases such as hypertension, diabetes mellitus, and chronic kidney disease
(CKD), as well as locations of cardiopulmonary resuscitation, bystander cardiopulmonary
resuscitation, post-cardiac arrest care, survival, and neurological outcomes, were all gath-
ered through the use of a well-designed survey form. The Utstein Style guidelines and the
Resuscitation Outcome Consortium Project were used to create the registry form. Detailed
descriptions are presented by Yang et al. [25].

https://www.kdca.go.kr/
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2.2. Data Preprocessing

Prior to fitting the model, the dataset needed to be preprocessed. The raw data
collection includes 216 columns of identifying data for a total of 30,179 patients. We first
removed 26 unnecessary columns related to the serial number and date/time variables.
The categorical variables in the dataset were then encoded via label encoding. In this
study, we created a new column depending on the following circumstance. Patients
whose emergency room treatment results and post-hospitalization results were alive were
classified as “survival”, and those who died or were discharged with no hope were classified
as “death”. We chose this new column as the target feature and gave it the label “Survival”.

Columns with 50% null values were eliminated from the dataset in order to account
for missing values. After that, only the “CPR in the emergency room” column still included
missing values. The “most frequent” strategy handled these null values in this column.
After removing unnecessary columns and handling missing values, the dataset was reduced
to 30,179 patients with 30 variables and the target feature.

Out of a total of 30,179 samples, only 3870 patients were labeled as “survival”,
whereas 26,309 were labeled as “dead” (87.2%) in the target feature. Consequently, we
used the SMOTE-ENN [26] approach to rebalance the dataset. The synthetic minority over-
sampling technique (SMOTE) method, introduced by Chawla et al. [27], is an improved
solution for imbalanced data. In essence, the SMOTE algorithm creates new samples by
randomly interpolating between a small number of samples and those samples’ neigh-
bors. In order to improve the classification impact of an unbalanced data collection, the
ratio of imbalanced data is boosted by producing a given number of artificial minority
samples [28]. The fundamental concept of edited nearest neighbor (ENN) [29] is to exclude
samples whose class is dissimilar to the majority class of its k-nearest neighbors. The
algorithm’s primary goal is to eliminate the majority of the noise samples. In principle, the
SMOTE-ENN technique combines the SMOTE capacity to produce synthetic instances for
the minority class with the ENN ability to eliminate observations from both classes that are
detected as belonging to a different class between its k-nearest neighbor majority class and
the observation’s class.

Before applying the SMOTE-ENN method, the dataset was stratify-split randomly into
a training set and a test set, with a ratio of 80:20, in order to complete the basic setup for
the model to learn. Only the training dataset was artificially balanced by the SMOTE-ENN
method. The test set was unaltered to assess model performance on representative data.
The variables of the dataset are shown in Table 1.

Table 1. Variables and their description.

Variables Field Type

Gender Categorical: male (1), female (2)
Age (only age) Continuous: ( ) years old
Type of insurance Categorical: no (0), yes (1)
Whether CPR was performed before arriving
at the hospital Categorical: CPR continuous transfer (1), transfer without CPR (2)

Recovery of spontaneous circulation before hospital arrival Categorical: recovery of spontaneous circulation (1), no recovery of
spontaneous circulation (2)

Sudden cardiac arrest witnessed prior to hospital arrival Categorical: not seen (1), sighted (2), unknown (9)

Detector or witness types of sudden cardiac arrest patients Categorical: working in the following occupations (1), occupations that do not
belong to 1. or non-working (2), unknown (9)

Whether CPR is performed by the general public Categorical: not enforced (1), enforced (2), N/A (if paramedics and medical
personnel on duty are witnesses) (3), unknown (9)

Place of sudden cardiac arrest Categorical: public places (1), non-public place (2), etc. (8), unknown (9)

Activities at the time of sudden cardiac arrest
Categorical: during athletics (1), during leisure activities (2), working for pay (3),
working without pay (4), in training (5), on the go (6), in daily life (7),
in treatment (8), drinking (9), etc. (88), unknown (99)

Causes of sudden cardiac arrest Categorical: disease (1), other than disease (2), unknown (9)

Electrocardiographic findings of sudden cardiac arrest
before hospital arrival

Categorical: not watching (10), ventricular fibrillation (VF) (20), pulseless VT (30),
pulseless electrical activity (PEA) (40), asystole (50), bradycardia (60), indistinct
defibrillable rhythm (81), indistinct non-shockable rhythm (82), etc. (88), unknown (99)
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Table 1. Cont.

Variables Field Type

Whether defibrillation was performed prior to
hospital arrival Categorical: not conducted (1), carried out (2), unknown (9)

Past history_hypertension Categorical: has existed (1), does not exist (2), unknown (9)
Past history_diabetes Categorical: has existed (1), does not exist (2), unknown (9)
Past history_heart disease Categorical: has existed (1), does not exist (2), unknown (9)
Past history_chronic kidney disease Categorical: has existed (1), does not exist (2), unknown (9)
Past history_respiratory disease Categorical: has existed (1), does not exist (2), unknown (9)
Past history_stroke Categorical: has existed (1), does not exist (2), unknown (9)
Past history_dyslipidemia Categorical: has existed (1), does not exist (2), unknown (9)
Drinking power Categorical: current drinking (1), past drinking (2), does not exist (8), unknown (9)

Smoking history Categorical: current smoking (1), past smoking (2), e-cigarette (3),
does not exist (8), unknown (9)

CPR in the emergency room Categorical: not enforced (1), tried but stopped within 20 min (2), enforced (3)

Electrocardiogram findings of sudden cardiac arrest in the
emergency room

Categorical: rhythm after recovery of spontaneous circulation (state of recovery of
spontaneous circulation at the time of visit) (0), not watching (1), ventricular
fibrillation (VF) (2), pulseless VT (3), pulseless electrical activity (PEA) (4), asystole
(5), bradycardia (6), etc. (8), unknown (9)

Place of first electrocardiogram Categorical: pre-hospital stage (1), other hospital (2), research hospital (3), not
enforced (4), unknown (9)

Whether emergency room defibrillation is performed Categorical: not conducted (1), carried out (2), unknown (9)

ECG findings using an automated defibrillator

Categorical: no initial ECG monitoring (10), ventricular fibrillation (VF) (20),
pulseless VT (30), pulseless electrical activity (PEA) (40), asystole (50),
bradycardia (60), indistinct defibrillable rhythm (81), indistinct non-shockable
rhythm (82), etc. (88), unknown (99)

Whether ambulances implement automatic defibrillators Categorical: not enforced (1), enforced (2), unknown (9)
Reasons for non-implementation of ambulance
automatic defibrillator

Categorical: indication (1), AED device condition is bad (2),
family rejection (3), etc. (8), unknown (9)

First aid guidance before the ambulance arrives Categorical: does not exist (1), paramedic (3), fire control room (3), etc. (8)
Survival Categorical: dead (0), survival (1)

2.3. Development of a TabNet-Based OHCA Survival Outcome Prediction Model

TabNet [14] is a deep neural network designed to learn from tabular data. A compre-
hensive overview of the TabNet architecture is given in Figure 1. The architecture of this
model aids in feature selection and increases the model’s ability to learn high-dimensional
characteristics.
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Figure 1. The architecture of the TabNet model.

TabNet design consists of sequential multi-steps (Nsteps). The ith step uses the pro-
cessed information from the (i− 1)th step to identify which features to employ and produce
the processed feature representation that is aggregated and utilized for the overall decision-
making. The dataset with given batch size (B) and D-dimensional characteristics ( f ∈ RB∗D)
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is provided as model input without performing any global feature normalization. The data
is then delivered to a feature transformer after passing via a batch normalization (BN) layer.

A D-dimensional feature vector is processed in every ith step, with each step’s output
going to a feature transformer block. This feature transformer block has several levels
that are either common to all decision steps or specific to a particular decision step. A BN
layer, a gated liner unit (GLU) activation, and fully connected (FC) layers are all present in
every block. The GLU is also linked to a normalization residual connection, which reduces
the variation over the whole network. This multi-layered block improves the parameter
efficiency of the network and contributes to feature selection.

An attentive transformer includes four layers: FC, BN, prior scales, and sparsemax.
The n(a) input is forwarded to a fully connected layer after batch normalization. It is then
multiplied by the prior scale. The prior scales layer gathers the corresponding feature
magnitudes that were utilized before the present decision phase, as follows:

P[i] = ∏i
j=1(γ−M[j]) (1)

where γ is the relaxation parameter.
The job of an attentive transformer is to figure out the mask layer for the current step

by using the outcome of the previous step. The most important features are sparsely chosen
using the learnable mask (M[i] ∈ RB∗D). As a result, the learning capacity of a decision
step is not squandered on pointless features to make the model parameter efficient. Due to
the multiplicative nature of the masking procedure, an attentive transformer is employed
to create the masks from the previously processed features, as follows:

M[i] = sparsemax(P[i− 1] ∗ hi(a[i− 1]) (2)

where the sparsemax layer is utilized for coefficient normalization resulting in sparse feature
selection (when ∑D

j=1 M[i]b,j = 1) (See Reference [23]), P[i− 1] is the previous scale’s item,
and hi is the trainable function used to represent the FC and BN layers. To aid in learning
the model, the characteristics with M[i]b,j = 0 are not used. The following is a proposal for
sparsity regularization (Lsparse) in the form of entropy to regulate the sparsity of the chosen
features further:

Lsparse = ∑Nsteps
i=1

B

∑
b=1

∑D
j=1

−Mb,j[i]log
(

Mb,j[i] + ε
)

Nsteps ∗ B
(3)

where ε is a small number for numerical stability.
The mask vector is passed to the feature transformer, which analyzes the filtered

features and separates the data into two outputs, as seen below:

[d[i], a[i]] = fi(M[i] ∗ f ) (4)

where a[i]∈ RB∗Na is the information for the following step for the following attentive
transformer and d[i] ∈ RB∗Nd is the output of the decision step.

TabNet also provides model-specific local and global reasons for interpretability. To
create a scalar, the model first adds the step’s output vector. This scalar conveys the
significance of this step to the outcome. For instance, the final outcome’s contribution from
the Z decision step for the X sample is calculated using:

ηb[i] = ∑Nd
c=1 ReLU(db,c[i]) (5)
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When the results of each step are combined for a single X sample, the local feature
significance is determined. Nevertheless, the global aggregate feature importance mask Y
of the normalized feature is calculated as follows:

Magg−b,j =
∑

Nsteps
i=1 ηb[i] ∗Mb,j[i]

∑D
j=1 ∑

Nsteps
i=1 ηb[i] ∗Mb,j[i]

(6)

In this research, the HAE-TabNet model was built by pytorch_tabnet version 4.0.
Figure 2 depicts a schematic representation of the model process. Specifically, we used the
stratified 10-fold cross-validation (CV) technique to assess the quality of machine learning
models. When employing a k-fold CV, the dataset is divided into k sections of equal size,
and cases are selected at random for each section. Each subgroup is divided into a part for
training and a reminder for the test set. During the k evaluations of the model, each group
is used once as the test set. Each subset is split into groups with roughly the same class
labels as the initial dataset during stratified k-fold cross-validation.
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2.4. Hyperparameter Fine-Tuning Method: Bayesian Optimization

Hyperparameter fine-tuning via trial and error is time-consuming and frequently
produces unsatisfactory outcomes [30]. Therefore, reliable tuning techniques are crucial,
particularly when the objective of the optimization is to find the most excellent value at the
sample point for an unknown function, as in [31]:

p+ = argmaxp∈φϑ(p) (7)

where p stands for the sampling point, φ stands for the search region around p, ϑ stands for
the unidentified objective function, and p+ stands for the location where the unidentified
objective function should be maximized.

Bayesian optimization (BO) is a more effective hyperparameter optimization approach
than the typical grid search (GS) and random search (RS) methods. Every assessment in GS
and RS iterations is independent of previous evaluations, which increases the time wasted
in evaluating poorly performing areas of the hyperparameter search field. BO solves this
problem by combining prior knowledge about the ϑ with sample locations to estimate the
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following distribution of the objective function using the Bayes theorem. This posterior
information is subsequently employed in the search for the global optimal value.

BO involves two primary phases, which are as follows [32]:

• Phase 1: By selecting a few data points at random, the BO algorithm tries to fit
a surrogate function across the ϑ. A Gaussian process (GP) is used to update the
surrogate function and generate the posterior distribution over the ϑ because of its
versatility, robustness, accuracy, and analytic tractability.

• Phase 2: Using the posterior distribution created in Phase 1, an acquisition function is
developed. This function explores new parts of the search space and exploits existing
regions with optimal results. Until a stopping threshold is reached, the exploration
and exploitation processes will continue, and the surrogate model will be updated
with new results. The goal is to maximize the acquisition function in order to find the
next sampling point.

In this study, the hyperparameters inside the HAE-TabNet model were fine-tuned by
BO as follows:

• “n_d” (Number of features in the output of each decision step): This hyperparameter
controls the size of the output space for each decision step, which can affect the model’s
ability to capture complex patterns in the data. A larger value for “n_d” can increase
the capacity of the model, but may also increase the risk of overfitting. A typical range
for “n_d” is between 4 and 128.

• “n_a” (Number of features in the attention function for each decision step): This
hyperparameter controls the size of the attention network in each decision step, which
can affect the model’s ability to focus on relevant features for prediction. A larger
value for “n_a” can improve the quality of the attention mechanism, but may also
increase the computational cost. A typical range for n_a is between 4 and 128.

• “n_steps” (Number of decision steps in the network): This hyperparameter controls
the depth of the TabNet model, which can affect its ability to capture hierarchical
relationships in the data. A larger value for “n_steps” can increase the capacity of the
model, but may also increase the risk of overfitting. A typical range for “n_steps” is
between 1 and 10.

• “gamma” (Sparsity regularization coefficient): This hyperparameter controls the de-
gree of sparsity in the feature selection process. A larger value for “gamma” can
increase the sparsity of the model, but may also decrease its ability to capture impor-
tant features. A typical range for gamma is between 0.8 and 2.0.

• “n_independent” (Number of independent GLU (gated linear unit) activations per
feature): This hyperparameter controls the number of independent nonlinear trans-
formations for each feature. A larger value for “n_independent” can increase the
complexity of the model, but may also increase the risk of overfitting. A typical range
for n_independent is between 1 and 10.

• “n_shared” (Number of shared GLU activations for all features): This hyperparameter
controls the number of shared nonlinear transformations for all features. A larger
value for “n_shared” can increase the capacity of the model, but may also increase the
computational cost. A typical range for “n_shared” is between 1 and 10.

• “momentum” (Batch normalization momentum): This hyperparameter controls the
momentum for the batch normalization layer, which can affect the stability and con-
vergence of the optimization process. A larger value for “momentum” can improve
the stability of the model, but may also increase the risk of overfitting. A typical range
for “momentum” is between 0.02 and 0.3.

• “batch_size” (The size of each batch used for training the model): A larger value for
“batch_size” can improve the efficiency of the optimization process, but may also
increase the risk of overfitting. A typical range for “batch_size” is between 16 and 256.

• “virtual_batch_size” (The size of the virtual batch used for training the model): This
hyperparameter can be used to simulate larger batch sizes without increasing memory
usage. A larger value for “virtual_batch_size” can improve the stability of the opti-
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mization process, but may also increase the computational cost. A typical range for
“virtual_batch_size” is between 16 and 256.

• “patience”: The number of epochs to wait before early stopping if the validation
loss does not improve. This hyperparameter can be used to prevent overfitting and
improve the efficiency of the optimization process. A larger value for ‘patience’ can
improve stability. A range for “patience” is between 5 to 25.

2.5. Performance Metrics

The most often used terminologies for a binary classification test are accuracy, pre-
cision, recall, and F1-score, which all offer statistical evaluation of the performance of a
classifier model. These metrics were calculated as follows:

Accuracy = (Truepositive + Truenegative)/(Truepositive + Truenegative + Falsepositive + Falsenegative) (8)

Precision = Truepositive/(Truepositive + Falsepositive) (9)

Recall = Truepositive/(Truepositive + Falsenegative) (10)

F1 score = 2 * (Precision * Recall) * (Precision + Recall) (11)

where Truenegative and Truepositive denote the correct predictions for dead (class 0) and survival
(class 1), respectively, and Falsenegative and Falsepositive denote the incorrect predictions for
dead and survival accordingly.

Additionally, we also utilized the “Area under the receiver operating characteristic
curve value” (ROC AUC) to assess the model’s performance. The ROC AUC is defined as:

ROC AUC =
∫ 0

1
TPR(ti)d(FPR(ti)) (12)

where TPR(ti) and FPR(ti) denote the true positive rate and false positive rate for a
threshold ti.

In our investigation, it was assumed that a model with the greatest ROC AUC had
the best predictive capacity. If the ROC AUC remained stable, the model with the highest
recall was considered the best.

2.6. Prediction Performance Comparison

Five machine learning models, including XGBoost [33], k-nearest neighbors [34],
random rorest [35], decision trees [36], and logistic regression [37], are used as benchmarks
for comparison in order to validate the prediction performance of the proposed method.
These techniques were utilized and evaluated in the field of cardiac arrest prediction in
previous studies [10,12,38,39]. The same training set and test set are used for all models’
evaluations. Notably, the BO method also yields the optimal settings for these benchmarks.
The hyperparameters of the HAE-TabNet model and these benchmark models are described
in Table 2. The brief features of the benchmark machine learning models are as follows:

1. XGBoost (XGB): XGB is a popular gradient-boosting algorithm widely used in re-
gression and classification tasks. It uses a combination of multiple decision trees to
make predictions, and it is known for its high performance and accuracy. XGB is
particularly good at handling large datasets and handling missing data. Some notable
features of XGB include its ability to handle different types of data, including both
categorical and numerical data, and its ability to perform feature selection to identify
the most important features for prediction.

2. K-nearest neighbors (KNN): KNN is a simple and effective algorithm for both regres-
sion and classification problems. It works by finding the k-nearest data points to a new
observation and using their values to predict the outcome of that observation. KNN
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is often used for problems with non-linear decision boundaries and can be effective in
low-dimensional datasets. One of the key features of KNN is that it is easy to understand
and implement, but it can be computationally expensive for large datasets.

3. Random forest (RF): RF is an ensemble learning algorithm that uses multiple deci-
sion trees to make predictions. It is particularly good at handling high-dimensional
datasets and can handle both categorical and continuous data. RF is known for its
ability to reduce overfitting and handle missing data, and it can be used for both
regression and classification tasks.

4. Decision tree (DT): DT is a simple yet powerful algorithm for both regression and
classification problems. It works by recursively splitting the data based on the most
informative feature at each node until a stopping criterion is reached. DT is easy to
interpret and can handle both categorical and continuous data.

5. Logistic regression (LR): LR is a popular algorithm for binary classification prob-
lems. It works by estimating the probability of the outcome variable given the input
variables, and it uses a logistic function to transform this probability into a binary
outcome. LR is easy to interpret and can handle both categorical and continuous data.

Table 2. Hyperparameters of the HAE-TabNet model and benchmark models.

Model Hyperparameters

HAE-TabNet

TabNetClassifier(n_d = 80, n_a = 80, n_steps = 6, gamma = 1.8, cat_emb_dim = 1, n_independent = 2,
n_shared = 2, epsilon = 1 × 10−15, momentum = 0.02, lambda_sparse = 7.85 × 10−8, seed = 0, clip_value = 1,
verbose = 0, optimizer_fn = <class ‘torch.optim.adam.Adam’>, optimizer_params = {‘lr’: 0.02,
‘weight_decay’: 1 × 10−5}, scheduler_fn = <class ‘torch.optim.lr_scheduler.ReduceLROnPlateau’>,
scheduler_params = {‘mode’: ‘min’, ‘patience’: 5, ‘min_lr’: 1 × 10−5, ‘factor’: 0.5}, mask_type = ‘entmax’,
device_name = ‘auto’, n_shared_decoder = 1, n_indep_decoder = 1)

XGB XGBClassifier(colsample_bytree = 0.5293, max_depth = 2, n_estimators = 295, reg_alpha = 3.1064 × 10−5,
reg_lambda = 0.0005322, scale_pos_weight = 21.6672, subsample = 0.9932)

KNN KNNClassifier (leaf_size = 30, metric = minkowski, n_neighbors = 41, p = 2)

RF RandomForestClassifier(max_depth = 7, max_features = 0.7594, min_impurity_decrease = 1.4295 × 10−6,
min_samples_leaf = 3, min_samples_split = 7, n_estimators = 104)

DT DecisionTreeClassifier(max_depth = 6, max_features = 0.6509, min_impurity_decrease = 8.8038 × 10−5,
min_samples_leaf = 5, min_samples_split = 3)

LR LogisticRegression(C = 1.4870)

Hybrid agnostic explanation TabNet classification model = HAE-TabNet, XGBoost classification model = XGB,
k-nearest neighbors classification model = KNN, random forest classification mode = RF, decision tree classification
model = DT, logistic regression model = LR.

2.7. Local Interpretable Model-Agnostic Explanations (LIMEs)

The LIME [24] method allows for the approximation of any black-box machine learning
model with a local, interpretable model to account for each individual prediction. The idea
was inspired by a 2016 study [24] in which the authors disturbed the initial data points, put
them into a black-box model, and then examined the associated outcomes. The extra data
points were then given a weight by the algorithm in proportion to the initial point. Finally,
a prediction model incorporating the sample weights was fitted to the dataset. The trained
explanation model might subsequently be used to explain each raw data point.

The primary goal is to present a trustworthy and interpretable explanation. To achieve
this, the LIME tries to minimize the following objective function:

ξ(x) = argming∈GL( f , g, πx) + Ω(g) (13)

where f is an original model, g is the interpretable model, x represents the original observa-
tion, πx denotes the proximity measure from all permutations to the original observation,
the L( f , g, πx) component is a measure of the unfaithfulness of g in approximating f in
the locality defined by π, and Ω(g) is a measure of model complexity. In this study, we
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chose a specific instance to analyze in order to show how the LIME model works with the
HAE-TabNet model to predict an OHCA patient’s survival outcome.

3. Results
3.1. Performances of the HAE-TabNet Model

After rebalancing the training set by the SMOTE-ENN technique, the number of
“dead” labels became 19,625, and the number of “survival” labels was 20,879. The test
set with 12,918 values was not transformed.

The HAE-TabNet with optimized hyperparameters received 0.9858 ± 0.002 of ROC
AUC on the initial imbalanced training set, whereas the ROC AUC of the proposed model
on the rebalanced training set was 0.9934 ± 0.001. Other evaluation metrics also increased
significantly. Specifically, accuracy, precision, recall, and F1-score were 0.9611 ± 0.002,
0.9681 ± 0.002, 0.9623 ± 0.002, and 0.9652 ± 0.002, respectively, on the rebalanced dataset.
On the imbalanced dataset, they were only 0.9572 ± 0.003, 0. 9031 ± 0.004, 0.8339 ± 0.005,
and 0.8669 ± 0.005, respectively. In addition to the improvement in ROC AUC, other scores
also increased significantly between the imbalanced dataset and the balanced dataset. As
detailed in Table 3, the performance of other benchmark machine learning models was also
greatly enhanced on the balanced dataset in comparison to the imbalanced dataset.

Table 3. Performance of the HAE-TabNet model and other benchmark models (95% confidence interval).

Dataset Model Accuracy Precision Recall F1-Score ROC AUC

Original
imbalanced
training set

HAE-TabNet 0.9572 ± 0.003 0. 9031 ± 0.004 0.8339 ± 0.005 0.8669 ± 0.005 0.9858 ± 0.002
XGB 0.9444 ± 0.003 0.8793 ± 0.004 0.8380 ± 0.005 0.8579 ± 0.005 0.9717 ± 0.002
KNN 0.9362 ± 0.003 0.8715 ± 0.004 0.7730 ± 0.006 0.8190 ± 0.005 0.9615 ± 0.003

RF 0.9483 ± 0.003 0.9193 ± 0.004 0.8254 ± 0.005 0.8695 ± 0.005 0.9711 ± 0.002
DT 0.9344 ± 0.003 0.8167 ± 0.005 0.8306 ± 0.005 0.8234 ± 0.005 0.9016 ± 0.004
LR 0.8750 ± 0.005 0.8785 ± 0.004 0.8446 ± 0.005 0.8608 ± 0.005 0.8875 ± 0.003

Rebalanced
training set

HAE-TabNet 0.9611 ± 0.002 0.9681 ± 0.002 0.9623 ± 0.002 0.9652 ± 0.002 0.9934 ± 0.001
XGB 0.9539 ± 0.002 0.9692 ± 0.002 0.9480 ± 0.003 0.9585 ± 0.002 0.9909 ± 0.001
KNN 0.9441 ± 0.003 0.9296 ± 0.003 0.9742 ± 0.002 0.9514 ± 0.002 0.9854 ± 0.001

RF 0.9608 ± 0.002 0.9889 ± 0.001 0.9906 ± 0.001 0.9897 ± 0.001 0.9894 ± 0.001
DT 0.9296 ± 0.003 0.9252 ± 0.003 0.9380 ± 0.003 0.9315 ± 0.003 0.9205 ± 0.003
LR 0.8613 ± 0.004 0.8704 ± 0.004 0.8845 ± 0.004 0.8774 ± 0.004 0.9469 ± 0.003

Test set

HAE-TabNet 0.9605 ± 0.003 0.9598 ± 0.003 0.9600 ± 0.003 0.9599 ± 0.003 0.9930 ± 0.001
XGB 0.9543 ± 0.004 0.9532 ± 0.004 0.9542 ± 0.004 0.9537 ± 0.004 0.9905 ± 0.002
KNN 0.9248 ± 0.005 0.9232 ± 0.005 0.9242 ± 0.005 0.9237 ± 0.005 0.9807 ± 0.002

RF 0.9514 ± 0.004 0.9499 ± 0.004 0.9517 ± 0.004 0.9507 ± 0.004 0.9868 ± 0.002
DT 0.9191 ± 0.005 0.9137 ± 0.005 0.9453 ± 0.004 0.9293 ± 0.004 0.9205 ± 0.005
LR 0.8632 ± 0.006 0.8715 ± 0.006 0.8875 ± 0.005 0.8794 ± 0.006 0.9469 ± 0.004

Hybrid agnostic explanation TabNet classification model = HAE-TabNet, XGBoost classification model = XGB,
k-nearest neighbors classification model = KNN, random forest classification mode = RF, decision tree classification
model = DT, logistic regression model = LR.

Table 3 demonstrated that the ROC AUC of XGB, KNN, RF, DT, and LR were
0.9909 ± 0.001, 0.9854 ± 0.001, 0.9894 ± 0.001, 0.9205 ± 0.003, and 0.9469 ± 0.003, re-
spectively. On the test set, the HAE-TabNet model’s ROC AUC was also higher than other
machine learning models, with a value of 0.9930 ± 0.001 displayed in Figure 3. The ROC
AUC of the HAE-TabNet outperformed all other benchmark models on both the training
set and the test set. Moreover, the HAE-TabNet model also had the highest accuracy on the
training set.
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3.2. Evaluation of HAE-TabNet’s Feature Masks

Figure 4 illustrates which features are chosen between the first and fourth decision
steps. The brighter color indicates that the feature is given more weight in this decision
step. Figure 4 also demonstrates that each decision step will assign a unique weight to
each feature, reflecting the instance-wise idea. For instance, in the first decision step,
denoted as mask 0, the top three features (features 1, 16, and 8) received high scores,
but the noise from other irrelevant features was also captured. The second decision step,
denoted by mask 1, was more beneficial because it emphasized the important features
while assigning zero weight to irrelevant features. In the subsequent step, as depicted by
masks 2 and 3, the noise features were nearly eliminated, and only the essential features
were displayed. The internal mask is a fundamental component of TabNet, and it is easy to
use and obtain. Compared to other benchmark models that perform similarly in this study,
TabNet outperformed them in offering comprehensive model insights without the need for
extra software.
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3.3. Evaluation of LIME-HAE-TabNet

Figure 5 depicts a description of an OHCA patient with a predicted outcome of
survival. Figure 5c summarizes the patient’s state and contributing circumstances. We
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noticed that only the first eight features would contribute to prediction, so we summarize
the states of patients only including ten out of thirty features. The patient’s states in
Figure 5c can be explained below:

• Electrocardiogram findings of sudden cardiac arrest in the emergency room = 0
(rhythm after recovery of spontaneous circulation (state of recovery of spontaneous
circulation at the time of visit));

• Recovery of spontaneous circulation before hospital arrival = 1 (recovery of sponta-
neous circulation);

• Whether emergency room defibrillation is performed = 1 (not conducted);
• smoking history = 8 (does not exist);
• Gender = 2 (female);
• Type of insurance = 1 (national health insurance);
• Whether defibrillation was performed prior to hospital arrival = 9 (unknown);
• Detector or witness types of sudden cardiac arrest patients = 9 (unknown);
• Causes of sudden cardiac arrest = 1 (disease);
• Reasons for non-implementation of ambulance automatic defibrillator = 1 (indication).
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Based on this patient’s state, the HAE-TabNet predicted that the survival rate would
be 95%, as shown in Figure 5a. Figure 5b depicts the LIME methodology. The blue bars
represent the variables that significantly contribute to the prediction’s rejection, whereas the
orange bars represent the states and factors that considerably contribute to the prediction’s
support. According to the explanation, at the time of the prediction, “Electrocardiogram
Findings of Sudden Cardiac Arrest in the Emergency Room” was the target’s main factor
and state that most contributed to the prediction, with a weight of 0.27.

4. Discussion

Through validation, this study demonstrated that the accurate performance of the
deep learning model, HAE-TabNet, was excellent for predicting the survival outcome of
OHCA patients. The most important finding from this study was that the proposed model
outperformed other traditional machine learning models such as XGB, KNN, RF, DT, and
LR on the medical tabular data. Moreover, this hybrid model combined with the LIME
can help medical professionals without expert knowledge in the field of data analysis
understand the AI model’s decision easily.

For professionals in the field of data science, understanding and evaluating TabNet’s
mask in Figure 4 is not a matter. However, for medical professionals who are not specialized
in the field of artificial intelligence, understanding TabNet’s mask is quite complicated.
Compared to TabNet’s original explanatory model, our model is more intuitive and easier
to understand. Medical professionals only need to compare code values to understand the
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model’s interpretation quickly and easily. Thereby, combined with specialized knowledge,
doctors can verify the reliability of the model, as well as apply the model to the prognosis
and treatment of patients effectively.

A few comparable investigations merit additional discussion. Seki et al. [40] used
53 variables to create a machine learning method for one-year survival after OHCA. The
simulation performed well. (ROC AUC 0.94). Although only OHCA with an assumed
cardiac etiology was included, the prediction tool’s utility was still constrained, and it is
unlikely that any practitioner will be able to input data on 53 factors while performing
ongoing CPR. In order to forecast mortality after OHCA among patients who attained
ROSC, Kwon et al. [10] combined a variety of machine learning techniques with logistic
regression models. Even though the model had a high ROC AUC (0.95) because it only
included patients with ROSC, its applicability in the ED is constrained because the majority
of patients with prolonged ROSC are moved to the ICU for additional care, and prognosti-
cations are frequently made at a later stage. The same restriction applies to a number of
other prediction tools (Miracle2 [41], OHCA [42], TTM [43], and CAHP [44]), which can
only be used to forecast brain function in patients who have OHCA and ROSC. They are
useless to clinicians who are dealing with OHCA patients who do not have ROSC. Our
proposed prediction model is compatible with all common data of OHCA patients and has
a higher ROC AUC (0.9934 ± 0.001 on the training set, 0.9930 ± 0.001 on the test set) than
previous research.

There is conflicting evidence regarding whether skilled medical professionals are more
accurate than current scoring methods at distinguishing survivors from non-survivors.
(APACHE, SAPS, MPM) [45]. When evaluating survival 24 h after ICU admission, ICU
physicians performed better than the current scoring systems. However, the ability to
predict outcomes was only moderately correct for both doctors and scoring systems [46].
According to the data, prognosis projections frequently rely on clinical judgment rather
than objective information [47], which can occasionally be deceptive. Medical professionals
only correctly predicted the time to death 20% of the time (within 33% of real survival),
frequently made overly optimistic predictions (63%), and underestimated survival times
by a factor of 5 on average [47], according to data from prognosis assessments in terminally
ill patients. As a result, it suggested that prediction tools are needed in medicine to ensure
objective accuracy.

5. Limitations

The following are some of the limitations of this study. First, the dataset contains
multiple absent values, necessitating the elimination of numerous variables. We utilized the
TabNet model, which has the capacity for self-supervised learning so that in future research
we can use this technique to manage missing values in this dataset. Second, our analysis
was conducted using all available data features without performing any feature engineering.
Further research should focus on employing feature engineering techniques to improve the
performance of the predictive models. We recommend that future studies consider using
Bayesian linear regression based on a Poisson (or a negative binomial) distribution [48] to
model the count of survival outcomes as a function of various features in the dataset. By
quantifying the impact of each feature on survival outcomes, this approach can help identify
the most important features for improving outcomes in OHCA patients. Additionally,
the Bayesian framework allows for the incorporation of uncertainty, providing a more
robust understanding of the relationships between features and outcomes. Thirdly, TabNet
is a model of deep learning, so fine-tuning requires considerable effort. Therefore, we
cannot fine-tune the TabNet model with a wider range and more hyperparameters. Finally,
due to the use of various samples and the determination of which local data points are
incorporated into the local model, LIME’s explanations are not always stable or consistent.
In the future, this model must be evaluated by medical professionals.
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6. Conclusions

This research presents a reliable HAE-TabNet model that can help medical profes-
sionals predict OHCA patients’ survival outcomes and understand the model’s inter-
pretation quickly and easily. Our proposed model achieved good performance with a
0.9934 ± 0.001 ROC AUC score in the training dataset and a 0.9930 ± 0.001 ROC AUC
score in the test dataset. Combined with specialized knowledge, medical doctors can verify
the reliability of the model, as well as apply the model to the prognosis and treatment of
patients effectively. In the future, more research on enhancing the LIME and the character-
istics that increase its trust among physicians is required for "black-box" machine learning
predictive technologies to be broadly implemented in healthcare.
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