

Article On Generalizations of the Close-to-Convex Functions Associated with q-Srivastava–Attiya Operator

Daniel Breaz¹, Abdullah A. Alahmari², Luminița-Ioana Cotîrlă^{3,*} and Shujaat Ali Shah⁴

- ¹ Department of Mathematics, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
- ² Department of Mathematical Sciences, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- ³ Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
- ⁴ Department of Mathematics and Statistics, Quaid-e-Awam University of Engineering, Science and Technology (QUEST), Nawabshah 67450, Pakistan
- * Correspondence: luminita.cotirla@math.utcluj.ro

Abstract: The study of the q-analogue of the classical results of geometric function theory is currently of great interest to scholars. In this article, we define generalized classes of close-to-convex functions and quasi-convex functions with the help of the q-difference operator. Moreover, by using the q-analogues of a certain family of linear operators, the classes $K^s_{q,b}(\mathfrak{h})$, $\tilde{K}^b_{q,s}(\mathfrak{h})$, $q^s_{q,b}(\mathfrak{h})$, and $\tilde{Q}^b_{q,s}(\mathfrak{h})$ are introduced. Several interesting inclusion relationships between these newly defined classes are discussed, and the invariance of these classes under the q-Bernadi integral operator was examined. Furthermore, some special cases and useful consequences of these investigations were taken into consideration.

Keywords: analytic functions; q-starlike functions; q-convex functions; q-close-to-convex functions; q-Srivastava–Attiya operator; q-multiplier transformation

MSC: 30C45; 30C50

1. Introduction

Calculus that does not include the idea of limits is referred to as "q-calculus". Mathematicians have been paying much attention to q-calculus recently because of its applications in the study of, for example, q-deformed super-algebras, quantum groups, optimal control problems, fractal and multi-fractal measures, and chaotic dynamical systems. Since the concept of q-calculus was introduced, this idea has been applied in many research studies by various prominent scholars [1–5] in this branch of study. The application of q-calculus involving q-derivatives and q-integrals was initiated by F. Jackson of [6,7]. For further details, see [8–12].

We denote by \mathbb{A} the class of analytic functions $\mathfrak{f}(\zeta)$ in the open unit disk $\mathbb{U} = \{\zeta : |\zeta| < 1\}$, which can be expressed as the series:

$$\mathfrak{f}(\zeta) = \zeta + \sum_{\kappa=2}^{\infty} a_{\kappa} \zeta^{\kappa}.$$
(1)

The subordination of two analytic functions \mathfrak{f}_1 and \mathfrak{f}_2 is denoted by $\mathfrak{f}_1 \prec \mathfrak{f}_2$ and defined as $\mathfrak{f}_1(\zeta) = \mathfrak{f}_2(w(\zeta))$, where $w(\zeta)$ is a Schwartz function in \mathbb{U} (see [13]). Let *S*, *S*^{*}, *C*, *K*, and *Q* denote the subclasses of \mathbb{A} of univalent, starlike, convex, close-to-convex, and quasi-convex functions, respectively.

In [6], Jackson introduced the q-difference operator $\mathfrak{d}_{\mathfrak{q}}:\mathbb{A}\to\mathbb{A}$, which is defined by

$$\mathfrak{d}_{\mathfrak{q}}\mathfrak{f}(\zeta) = \frac{\mathfrak{f}(\zeta) - \mathfrak{f}(\mathfrak{q}\zeta)}{(1-\mathfrak{q})\zeta}; \quad \mathfrak{q} \neq 1, \ \zeta \neq 0.$$
⁽²⁾

Citation: Breaz, D.; Alahmari, A.A.; Cotîrlă, L.-I.; Ali Shah, S. On Generalizations of the Close-to-Convex Functions Associated with q-Srivastava–Attiya Operator. *Mathematics* **2023**, *11*, 2022. https://doi.org/10.3390/ math11092022

Academic Editors: Teodor Bulboacă and Jay Jahangiri

Received: 4 January 2023 Revised: 20 April 2023 Accepted: 20 April 2023 Published: 24 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

In particular, as $q \to 1^-$, we have $\mathfrak{d}_{\mathfrak{q}}\mathfrak{f}(\zeta) \to \mathfrak{f}'(\zeta)$, the usual derivative of the function $\mathfrak{f}(\zeta)$. One can see [14–19] for the important properties of this operator $\mathfrak{d}_{\mathfrak{q}}$. It was found that, for $\kappa \in \mathbb{N} = \{1, 2, 3, \ldots\}$ and $\zeta \in \mathbb{U}$,

$$\mathfrak{d}_{\mathfrak{q}}\left\{\sum_{\kappa=1}^{\infty}a_{\kappa}\zeta^{\kappa}\right\} = \sum_{\kappa=1}^{\infty}[\kappa]_{\mathfrak{q}}a_{\kappa}\zeta^{\kappa-1},\tag{3}$$

where

$$\left[\kappa\right]_{\mathfrak{q}} = \frac{1-\mathfrak{q}^{\kappa}}{1-\mathfrak{q}} = 1 + \sum_{j=1}^{\kappa-1} \mathfrak{q}^{j}. \tag{4}$$

The following are some fundamental rules of the q-difference operator.

$$\mathfrak{d}_{\mathfrak{q}}(x\mathfrak{u}(\zeta) \pm yv(\zeta)) = x\mathfrak{d}_{\mathfrak{q}}\mathfrak{u}(\zeta) \pm y\mathfrak{d}_{\mathfrak{q}}v(\zeta)$$
(5)

$$\mathfrak{d}_{\mathfrak{q}}(\mathfrak{u}(\zeta)v(\zeta)) = \mathfrak{u}(\mathfrak{q}\zeta)\mathfrak{d}_{\mathfrak{q}}(v(\zeta)) + v(\zeta)\mathfrak{d}_{\mathfrak{q}}(\mathfrak{u}(\zeta)) \tag{6}$$

$$\mathfrak{d}_{\mathfrak{q}}\left(\frac{\mathfrak{u}(\zeta)}{v(\zeta)}\right) = \frac{\mathfrak{d}_{\mathfrak{q}}(\mathfrak{u}(\zeta))v(\zeta) - \mathfrak{u}(\zeta)\mathfrak{d}_{\mathfrak{q}}(v(\zeta))}{v(\mathfrak{q}\zeta)v(\zeta)}, \quad v(\mathfrak{q}\zeta)v(\zeta) \neq 0.$$
(7)

$$\mathfrak{d}_{\mathfrak{q}}(\log\mathfrak{u}(\zeta)) = \frac{\ln\mathfrak{q}\mathfrak{d}_{\mathfrak{q}}\mathfrak{u}(\zeta)}{(\mathfrak{q}-1)\mathfrak{u}(\zeta)},\tag{8}$$

where $u, v \in \mathbb{A}$ and x and y are complex constants.

The q-starlike functions was introduced and studied by Ismail et al. [20]. This was the amazing breakthrough by which two different fields, q-calculus and the theory of analytic functions, were linked. After this interesting investigation, certain subclasses of analytic functions were defined and examined in terms of q-function theory by several scholars; we refer to [21-30]. The study of q-operators plays a vital role in the development of this field of study. Kanas and Raducanu [31] introduced the q-extension of the Ruscheweyh derivative operator, and the q-analogue of the Bernardi and Noor integral operators was defined by Noor et al. [32] and Arif et al. [33], respectively.

In [34], Shah and Noor discussed the q-extensions of the Srivastava–Attiya operator and the multiplier transformation. For $b \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $s \in \mathbb{C}$ when $|\zeta| < 1$ and Re(s) > 1when $|\zeta| = 1$, the operator $J_{\mathfrak{a},b}^s : \mathbb{A} \to \mathbb{A}$ is defined by

$$J^{s}_{\mathfrak{q},b}\mathfrak{f}(\zeta) = \psi_{\mathfrak{q}}(s,b;\zeta) * \mathfrak{f}(\zeta) = \zeta + \sum_{\kappa=2}^{\infty} \left(\frac{[1+b]_{\mathfrak{q}}}{[\kappa+b]_{\mathfrak{q}}}\right)^{s} a_{\kappa} \zeta^{\kappa}, \tag{9}$$

where

$$\psi_{\mathfrak{q}}(s,b;\zeta) = \zeta + \sum_{\kappa=2}^{\infty} \left(\frac{[1+b]_{\mathfrak{q}}}{[\kappa+b]_{\mathfrak{q}}} \right)^{s} \zeta^{\kappa}, \tag{10}$$

and "*" denotes convolution.

Special cases:

- If $\mathfrak{q} \to 1^-$, then the function $\psi_{\mathfrak{q}}(s, b; \zeta)$ reduces to the Hurwitz–Lerch zeta function (i) and the operator $J_{a,b}^{s}$ coincides with the Srivastava–Attiya operator; we refer to [35].
- (ii) $J_{\mathfrak{q},0}^{1}\mathfrak{f}(\zeta) = \int_{0}^{\zeta} \frac{\mathfrak{f}(t)}{t} \mathfrak{d}_{\mathfrak{q}} t$ (q-Alexander operator). (iii) $J_{\mathfrak{q},b}^{1}\mathfrak{f}(\zeta) = \frac{[1+b]_{\mathfrak{q}}}{\zeta^{b}} \int_{0}^{\zeta} t^{b-1}\mathfrak{f}(t)\mathfrak{d}_{\mathfrak{q}} t$ (q-Bernardi operator [32]).
- (iv) $J^{1}_{\mathfrak{q},1}\mathfrak{f}(\zeta) = \frac{[2]_{\mathfrak{q}}}{\zeta} \int_{0}^{\zeta} \mathfrak{f}(t)\mathfrak{d}_{\mathfrak{q}}t$ (q-Libera operator [32]).

The operator $I^b_{\mathfrak{q},s} : \mathbb{A} \to \mathbb{A}$ is defined as

$$I^{b}_{\mathfrak{q},s}\mathfrak{f}(\zeta) = \zeta + \sum_{\kappa=2}^{\infty} \left(\frac{[\kappa+b]_{\mathfrak{q}}}{[1+b]_{\mathfrak{q}}}\right)^{s} a_{\kappa} \zeta^{\kappa}, \tag{11}$$

where $f \in A$, *s* is a real, and b > -1.

In particular, for b = 0 and non-negative real *s*, we obtain the Salagean q-difference operator [36].

We used (9) and (11) to obtain the following identities.

$$\zeta \mathfrak{d}_{\mathfrak{q}} \left(J^{s+1}_{\mathfrak{q},b} \mathfrak{f}(\zeta) \right) = \left(1 + \frac{[b]_{\mathfrak{q}}}{\mathfrak{q}^{b}} \right) J^{s}_{\mathfrak{q},b} \mathfrak{f}(\zeta) - \frac{[b]_{\mathfrak{q}}}{\mathfrak{q}^{b}} J^{s+1}_{\mathfrak{q},b} \mathfrak{f}(\zeta).$$
(12)

$$\zeta \mathfrak{d}_{\mathfrak{q}} \left(I^{b}_{\mathfrak{q},s} \mathfrak{f}(\zeta) \right) = \left(1 + \frac{[b]_{\mathfrak{q}}}{\mathfrak{q}^{b}} \right) I^{b}_{\mathfrak{q},s+1} \mathfrak{f}(\zeta) - \frac{[b]_{\mathfrak{q}}}{\mathfrak{q}^{b}} I^{b}_{\mathfrak{q},s} \mathfrak{f}(\zeta).$$
(13)

In 2017, Agarwal and Sahoo [21] generalized the classes ST_q and CV_q of functions of q-starlike and q-convex functions, respectively, as follows:

$$ST_{\mathfrak{q}}(\gamma) = \left\{ \mathfrak{f} \in \mathbb{A} : \left| \frac{\frac{\mathfrak{d}_{\mathfrak{q}}(\mathfrak{f}(\zeta))}{\mathfrak{f}(\zeta)} - \gamma}{1 - \gamma} - \frac{1}{1 - \mathfrak{q}} \right| < \frac{1}{1 - \mathfrak{q}} \right\}$$
(14)

and

$$CV_{\mathfrak{q}}(\gamma) = \{\mathfrak{f} \in \mathbb{A} : \zeta \mathfrak{d}_{\mathfrak{q}}(\mathfrak{f}(\zeta)) \in ST_{\mathfrak{q}}(\gamma)\},\tag{15}$$

where $\gamma \in [0, 1)$, $\mathfrak{q} \in (0, 1)$, and $\zeta \in \mathbb{U}$.

In [37], the class $K_q(\gamma)$ of q-close-to-convex functions of order γ was defined as the following.

$$K_{\mathfrak{q}}(\gamma) = \left\{ \mathfrak{f} \in \mathbb{A} : \left| \frac{\frac{\mathfrak{d}_{\mathfrak{q}}(\mathfrak{f}(\zeta))}{g(\zeta)} - \gamma}{1 - \gamma} - \frac{1}{1 - \mathfrak{q}} \right| < \frac{1}{1 - \mathfrak{q}} \right\},\tag{16}$$

where $g \in ST_{\mathfrak{q}}(\gamma)$, $\gamma \in [0, 1)$, $\mathfrak{q} \in (0, 1)$, and $\zeta \in \mathbb{U}$.

It is noted that [37] $K_q(0) = K_q$, which is given as

$$K_{\mathfrak{q}} = \left\{ \mathfrak{f} \in \mathbb{A} : \left| \frac{\mathfrak{d}_{\mathfrak{q}}(\mathfrak{f}(\zeta))}{g(\zeta)} - \frac{1}{1-\mathfrak{q}} \right| < \frac{1}{1-\mathfrak{q}} \right\},\tag{17}$$

equivalently, $f \in K_q$ if and only if

$$\frac{\mathfrak{d}_{\mathfrak{q}}(\mathfrak{f}(\zeta))}{g(\zeta)} \prec \frac{1+\zeta}{1-\mathfrak{q}\zeta'}$$
(18)

where $g \in ST_{\mathfrak{q}}(0) = ST_{\mathfrak{q}}$, $\mathfrak{q} \in (0, 1)$, and $\zeta \in \mathbb{U}$.

Shah and Noor in [34] defined the classes $ST^s_{\mathfrak{q},b}(\mathfrak{h})$ and $\widetilde{ST}^b_{\mathfrak{q},s}(\mathfrak{h})$, by using the operators given by (9) and (11), as the following.

Let Φ be the class of univalent convex functions \mathfrak{h} with $\mathfrak{h}(0) = 1$ and $Re(\mathfrak{h}(\zeta)) > 0$ in \mathbb{U} . Then,

$$ST^{s}_{\mathfrak{q},b}(\mathfrak{h}) = \left\{ \mathfrak{f} \in \mathbb{A} : J^{s}_{\mathfrak{q},b}\mathfrak{f}(\zeta) \in ST_{\mathfrak{q}}(\mathfrak{h}) \right\}$$

 $\widetilde{ST}^{b}_{\mathfrak{q},s}(\mathfrak{h}) = \Big\{\mathfrak{f} \in \mathbb{A} : I^{b}_{\mathfrak{q},s}\mathfrak{f}(\zeta) \in ST_{\mathfrak{q}}(\mathfrak{h})\Big\},\$

where

and

$$ST_{\mathfrak{q}}(\mathfrak{h}) = \bigg\{\mathfrak{f} \in \mathbb{A} : \frac{\zeta \mathfrak{d}_{\mathfrak{q}}\mathfrak{f}(\zeta)}{\mathfrak{f}(\zeta)} \prec \mathfrak{h}(\zeta)\bigg\}.$$

Motivated by the work in [34], we define the following;

Definition 1. Let $\mathfrak{f} \in \mathbb{A}$, $\mathfrak{h} \in \Phi$, and $\mathfrak{q} \in (0, 1)$. Then, $\mathfrak{f} \in K_{\mathfrak{q}}(\mathfrak{h})$ if and only if

$$\frac{\zeta \partial_{\mathfrak{q}} \mathfrak{f}(\zeta)}{g(\zeta)} \prec \mathfrak{h}(\zeta),$$

for some $g \in ST_{\mathfrak{q}}(\mathfrak{h})$.

Definition 2. Let $\mathfrak{f} \in \mathbb{A}$, $\mathfrak{h} \in \Phi$, and $\mathfrak{q} \in (0,1)$. Then, $\mathfrak{f} \in K^{s}_{\mathfrak{a},b}(\mathfrak{h})$ if and only if

$$\frac{\zeta \partial_{\mathfrak{q}} J^{s}_{\mathfrak{q},b} \mathfrak{f}(\zeta)}{J^{s}_{\mathfrak{q},b} \mathfrak{g}(\zeta)} \prec \mathfrak{h}(\zeta).$$

for some $g \in ST^s_{\mathfrak{q},b}(\mathfrak{h})$ with $b \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $s \in \mathbb{C}$ when $|\zeta| < 1$ and Re(s) > 1 when $|\zeta| = 1$.

Definition 3. Let $\mathfrak{f} \in \mathbb{A}$, $\mathfrak{h} \in \Phi$, $s \in \mathbb{R}$, b > -1, and $\mathfrak{q} \in (0, 1)$. Then, $\mathfrak{f} \in \widetilde{K}^{b}_{\mathfrak{q},s}(\mathfrak{h})$ if and only if

$$\frac{\zeta \partial_{\mathfrak{q}} I^{b}_{\mathfrak{q},s} \mathfrak{f}(\zeta)}{I^{b}_{\mathfrak{q},s} g(\zeta)} \prec \mathfrak{h}(\zeta)$$

for some $g \in \widetilde{ST}^{b}_{\mathfrak{q},s}(\mathfrak{h})$.

Here, analogous to the above classes, we define

$$Q_{\mathfrak{q}}(\mathfrak{h}) = \{\mathfrak{f} \in \mathbb{A} : \zeta \mathfrak{d}_{\mathfrak{q}} \mathfrak{f}(\zeta) \in K_{\mathfrak{q}}(\mathfrak{h})\},\$$
$$\mathfrak{f} \in Q^{s}_{\mathfrak{q},b}(\mathfrak{h}) \text{ if and only if } \zeta \mathfrak{d}_{\mathfrak{q}} \mathfrak{f}(\zeta) \in K^{s}_{\mathfrak{q},b}(\mathfrak{h})$$

and

$$\mathfrak{f} \in \widetilde{Q}^{b}_{\mathfrak{q},s}(\mathfrak{h})$$
 if and only if $\zeta \mathfrak{d}_{\mathfrak{q}}\mathfrak{f}(\zeta) \in \widetilde{K}^{b}_{\mathfrak{q},s}(\mathfrak{h})$

For different values of the parameters q, s, b, and h, the above newly defined classes reduce to the certain subclasses of analytic functions. For example:

(i)
$$K_{\mathfrak{q},b}^{s}\left(\frac{1+\{1-\gamma(1+\mathfrak{q})\}\zeta}{1-\mathfrak{q}\zeta}\right) = K_{\mathfrak{q},b}^{s}(\gamma) \text{ and } Q_{\mathfrak{q},b}^{s}\left(\frac{1+\{1-\gamma(1+\mathfrak{q})\}\zeta}{1-\mathfrak{q}\zeta}\right) = Q_{\mathfrak{q},b}^{s}(\gamma).$$

(ii) $K_{\mathfrak{q},b}^{s}\left(\frac{1+\zeta}{1-\mathfrak{q}\zeta}\right) = K_{\mathfrak{q},b}^{s}(\gamma).$

(ii)
$$K_{q,b}\left(\frac{1-q\zeta}{1-q\zeta}\right) = K_{q,b}$$
 and $Q_{q,b}\left(\frac{1-q\zeta}{1-q\zeta}\right) = Q_{q,b}$.

(iii)
$$K^0_{\mathfrak{q},b}(\mathfrak{h}) = K_{\mathfrak{q}}(\mathfrak{h}) = K^b_{\mathfrak{q},0}(\mathfrak{h}) \text{ and } Q^0_{\mathfrak{q},b}(\mathfrak{h}) = Q_{\mathfrak{q}}(\mathfrak{h}) = Q^b_{\mathfrak{q},0}(\mathfrak{h}).$$

(iv)
$$K_{\mathfrak{q}}\left(\frac{1+\{1-\gamma(1+\mathfrak{q})\}\zeta}{1-\mathfrak{q}\zeta}\right) = K_{\mathfrak{q}}(\gamma)$$
 (see [37]) and $Q_{\mathfrak{q}}\left(\frac{1+\{1-\gamma(1+\mathfrak{q})\}\zeta}{1-\mathfrak{q}\zeta}\right) = Q_{\mathfrak{q}}(\gamma)$.

- (v) $K_{\mathfrak{q}}\left(\frac{1+\zeta}{1-\mathfrak{q}\zeta}\right) = K_{\mathfrak{q}}$ (see [37]) and $Q_{\mathfrak{q}}\left(\frac{1+\zeta}{1-\mathfrak{q}\zeta}\right) = Q_{\mathfrak{q}}$.
- (vi) $\lim_{q \to 1^-} K_q = K$ and $\lim_{q \to 1^-} Q_q = Q$, the classes of close-to-convex and quasi-convex functions, respectively.

Shah and Noor [34] studied various interesting properties such as the inclusion results and an integral-related property for the generalized classes of q-starlike and q-convex functions. Inspired by these investigations, we organized this paper to discuss such types of results for the generalized classes of q-close-to-convex functions and q-quasi-convex functions. In the next section, firstly, we prove the q-analogue of the fundamental lemma and then, by using this lemma, our main results are examined.

2. Main Results

To discuss our main problems, we state some preliminary results as the following.

Lemma 1 ([38]). Let $h(\zeta)$ be convex in \mathbb{U} with h(0) = 1, and let $P : \mathbb{U} \to \mathbb{C}$ with $Re(P(\zeta)) > 0$ in \mathbb{U} . If $p(\zeta) = 1 + p_1\zeta + p_2\zeta^2 + ...$ is analytic in \mathbb{U} , then

$$p(\zeta) + P(\zeta) \cdot \zeta p'(\zeta) \prec h(\zeta) \tag{19}$$

implies that $p(\zeta) \prec h(\zeta)$.

Lemma 2 ([39]). Let $p(\zeta) = 1 + p_{\kappa}\zeta^{\kappa} + ..., \kappa \ge 1$, be analytic in the unit disc \mathbb{U} , and let $g(\zeta) = 1 + c_1\zeta + ...$ be analytic in $\overline{\mathbb{U}}$. If $p(\zeta)$ is not subordinate $g(\zeta)$, then there exists a real number $m \ge 1, \zeta_0 \in \mathbb{U}$, and $\varepsilon_0 \in \partial \mathbb{U}$ such that:

- (i) $p(|\zeta| < |\zeta_0|) \subset g(\mathbb{U}).$
- (*ii*) $p(\zeta_0) = g(\varepsilon_0).$
- (iii) $arg(\zeta_0 \mathfrak{d}_{\mathfrak{q}} p(\zeta_0)) = arg(\varepsilon_0 \mathfrak{d}_{\mathfrak{q}} p(\varepsilon_0))$
- (*iv*) $|\zeta_0 \mathfrak{d}_\mathfrak{q} p(\zeta_0)| = m |\varepsilon_0 \mathfrak{d}_\mathfrak{q} p(\varepsilon_0)|.$

Lemma 3. Let $h(\zeta)$ be convex in \mathbb{U} with h(0) = 1, and let $P : \mathbb{U} \to \mathbb{C}$ with $Re(P(\zeta)) > 0$ in \mathbb{U} . If $p(\zeta) = 1 + p_1\zeta + p_2\zeta^2 + \dots$ is analytic in \mathbb{U} , then

$$p(\zeta) + P(\zeta) \cdot \zeta \mathfrak{d}_{\mathfrak{q}} p(\zeta) \prec h(\zeta) \tag{20}$$

implies that $p(\zeta) \prec h(\zeta)$ *.*

Proof. Suppose on the contrary that $p(\zeta) \not\prec h(\zeta)$. Then, by Lemma 2, there exists a real number $m \ge 1, \zeta_0 \in \mathbb{U}$, and $\varepsilon_0 \in \partial \mathbb{U}$ such that

$$p(\zeta_0) + P(\zeta_0) \cdot \zeta_0 \mathfrak{d}_{\mathfrak{q}} p(\zeta_0) = h(\varepsilon_0) + m P(\varepsilon_0) \cdot \varepsilon_0 \mathfrak{d}_{\mathfrak{q}} h(\varepsilon_0).$$
⁽²¹⁾

Since $Re(P(\zeta)) > 0$, we have

$$|\arg mP(\varepsilon_0)| < \frac{\pi}{2}$$

and $\varepsilon_0 \mathfrak{d}_{\mathfrak{q}} h(\varepsilon_0)$ is in the direction of the outer normal to the convex domain $h(\mathbb{U})$; therefore, the right-hand side of (21) is a complex number outside $h(\mathbb{U})$. That is,

$$p(\zeta_0) + P(\zeta_0) \cdot \zeta_0 \mathfrak{d}_{\mathfrak{q}} p(\zeta_0) \notin h(\mathbb{U}),$$

which is a contradiction to the hypothesis. We replaced $p_{\varrho}(\zeta) = p(\varrho\zeta)$ and $h_{\varrho}(\zeta) = h(\varrho\zeta)$, for $\varrho \in (0, 1)$ to remove the restriction on the functions involved. Since the hypothesis is true, we obtain the required result by letting $\varrho \to 1^-$. \Box

Lemma 4 ([34]). *Let* $\mathfrak{h} \in \Phi$. *Then, for positive real s and* $b \in \mathbb{N}$ *, we have*

$$ST^{s}_{\mathfrak{q},b}(\mathfrak{h}) \subset ST^{s+1}_{\mathfrak{q},b}(\mathfrak{h})$$

Lemma 5 ([34]). *Let* $\mathfrak{h} \in \Phi$. *Then, for positive real s and* $b \in \mathbb{N}$ *, we have*

$$\widetilde{ST}^{b}_{\mathfrak{q},s+1}(\mathfrak{h}) \subset \widetilde{ST}^{b}_{\mathfrak{q},s}(\mathfrak{h}).$$

2.1. Inclusion of Classes

Theorem 1. Let $\mathfrak{h} \in \Phi$. Then, for positive real *s* and $b \in \mathbb{N}$,

$$K^{s}_{\mathfrak{q},b}(\mathfrak{h}) \subset K^{s+1}_{\mathfrak{q},b}(\mathfrak{h}).$$

Proof. Let $\mathfrak{f} \in K^{s}_{\mathfrak{q},b}(\mathfrak{h})$. Then, by definition, there exists $g \in ST^{s}_{\mathfrak{q},b}(\mathfrak{h})$ such that

$$\frac{\zeta \mathfrak{d}_{\mathfrak{q}} \left(J_{\mathfrak{q},b}^{s} \mathfrak{f}(\zeta) \right)}{J_{\mathfrak{q},b}^{s} g(\zeta)} \prec \mathfrak{h}(\zeta).$$
(22)

Consider

$$\frac{\zeta \mathfrak{d}_{\mathfrak{q}}\left(J_{\mathfrak{q},b}^{s+1}\mathfrak{f}(\zeta)\right)}{J_{\mathfrak{q},b}^{s+1}g(\zeta)} = p(\zeta).$$
(23)

We note that $p(\zeta)$ is analytic in \mathbb{U} with p(0) = 1. From Identity (12), we can easily write

$$\frac{\zeta \mathfrak{d}_{\mathfrak{q}} \left(J_{\mathfrak{q},b}^{s} \mathfrak{f}(\zeta) \right)}{J_{\mathfrak{q},b}^{s} g(\zeta)} = \frac{\frac{\zeta \mathfrak{d}_{\mathfrak{q}} \left(\zeta \mathfrak{d}_{\mathfrak{q},b} (J_{\mathfrak{q},b}^{s+1} \mathfrak{f}(\zeta) \right)}{J_{\mathfrak{q},b}^{s+1} g(\zeta)} + \gamma_{\mathfrak{q}} \frac{\zeta \mathfrak{d}_{\mathfrak{q}} \left(J_{\mathfrak{q},b}^{s+1} \mathfrak{f}(\zeta) \right)}{J_{\mathfrak{q},b}^{s+1} g(\zeta)}}{\frac{\zeta \mathfrak{d}_{\mathfrak{q}} \left(J_{\mathfrak{q},b}^{s+1} g(\zeta) \right)}{J_{\mathfrak{q},b}^{s+1} g(\zeta)}} + \gamma_{\mathfrak{q}}},$$
(24)

where $\gamma_{\mathfrak{q}} = \frac{[b]_{\mathfrak{q}}}{q^b}$.

After the q-logarithmic differentiation of (23), we have

$$\frac{\zeta \mathfrak{d}_{\mathfrak{q}}\left(\zeta \mathfrak{d}_{\mathfrak{q}}\left(J_{\mathfrak{q},b}^{s+1}\mathfrak{f}(\zeta)\right)\right)}{J_{\mathfrak{q},b}^{s+1}g(\zeta)} = p(\zeta)R(\zeta) + \zeta \mathfrak{d}_{\mathfrak{q}}p(\zeta),$$
(25)

where $R(\zeta) = \frac{\zeta \mathfrak{o}_{\mathfrak{q}} \left(J_{\mathfrak{q},b}^{s+1} g(\zeta) \right)}{J_{\mathfrak{q},b}^{s+1} g(\zeta)}$. From (24) and (25), we obtain

$$\frac{\zeta \mathfrak{d}_{\mathfrak{q}}\left(J_{\mathfrak{q},b}^{s}\mathfrak{f}(\zeta)\right)}{J_{\mathfrak{q},b}^{s}g(\zeta)} = p(\zeta) + \frac{\zeta \mathfrak{d}_{\mathfrak{q}}p(\zeta)}{R(\zeta) + \gamma_{\mathfrak{q}}}.$$
(26)

Consequently, from (22),

$$p(\zeta) + \frac{\zeta \mathfrak{d}_{\mathfrak{q}} p(\zeta)}{R(\zeta) + \gamma_{\mathfrak{q}}} \prec \mathfrak{h}(\zeta).$$
(27)

Since $g \in ST^s_{\mathfrak{q},b}(\mathfrak{h})$, by Lemma 4, we conclude $g \in ST^{s+1}_{\mathfrak{q},b}(\mathfrak{h})$. This implies $R(\zeta) \prec \mathfrak{h}(\zeta)$. Therefore, $Re(R(\zeta)) > 0$ in \mathbb{U} , and hence, $Re(\frac{1}{R(\zeta) + \gamma_{\mathfrak{q}}}) > 0$ in \mathbb{U} . Now, by applying Lemma 3, we obtain our required result. \Box

Theorem 2. Let $\mathfrak{h} \in \Phi$. Then, for positive real s and $b \in \mathbb{N}$,

$$Q^{s}_{\mathfrak{q},b}(\mathfrak{h}) \subset Q^{s+1}_{\mathfrak{q},b}(\mathfrak{h}).$$

Proof. Let $\mathfrak{f} \in Q^s_{\mathfrak{q},b}(\mathfrak{h})$. Then, due to the definition of the class $Q^s_{\mathfrak{q},b}(\mathfrak{h})$, we have $\zeta \mathfrak{d}_{\mathfrak{q}}\mathfrak{f}(\zeta) \in K^s_{\mathfrak{q},b}(\mathfrak{h})$. From Theorem 1, we know that $K^s_{\mathfrak{q},b}(\mathfrak{h}) \subset K^{s+1}_{\mathfrak{q},b}(\mathfrak{h})$, and this implies $\zeta(\mathfrak{d}_{\mathfrak{q}}\mathfrak{f}) \in K^{s+1}_{\mathfrak{q},b}(\mathfrak{h})$. Hence, again, due to the definition of the class $Q^{s+1}_{\mathfrak{q},b}(\mathfrak{h})$, we conclude $\mathfrak{f} \in Q^{s+1}_{\mathfrak{q},b}(\mathfrak{h})$. \Box

Corollary 1. Let *s* be a positive real and $b \in \mathbb{N}$. Then, for $\mathfrak{h}(\zeta) = \frac{1 + \{1 - \gamma(1 + q)\}\zeta}{1 - q\zeta} \ (0 \le \gamma < 1)$,

$$K^{s}_{\mathfrak{q},b}(\gamma) \subset K^{s+1}_{\mathfrak{q},b}(\gamma)$$
 and $Q^{s}_{\mathfrak{q},b}(\gamma) \subset Q^{s+1}_{\mathfrak{q},b}(\gamma)$

Moreover, for $\mathfrak{h}(\zeta) = \frac{1+\zeta}{1-\mathfrak{q}\zeta}$ *,*

$$K^{s}_{\mathfrak{q},b} \subset K^{s+1}_{\mathfrak{q},b}$$
 and $Q^{s}_{\mathfrak{q},b} \subset Q^{s+1}_{\mathfrak{q},b}$.

One can prove the following result by using similar arguments as used before, together with the Lemma 5 and the identity (13).

Theorem 3. Let $\mathfrak{h} \in \Phi$. Then, for positive real s and $b \in \mathbb{N}$,

$$\widetilde{K}^{b}_{\mathfrak{q},s+1}(\mathfrak{h}) \subset \widetilde{K}^{b}_{\mathfrak{q},s}(\mathfrak{h})$$

and

$$\widetilde{Q}^{b}_{\mathfrak{g},s+1}(\mathfrak{h}) \subset \widetilde{Q}^{b}_{\mathfrak{g},s}(\mathfrak{h})$$

2.2. Invariance of the Classes Under q-Bernardi Integral Operator **Theorem 4.** Let $\mathfrak{f} \in K^{s}_{\mathfrak{q},b}(\mathfrak{h})$. Then, $\mathfrak{f}_{\mathfrak{q},b}(\zeta) \in K^{s}_{\mathfrak{q},b}(\mathfrak{h})$, where

$$\mathfrak{f}_{\mathfrak{q},b}(\zeta) = \frac{[1+b]_{\mathfrak{q}}}{\zeta^b} \int_0^{\zeta} t^{b-1} \mathfrak{f}(t) \mathfrak{d}_{\mathfrak{q}} t.$$

Proof. Let $\mathfrak{f} \in K^{s}_{\mathfrak{q},b}(\mathfrak{h})$. Then, we want to show that $\mathfrak{f}_{\mathfrak{q},b}(\zeta) \in K^{s}_{\mathfrak{q},b}(\mathfrak{h})$, where

$$\mathfrak{f}_{\mathfrak{q},b}(\zeta) = \frac{[1+b]_{\mathfrak{q}}}{\zeta^b} \int_0^{\zeta} t^{b-1} \mathfrak{f}(t) \mathfrak{d}_{\mathfrak{q}} t, \tag{28}$$

It was found in [34] that, for $g \in ST^{s}_{\mathfrak{q},b}(\mathfrak{h})$,

$$g_{\mathfrak{q},b}(\zeta) = \frac{[1+b]_{\mathfrak{q}}}{\zeta^b} \int_0^{\zeta} t^{b-1} g(t) \mathfrak{d}_{\mathfrak{q}} t \in ST^s_{\mathfrak{q},b}(\mathfrak{h}).$$
(29)

Consider

$$\frac{\zeta \mathfrak{d}_{\mathfrak{q}}\mathfrak{f}_{\mathfrak{q},b}(\zeta)}{g_{\mathfrak{q},b}(\zeta)} = p(\zeta),\tag{30}$$

where $p(\zeta)$ is analytic in \mathbb{U} with p(0) = 1. The following can be obtained from (28):

$$\zeta \mathfrak{d}_{\mathfrak{q}} \mathfrak{f}_{\mathfrak{q},b}(\zeta) = (1+\gamma_{\mathfrak{q}})\mathfrak{f}(\zeta) - \gamma_{\mathfrak{q}} \mathfrak{f}_{\mathfrak{q},b}(\zeta), \quad \left(\gamma_{\mathfrak{q}} = \frac{[b]_{\mathfrak{q}}}{\mathfrak{q}^{b}}\right). \tag{31}$$

The q-differentiation yields

$$(1+\gamma_{\mathfrak{q}})\mathfrak{d}_{\mathfrak{q}}\mathfrak{f}(\zeta) = \mathfrak{d}_{\mathfrak{q}}\big(\zeta\mathfrak{d}_{\mathfrak{q}}\mathfrak{f}_{\mathfrak{q},b}(\zeta)\big) + \gamma_{\mathfrak{q}}\mathfrak{d}_{\mathfrak{q}}\big(\mathfrak{f}_{\mathfrak{q},b}(\zeta)\big). \tag{32}$$

Similarly, from (29), we have

$$(1+\gamma_{\mathfrak{q}})g(\zeta) = \zeta \mathfrak{d}_{\mathfrak{q}}g_{\mathfrak{q},b}(\zeta) + \gamma_{\mathfrak{q}}g_{\mathfrak{q},b}(\zeta).$$
(33)

From (32) and (33), we obtain

$$\frac{\mathfrak{d}_{\mathfrak{q}}\mathfrak{f}(\zeta)}{g(\zeta)} = \frac{\mathfrak{d}_{\mathfrak{q}}(\zeta\mathfrak{d}_{\mathfrak{q}}\mathfrak{f}_{\mathfrak{q},b}(\zeta)) + \gamma_{\mathfrak{q}}\mathfrak{d}_{\mathfrak{q}}(\mathfrak{f}_{\mathfrak{q},b}(\zeta))}{\zeta\mathfrak{d}_{\mathfrak{q}}g_{\mathfrak{q},b}(\zeta) + \gamma_{\mathfrak{q}}g_{\mathfrak{q},b}(\zeta)},$$

and equivalently,

$$\frac{\zeta \mathfrak{d}_{\mathfrak{q}}\mathfrak{f}(\zeta)}{g(\zeta)} = \frac{\frac{\zeta \mathfrak{d}_{\mathfrak{q}}\left(\zeta \mathfrak{d}_{\mathfrak{q}}\mathfrak{f}_{\mathfrak{q},b}(\zeta)\right)}{g_{\mathfrak{q},b}(\zeta)} + \gamma_{\mathfrak{q}}\frac{\zeta \mathfrak{d}_{\mathfrak{q}}\left(\mathfrak{f}_{\mathfrak{q},b}(\zeta)\right)}{g_{\mathfrak{q},b}(\zeta)}}{\frac{\zeta \mathfrak{d}_{\mathfrak{q}}g_{\mathfrak{q},b}(\zeta)}{g_{\mathfrak{q},b}(\zeta)} + \gamma_{\mathfrak{q}}}.$$
(34)

After the q-logarithmic differentiation of (30) and simple calculation,

$$\frac{\zeta \mathfrak{d}_{\mathfrak{q}}(\zeta \mathfrak{d}_{\mathfrak{q}}\mathfrak{f}_{\mathfrak{q},b}(\zeta))}{g_{\mathfrak{q},b}(\zeta)} = p(\zeta).p_1(\zeta) + \zeta \mathfrak{d}_{\mathfrak{q}} p(\zeta), \tag{35}$$

where $p_1(\zeta) = \frac{\zeta \mathfrak{d}_{\mathfrak{q}} g_{\mathfrak{q},b}(\zeta)}{g_{\mathfrak{q},b}(\zeta)}$. Substituting (35) in (34), we obtain

$$\frac{\zeta \mathfrak{d}_{\mathfrak{q}}\mathfrak{f}(\zeta)}{g(\zeta)} = p(\zeta) + \frac{\zeta \mathfrak{d}_{\mathfrak{q}} p(\zeta)}{p_1(\zeta) + \gamma_{\mathfrak{q}}}.$$
(36)

Since $\mathfrak{f} \in K^s_{\mathfrak{a},b}(\mathfrak{h})$, we can rewrite (36) as

$$p(\zeta) + rac{\zeta \mathfrak{d}_{\mathfrak{q}} p(\zeta)}{p_1(\zeta) + \gamma_{\mathfrak{q}}} \prec \mathfrak{h}(\zeta).$$

From (29), we conclude that $Re(p_1(\zeta)) > 0$ in \mathbb{U} implies $Re\left(\frac{1}{p_1(\zeta)+\gamma_q}\right) > 0$ in \mathbb{U} . Now, we use Lemma 3 to obtain $p(\zeta) \prec \mathfrak{h}(\zeta)$, and consequently, $\frac{\zeta \mathfrak{d}_{\mathfrak{q}} \mathfrak{f}_{\mathfrak{q},b}(\zeta)}{g_{\mathfrak{q},b}(\zeta)} \prec \mathfrak{h}(\zeta)$. Hence, $\mathfrak{f}_{\mathfrak{q},b}(\zeta) \in K^s_{\mathfrak{q},b}(\mathfrak{h}).$

Upon using similar techniques to those in Theorem 2, the following result can be proven.

Theorem 5. Let $\mathfrak{f} \in Q^s_{\mathfrak{q},b}(\mathfrak{h})$. Then, $\mathfrak{f}_{\mathfrak{q},b}(\zeta) \in Q^s_{\mathfrak{q},b}(\mathfrak{h})$, where $\mathfrak{f}_{\mathfrak{q},b}(\zeta)$ is defined by (28).

Remark 1. In particular, the classes $K^{s}_{\mathfrak{q},b}(\gamma)$, $Q^{s}_{\mathfrak{q},b}(\gamma)$, $K^{s}_{\mathfrak{q},b}$, and $Q^{s}_{\mathfrak{q},b}$ are invariant under the q-Bernardi integral operator. Using similar arguments, we can easily show that the classes $\widetilde{K}^{b}_{\mathfrak{q},s}(\mathfrak{h})$ and $Q^{b}_{q,s}(\mathfrak{h})$ will also be preserved under the q-Bernardi integral operator.

3. Conclusions

In this field of study, several subclasses of close-to-convex functions associated with a certain family of linear operators were discussed. The inclusion results remain a very common investigation in such a situation. No one has studied this problem yet, in terms of q-calculus. Therefore, In this paper, we used the concept of a q-difference operator to define certain subclasses of univalent functions. Furthermore, various subclasses were introduced and studied by applying the q-Srivastava–Attiya operator and q-multiplier transformation operator. We investigated the inclusion results and the integral-preserving property for the newly defined classes. In the future, this work will motivate other authors to contribute in this direction for many generalized subclasses of q-close-to-convex univalent and multivalent functions.

Author Contributions: Conceptualization, S.A.S. and L.-I.C.; methodology, D.B., A.A.A. and L.-I.C.; validation, L.-I.C., A.A.A. and S.A.S.; formal analysis, L.-I.C. and D.B.; investigation, S.A.S., A.A.A. and L.-I.C.; writing—original draft preparation, S.A.S., D.B. and A.A.A.; writing—review and editing, A.A.A., L.-I.C. and S.A.S.; supervision, L.-I.C. and D.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The second author would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Adams, C.R. On the linear ordinary q-difference equation. Ann. Math. 1929, 30, 195–205. [CrossRef]
- 2. Carmicheal, R.D. The general theory of linear *q*-difference equations. Am. J. Math. 1912, 34, 147–168. [CrossRef]
- 3. Trijitzinsky, W.J. Analytic theory of linear q-difference equations. Acta Math. 1933, 61, 1–38. [CrossRef]
- 4. Aral, A.; Gupta, V. On *q*-Baskakov type operators. *Demonstr. Math.* **2009**, *42*, 109–122.
- 5. Aral, A.; Gupta, V. Generalized *q*-Baskakov operators. *Math. Slovaca* **2011**, *61*, 619–634. [CrossRef]
- 6. Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinburgh. 1908, 46, 253–281. [CrossRef]
- 7. Jackson, F.H. On *q*-defnite integrals. *Quart. J. Pure Appl. Math.* **1910**, *41*, 193–203.
- 8. Anastassiu, G.A.; Gal, S.G. Geometric and approximation properties of generalized singular integrals. *J. Korean Math. Soc.* 2006, 23, 425–443. [CrossRef]
- 9. Aral, A. On the generalized Picard and Gauss Weierstrass singular integrals. J. Comput. Anal. Appl. 2006, 8, 249–261.
- 10. Ali, R.M.; Ravichandran, V. Classes of meromorphic alpha-convex functions. Taiwan. J. Math. 2010, 14, 1479–1490.
- Anastassiu, G.A.; Gal, S.G. Geometric and approximation properties of some singular integrals in the unit disk. *J. Inequal. Appl.* 2006, 2006, 17231. [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. *Iran. J. Sci. Technol. Trans. A Sci.* 2020, 44, 327–344. [CrossRef]
- 13. Miller, S.S.; Mocanu, P.T. *Differential Subordinations Theory and Applications*; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000.
- 14. Exton, H. q-Hypergeometric Functions and Applications; Ellis Horwood Limited: Chichester, UK, 1983.
- 15. Ezeafulukwe, U.A.; Darus, M. A note on *q*-calculus. *Fasc. Math.* **2015**, *55*, 53–63. [CrossRef]
- 16. Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990.
- 17. Ghany, H.A. q-derivative of basic hypergeomtric series with respect to parameters. Int. J. Math. Anal. 2009, 3, 1617–1632.
- 18. Koc, V.; Cheung, P. Quantum Calculus; Springer: Berlin, Germany, 2001.
- 19. Ucar, H.E.O. Coefficient inequality for *q*-starlike functions. Appl. Math. Comput. 2016, 276, 122–126.
- 20. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. 1990, 14, 77-84. [CrossRef]
- 21. Agrawal, S.; Sahoo S.K. A generalization of starlike functions of order alpha. Hokkaido Math. J. 2017, 46, 15–27. [CrossRef]
- 22. Altintas, O.; Mustafa, N. Coefficient bounds and distortion theorems for the certain analytic functions. *Turk. J. Math.* **2019**, *43*, 985–997. [CrossRef]
- 23. Noor, K.I. On generalized q-close-to-convexity. Appl. Math. Inform. Sci. 2017, 11, 1383–1388. [CrossRef]
- 24. Noor, K.I.; Riaz, S. Generalized q-starlike functions. Stud. Scient. Math. Hung. 2017, 54, 509–522. [CrossRef]
- Raghavendar, K.; Swaminathan, A. Close-to-convexity of basic hypergeometric functions using their Taylor coefficients. J. Math. Appl. 2012, 35, 111–125. [CrossRef]
- Srivastava, H.M.; Owa, S. Univalent Functions, Fractional Calculus, and Their Applications; John Wiley and Sons: New York, NY, USA, 1989.
- 27. Ucar, H.E.; Mert, O.; Polatoglu, Y. Some properties of q-close-to-convex functions. Hacettepe J. Math. Stat. 2017, 46, 1105–1112.
- 28. Noor, K.I.; Shah, S.A. Study of the q-spiral-like functions of complex order. Math. Slovaca 2021, 1, 75–82. [CrossRef]
- 29. Shah, S.A.; Maitlo, A.A.; Soomro, M.A.; Noor, K.I. On new subclass of harmonc unvalent functions assocated with modified *q*-operator. *Int. J. Anal. Appl.* **2021**, *19*, 826–835. [CrossRef]
- 30. Noor, K.I.; Shah, S.A. On *q*-Mocanu type functions associated with *q*-Ruscheweyh derivative operator. *Int. J. Anal. Appl.* **2020**, *18*, 550–558.
- 31. Kanas, S.; Raducanu, D. Some classes of analytic functions related to Conic domains. Math. Slovaca 2014, 64, 1183–1196. [CrossRef]
- 32. Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11.
- 33. Arif, M.; Ul-Haq, M.; Liu, J.L. A subfamily of univalent functions associated with *q*-analogueof Noor integral operator. *J. Funct. Spaces* **2018**, 2018, 5.
- 34. Shah, S.A.; Noor, K.I. Study on q-analogue of certain family of linear operators. Turk. J. Math. 2019, 43, 2707–2714. [CrossRef]

- 35. Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. *Int. Transform Spec. Funct.* 2007, *18*, 207–216. [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving *q*-calculus. *Anal. Math.* 2017, 43, 475–487. [CrossRef]
- 37. Wongsaigai, B.; Sukantamala, N. A certain class of *q*-close-to-convex functions of order *α*. Filomat 2018, 32, 2295–2305. [CrossRef]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [CrossRef]
- 39. Shamsan, H.; Latha, S. On genralized bounded Mocanu variation related to *q*-derivative and conic regions. *Ann. Pure Appl. Math.* **2018**, *17*, 67. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.