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Abstract: In this study, by using the concepts of subordination, we define a new familyR(M, N, λ, γ)

of starlike functions of complex order γ connected with the cardioid domain. The main contribution
of this article consists of the derivations of sharp inequality, considering the functions belonging
to the family R(M, N, λ, γ) of starlike functions in U . Particularly, sharp bounds of the first two
Taylor–Maclaurin coefficients, sharp estimates of the Fekete–Szegö-type functionals, and coefficient
inequalities are investigated for this newly defined familyR(M, N, λ, γ) of starlike functions. Fur-
thermore, for the inverse function and the log

(
g(z)

z

)
function, we investigate the same types of

problems. Several well-known corollaries are also highlighted to show the connections between prior
research and the new findings.

Keywords: analytic functions; subordination; convex and starlike functions; Fibonacci numbers;
shell-like curve; cardioid domain
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1. Introduction and Preliminaries

Suppose A represents the collection of all analytic functions g(z) in the open unit disc

U = {z : |z| < 1},

which are normalized by
g(0) = 0 and g′(0) = 1.

Thus, the form given in (1) can be used to express any function g ∈ A:

g(z) = z +
∞

∑
n=2

anzn. (1)

The class of functions from A that are univalent in an open unit disc is denoted by S .
Coefficients of functions, Taylor series representations, and their associated functional

inequalities are of major interest in the theory of analytic and univalent functions. The
Fekete–Szegö inequality is one of the most significant and useful functional inequalities.
There are a number of results that have been proven regarding the maximization of the
non-linear functional

∣∣a3 − µa2
2

∣∣ or other classes and subclasses of univalent functions, and
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these type of problems are called Fekete–Szegö problems (see [1]). If g ∈ S and it is of the
form (1), then ∣∣∣a3 − µa2

2

∣∣∣ ≤


3− 4µ if µ ≤ 0
1 + 2 exp

(
2µ

µ−1

)
if 0 ≤ µ < 1

4µ− 3 if µ ≥ 1


and the result

∣∣a3 − µa2
2

∣∣ is sharp (see [1]). There is a long history of the Fekete–Szegö
problem in literature and for complex number µ.

The function g is said to be subordinate to the function f , written symbolically as

g(z) ≺ f (z), z ∈ U ,

if there exists a function w such that

g(z) = f (u(z)), z ∈ U

where |u(z)| < 1 and u(0) = 0, z ∈ U . Furthermore, if the function f is univalent in U ,
then it follows that g(0) = f (0) and g(U ) ⊂ f (U ).

The area of function theory was established in 1851. This field first gained attention as
a potential area for future research in 1916 when Bieberbach [2] investigated the coefficient
conjecture. De Branges [3] proved this idea in 1985. Many of the top researchers of the day
attempted to prove or disprove this Bieberbach hypothesis between 1916 and 1985. As a
result, they found a large number of normalized univalent function subfamilies belonging
to class S that are associated with various image domains. The most fundamental and
important subclasses of the set S are represented by the families of starlike (S∗) and convex
(C) functions, respectively.

The familiar class of starlike functions in U , denoted by S∗, consists of function g ∈ S∗
and satisfies the following condition:

Re(
zg
′
(z)

g(z)
) > 0, z ∈ U .

The class of convex functions in U , denoted by C, consists of function g ∈ C and satisfies
the following condition

1 + Re(
zg
′′
(z)

g′(z)
) > 0, z ∈ U .

The above two classes can be written in terms of subordination, as follows:

S∗ =
{

g ∈ A :
zg
′
(z)

g(z)
≺ 1 + z

1− z

}

and

C =
{

g ∈ A : 1 +
zg
′′
(z)

g′(z)
≺ 1 + z

1− z

}
.

Ma and Minda [4] gave the generalization of S∗ and C as follows:

S∗(ϕ) =

{
g ∈ A :

zg
′
(z)

g(z)
≺ ϕ(z)

}

and

C(ϕ) =

{
g ∈ A : 1 +

zg
′′
(z)

g′(z)
≺ ϕ(z)

}
,
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where ϕ(z) is a real part function that is positive and is normalized by the rule

ϕ(0) = 1, and ϕ
′
(0) > 0

and ϕ maps U onto a starlike region with respect to 1 and symmetric with respect to the
real axis. For these classes of analytic functions, Ma and Minda [4] discussed a number
of particular results, including distortion, growth, and covering theorems. As a special
case of class A of normalized analytic functions, various subfamilies of class A have been
examined recently. Many subfamilies of class A of normalised analytic functions have
been examined recently as a particular instance of the class S∗(ϕ); for example, Janowski
starlike class S∗(M, N) was investigated in [5], class S∗L was studied in [6] by Sokól and
Stankiewicz, class S∗sin was investigated by Cho et al. [7], class S∗(ez) was studied in [8],
and S∗tan was studied in [9]. For a more recent study about sharp estimates, see the following
articles [10–18].

Ravichandran et al. [19] gave an extension of the above two classes in the following
way:

S∗(γ, ϕ) =

{
g ∈ A : 1 +

1
γ

(
zg
′
(z)

g(z)
− 1

)
≺ ϕ(z), γ ∈ C\{0}

}
and

C(γ, ϕ) =

{
g ∈ A : 1 +

1
γ

(
zg
′′
(z)

g′(z)

)
≺ ϕ(z), γ ∈ C\{0}

}
.

These types of functions are referred to be Ma–Minda starlike and convex functions of
order γ, (γ ∈ C\{0}), respectively.

The image of U under every f ∈ S contains a disk of radius 1
4 , and thus every g ∈ S

has an inverse defined as:
g−1(g(z)) = z, z ∈ U

and
g(g−1(w)) = w, |w| < r0(g), r0(g) ≥ 1

4
.

The series of g−1 is given as:

g−1(w) = w + A2w2 + A3w3 + A4w4..., (2)

where

A2 = −a2,

A3 = (2a2
2 − a3) (3)

and
A4 = −(5a3

2 − 5a2a3 + a4).

The logarithmic coefficients Tn of a function g ∈ S are defined by

log
g(z)

z
= 2

∞

∑
n=2

Tnzn. (4)

On the basis of the geometrical interpretation of their image domains, numerous
subclasses of analytic functions have been defined and investigated using the concepts of
subordination. Some interesting geometrical classes have been defined when the domain
is the right half of a plane [20], a circular disc [21],an oval or petal-type domain [22], a
conic domain [23,24], a leaf-like domain [25], a generalized conic domain [26], and, most
importantly, a shell-like curve [27–30].
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The function

p(z) =
1 + τ2z2

1− τz− τ2z2 , (5)

is essential for the shell-like shape, where

τ =
1−
√

5
2

.

The image of the unit circle under the function p gives the conchoid of Maclaurin,
that is,

p
(

eiϕ
)
=

√
5

2(3− 2 cos ϕ)
+ i

sin ϕ(4 cos ϕ− 1)
2(3− 2 cos ϕ)(1 + cos ϕ)

, 0 ≤ ϕ < 2π.

The function given in (5) has the following series representation:

1 +
∞

∑
n=1

(un−1 + un+1)τ
nzn,

where

un =
(1− τ)n − τn

√
5

,

where un produces a Fibonacci series of coefficient constants that are more closely related
to the Fibonacci numbers.

Taking inspiration from the idea of circular disc and shell-like curves, Malik et al. [31]
defined new domain for analytic functions named the cardioid domain. A new class of
analytic functions is defined, associated with the cardioid domain (for more detail, see [31]).

Definition 1 ([31]). Assume that CP[M, N] represents the class of functions p defined by the
subordination relation

p(z) ≺ p̃(M, N, z),

where p̃(M, N, z) is defined by

p̃(M, N, z) =
2Mτ2z2 + (M− 1)τz + 2
2Nτ2z2 + (N − 1)τz + 2

(6)

with −1 < N < M ≤ 1 and τ = 1−
√

5
2 , z ∈ U .

The explanation of the function p̃(M, N, z) in geometric terms might be helpful in
understanding the class CP[M, N]. If we denote

R p̃

(
M, N; eiθ

)
= u

and
Ip̃

(
M, N; eiθ

)
= v

then the image p̃
(

M, N, eiθ) of the unit circle is a cardioid-like curve defined by

u =
4 + (M− 1)(N − 1)τ2 + 4MNτ4 + 2λ cos θ + 4(M + N)τ2 cos 2θ

4 + (N − 1)2τ2 + 4N2τ4 + 4(N − 1)(τ + Nτ3) cos θ + 8Nτ2 cos 2θ
,

v =
(M− N)

(
τ − τ3) sin θ + 2τ2 sin 2θ

4 + (N − 1)2τ2 + 4N2τ4 + 4(N − 1)(τ + Nτ3) cos θ + 8Nτ2 cos 2θ
, (7)
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where

λ = (M + N − 2)τ + (2MN −M− N)τ3, − 1 < N < M ≤ 1, τ =
1−
√

5
2

, 0 ≤ θ ≤ 2π.

Moreover, we observe that

p̃(M, N, 0) = 1 and p̃(M, N, 1) =
MN + 9(M + N) + 1 + 4(N −M)

√
5

N2 + 18N + 1
.

According to (7), the cusp of the cardioid-like curve is provided by

ζ(M, N) = p̃
(

M, N; e±i arccos( 1
4 )
)
=

2MN − 3(M + N) + 2 + (M− N)
√

5
2(N2 − 3N + 1)

.

The image of each inner circle is a nested cardioid-like curve if the open unit disc U is
considered a collection of concentric circles with the origin at the center. As a result, the
open unit disc U is mapped onto a cardioid region by the function p̃(M, N, z). This means
that p̃(M, N;U ) is a cardioid domain. See [31] for a graphical study of the geometry of the
cardioid domain.

The recent paper [31] inspired us to adopt this strategy to define a new subclass of
generalized subordinate functions of complex order γ associated with the cardioid domain.

Definition 2. Let the function g of the form (1) be in the class R(M, N, λ, γ) if the following
conditions are satisfied:

1 +
1
γ

(
zg
′
(z) + λz2g

′′
(z)

(1− λ)g(z) + λzg′(z)
− 1

)
≺ p̃(M, N; z),

where 0 ≤ λ ≤ 1, γ ∈ C\{0}, and p̃(M, N; z) is given by (6).

Alternatively, g ∈ R(M, N, λ, γ) when the function

1 +
1
γ

(
zg
′
(z) + λz2g

′′
(z)

(1− λ)g(z) + λzg′(z)
− 1

)

takes its values from the cardioid domain p̃(M, N; z).

Definition 3. Let the function g of the form (1) be in the class R(M, N, γ) if the following
conditions are satisfied:

1 +
1
γ

(
zg
′′
(z)

g′(z)

)
≺ p̃(M, N; z),

where γ ∈ C\{0} and p̃(M, N; z) is given by (6), andR(M, N, γ) is the class of convex functions
of order γ related to the cardioid domain.

Definition 4. Let the function g of the form (1) be in the class C(M, N) if the following conditions
are satisfied:

1 +
zg
′′
(z)

g′(z)
≺ p̃(M, N; z),

where (M, N; z) is given by (6) andR(M, N) is the class of convex functions related to the cardioid
domain.

Remark 1. For γ = 1 and λ = 0 in Definition (2), we obtained known classR(M, N) of starlike
functions associated with the cardioid domain proven by Malik et al. in [32].
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Remark 2. For M = 1, N = −1, γ = 1, and λ = 0 in Definition (2), thenR(M, N, λ, γ) = SL
and this class is defined as starlike functions associated with Fibonacci numbers, introduced and
studied by Sokół in [30].

Remark 3. For M = 1, N = −1, γ = 1, and λ = 1 in Definition (2), then (M, N, λ, γ) = C,
and this family is defined as a class of convex functions connected with Fibonacci numbers.

2. Set of Lemmas

By utilizing the following lemmas, we will demonstrate our findings.

Lemma 1 ([31]). Let the function p̃(M, N; z) be defined by (6). Then:

(i) For the disc |z| < τ2, the function p̃(M, N; z) is univalent.
(ii) If p(z) ≺ p̃ (M, N; z), then Rep(z) > α, where

α =
2(M + N − 2)τ + 2(2MN −M− N)τ3 + 16(M + N)τ2η

4(N − 1)(τ + Nτ3) + 32Nτ2η
,

where

η =
4 + τ2 − N2τ2 − 4N2τ4 −

(
1− Nτ2)χ(N)

4τ(1 + N2τ2)
,

χ(N) =
√

5(2Nτ2 − (N − 1)τ + 2)(2Nτ2 + (N − 1)τ + 2)

and

−1 < N < M ≤ 1, and τ =
1−
√

5
2

.

(iii) If p̃(M, N; z) = 1 +
∞
∑

n=1
p̃nzn, then

p̃n =


(M− N) τ

2 for n = 1,
(M− N)(5− N) τ2

22 for n = 2,
1−N

2 τpn−1 − Nτ2 pn−2 for n = 3, 4, 5, . . .
(8)

where
−1 < N < M ≤ 1.

(iv) Let p(z) ≺ p̃(M, N; z) and be of the form p(z) = 1 +
∞
∑

n=1
pnzn. Then,

∣∣∣p2 − vp2
1

∣∣∣ ≤ (M− N)|τ|
4

max{2, |τ(v(M− N) + N − 5)|}, v ∈ C. (9)

Lemma 2 ([33]). Let p ∈ P, such that p(z) = 1 +
∞
∑

n=1
cnzn. Then,

∣∣∣c2 −
v
2

c2
1

∣∣∣ ≤ max{2, 2|v− 1|} =
{

2 if 0 ≤ v ≤ 2,
2|v− 1|, elsewhere

}
(10)

and
|cn| ≤ 2, for n ≥ 1. (11)

Lemma 3 ([34]). Let the function g given by

g(z) =
∞

∑
n=1

bnzn
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be convex in U . Also let the function f given by

f (z) =
∞

∑
n=1

anzn

be analytic in U . If
f (z) ≺ g(z),

then
|an| < |b1|, n = 1, 2, 3 . . .

Motivated by the recent studies of starlike functions associated with the cardioid
domain [31,32], we define a class of generalized subordinate functions of complex order
γ connected with cardioid domains. We investigate sharp coefficient estimates of Taylor
series and Fekete-Szegő problems for certain generalized subordinate functions of complex
order γ associated with the cardioid domain. Additionally, similar problems are discovered
for the inverse function and for log g(z)

z .

3. Main Results

In this section, the Taylor–Maclaurin initial coefficients for the functions belonging to
R(M, N, λ, γ) are computed.

Theorem 1. Let g ∈ R(M, N, λ, γ) be given by (1), −1 ≤ N < M ≤ 1. Then

|ρ2| ≤
|γ|(M− N)|τ|

2(1 + λ)
,

|ρ3| ≤
|γ|(M− N)|τ|2

8(1 + 2λ)

{
γM

(1 + λ)2 −
(γ + 1)N

(1 + λ)2 + 5

}
.

These findings are sharp.

Proof. Let g ∈ R(M, N, γ, λ) and be of the form (1). Then,

1 +
1
γ

(
zg
′
(z) + λz2g

′′
(z)

(1− λ)g(z) + λzg′(z)
− 1

)
≺ p̃(M, N; z), (12)

where

p̃(M, N, z) =
2Mτ2z2 + (M− 1)τz + 2
2Nτ2z2 + (N − 1)τz + 2

.

If we write
D(g(z)) = (1− λ)g(z) + λzg

′
(z)

then Equation (12) becomes

1 +
1
γ

(
zD

′
(g(z))

D(g(z))
− 1

)
≺ p̃(M, N; z)

and
an = (1 + λ(n− 1))ρn (13)

for

D(g(z)) = z +
∞

∑
n=2

anzn.
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By applying the concept of subordination, there exists a function u with

u(0) = 0 and |u(z)| < 1

such that

1 +
1
γ

(
zD

′
(g(z))

D(g(z))
− 1

)
= p̃(M, N; u(z)). (14)

Let

u(z) =
p(z)− 1
p(z) + 1

=
c1z + c2z2 + c3z3 + ...

2 + c1z + c2z2 + ...

=
1
2

c1z +
1
2

(
c2 −

1
2

c2
1

)
z2 +

1
2

(
c3 − c1c2 +

1
4

c3
1

)
z3 + · · · . (15)

Since p̃(M, N; z) = 1 +
∞
∑

n=1
p̃nzn, then

p̃(M, N; u(z))

= 1 + p̃1

{
1
2

c1z +
1
2

(
c2 −

1
2

c2
1

)
z2...

}
+ p̃2

{
1
2

c1z +
1
2

(
c2 −

1
2

c2
1

)
z2...

}
+ ...

= 1 +
p̃1c1

2
z +

(
1
2

(
c2 −

1
2

c2
1

)
p̃1 +

p̃2c2
1

4

)
z2 + .... (16)

Also consider the function

p̃(M, N; z) =
2Mτ2z2 + (M− 1)τz + 2
2Nτ2z2 + (N − 1)τz + 2

.

Letting τz = β, then

p̃(M, N, z) =
2Mβ2

0 + (M− 1)β + 2
2Nβ2

0 + (N − 1)β + 2

=
Mβ2

0 +
(M−1)

2 β + 1

Nβ2
0 +

(N−1)
2 β + 1

=

(
Mβ2

0 +
(M− 1)

2
β + 1

)[
1 +

1
2
(1− N)β +

(
N2 − 6N + 1

4

)
β2

0 + ...
]

= 1 +
1
2
(M− N)β +

1
4
(M− N)(5− N)β2

0 + ....

This implies that

p̃(M, N; z) = 1 +
1
2
(M− N)τz +

1
4
(M− N)(5− N)τ2z2 + .... (17)

It is simple to observe from (16) that

p̃(M, N; u(z))

= 1 +
1
4
(M− N)τc1z +

(
1
4
(M− N)τ

(
c2 −

1
2

c2
1

)
+

(M− N)(5− N)τ2c2
1

16

)
z2 + ... (18)



Mathematics 2023, 11, 2017 9 of 20

Since g ∈ R(M, N, λ, γ), then

1 +
1
γ

(
zD

′
(g(z)

D(g(z)
− 1

)
= 1 +

1
γ

a2z +
1
γ

(
2a3 − a2

2

)
z2 + .... (19)

It is simple to show that by utilizing (14) and comparing the coefficients from (18) and
(19), we obtain

a2 =
γ(M− N)τc1

4
(20)

or, using (13), we obtain

ρ2 =
γ(M− N)τc1

4(1 + λ)
.

Applying the modulus on both side, we have

|ρ2| ≤
|γ|(M− N)τ

2(1 + λ)
.

Now, comparing the coefficients from (18) and (19) again, we have

2
γ

a3 =
1
4
(M− N)τ

(
c2 −

1
2

c2
1

)
+

(M− N)(5− N)τ2c2
1

16
+

1
γ

a2
2,

a3 =
γ(M− N)τc2

8
− γ(M− N)τ

8
c2

1
2
+

γ(M− N)τ2

32

{
γM

(1 + λ)2 −
(γ + 1)N

(1 + λ)2 + 5

}

=
γ(M− N)τ

8

{
c2 −

v
2

c2
1

}
. (21)

By using (13), we obtain

ρ3 =
γ(M− N)τ

8(1 + 2λ)

{
c2 −

v
2

c2
1

}
,

where

v = 1− τ

2

{
γM

(1 + λ)2 −
(

γ

(1 + λ)2 + 1

)
N + 5

}
.

This shows that v > 2 and is satisfied by the relation M > N. Hence, by applying
Lemma 2, we obtain the required result.

The result is sharp for

1 +
1
γ

(
zD

′
(g(z))

D(g(z))
− 1

)
= 1 +

(M− N)τ

2
z +

(M− N)(5− N)τ2

4
z2 + ....

Taking the special values in Theorem 1, we have the following example.

Example 1. Let γ = 1, M = 0.6, N = 0.4, τ = 1−
√

5
2 , λ = 0.7, and g ∈ R(0.6, 0.4, 0.7, 1).

Then,

|ρ2| ≤ 0.095177

|ρ3| ≤ 0.134466.



Mathematics 2023, 11, 2017 10 of 20

Taking γ = 1 and λ = 0 in Theorem 1, we obtain the known corollary proven in [35]
for starlike functions connected to the cardioid domain.

Corollary 1 ([35]). Let g ∈ R(M, N) be given by (1), −1 ≤ N < M ≤ 1. Then,

|a2| ≤
(M− N)|τ|

2
,

|a3| ≤
(M− N)|τ|2

8
{M− 2N + 5}.

Taking λ = 1 in Theorem 1, we obtain the new result for convex functions of complex
order γ connected with the cardioid domain.

Theorem 2. Let g ∈ R(M, N, γ) be given by (1), −1 ≤ N < M ≤ 1. Then,

|a2| ≤
|γ|(M− N)|τ|

4
,

|a3| ≤
|γ|(M− N)|τ|2

24

{
γM

4
− (γ + 1)N

4
+ 5
}

.

Taking γ = 1 and λ = 1 in Theorem 1, we obtain the new result for a class of convex
functions related with the cardioid domain.

Theorem 3. Let g ∈ C(M, N) be given by (1), −1 ≤ N < M ≤ 1. Then,

|a2| ≤
(M− N)

4
,

|a3| ≤
(M− N)|τ|2

24

{
M
4
− N

2
+ 5
}

.

Theorem 4. Let g ∈ R(M, N, λ, γ) and be of the form (1). Then,∣∣∣ρ3 − µρ2
2

∣∣∣
≤ |γ|(M− N)|τ|

8(1 + 2λ)
max

{
2,

∣∣∣∣∣τ
(
−(M− 2N + 5) +

2γ(1 + 2λ)(M− N)µ

(1 + λ)2

)∣∣∣∣∣
}

.

This result is sharp.

Proof. Since g ∈ R(M, N, λ, γ), we have

1 +
1
γ

(
zD

′
(g(z))

D(g(z)
− 1

)
= p̃(M, N; u(z)), z ∈ U ,

where u is a Schwarz function such that u(0) and |u(z)| < 1 in U . Therefore,

z + 2a2z2 + 3a3z3 + ... = γ
{

z + a2z2 + a3z3 + ...
}{

1 + p1z + p2z2 + . . .
}

.

Comparing the coefficients of both sides, we obtain

a2 = γp1, 2a3 = γ(p1a2 + p2).

Using (13), we obtain

a2 = (1 + λ)ρ2 = γp1, 2a3 = 2(1 + 2λ)ρ3 = γ
(

γp2
1 + p2

)
,
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or
ρ2 =

γp1

(1 + λ)
, ρ3 =

γ

2(1 + 2λ)

(
γp2

1 + p2

)
.

This implies that

∣∣∣ρ3 − µρ2
2

∣∣∣ =
γ

2(1 + 2λ)

∣∣∣∣∣p2 +

(
1− µ

2(1 + 2λ)

(1 + λ)2

)
γp2

1

∣∣∣∣∣
=

γ

2(1 + 2λ)

∣∣∣p2 − vp2
1

∣∣∣,
where

v =

(
µ

2(1 + 2λ)

(1 + λ)2 − 1

)
γ.

By using (iv) of Lemma 1 for v =

(
µ

2(1+2λ)

(1+λ)2 − 1
)

γ, we obtain the required result. The

equality

∣∣∣ρ3 − µρ2
2

∣∣∣ = |γ|(M− N)|τ|2

8(1 + 2λ)

∣∣∣∣∣M− 2N + 5− 2γ(1 + 2λ)(M− N)µ

(1 + λ)2

∣∣∣∣∣
holds for

g∗(z) = z +
τ

2
(M− N)z2 +

τ2

8
(M− N)(M− 2N + 5)z3 + . . .

Now consider that the function g0 : U → C is defined as:

g0(z) = z exp
z∫

0

p̃
(

M, N; t2)− 1
t

dt = z +
τ

2
(M− N)z3 + . . . , (22)

where p̃(M, N; z) is defined in (6). Hence, it is obvious that g0(0) = 0 and g
′
0(0) = 1 and

1 +
1
γ

(
zD

′
(g0(z))

D(g0(z))
− 1

)
= p̃

(
M, N; t2

)
.

This demonstrates g0 ∈ R(M, N, λ, γ). Hence, the equality∣∣∣ρ3 − µρ2
2

∣∣∣ = |γ|(M− N)|τ|
2(1 + 2λ)

holds for the function g0 given in (22).

Taking λ = 1 in Theorem 4, we obtain the new result for convex functions of complex
order γ associated with the cardioid domain.

Theorem 5. Let g ∈ R(M, N, γ) and be of the form (1). Then,∣∣∣a3 − µa2
2

∣∣∣ ≤ |γ|(M− N)|τ|
24

max
{

2,
∣∣∣∣τ(−(M− 2N + 5) +

3γ(M− N)µ

2

)∣∣∣∣}.

This result is sharp.

Taking γ = 1 and λ = 1 in Theorem 1, we obtain the new result for a class of convex
functions associated with the cardioid domain.
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Theorem 6. Let g ∈ C(M, N) and be of the form (1). Then,∣∣∣a3 − µa2
2

∣∣∣ ≤ (M− N)|τ|
24

max
{

2,
∣∣∣∣τ(−(M− 2N + 5) +

3(M− N)µ

2

)∣∣∣∣}.

This result is sharp.

Taking γ = 1 and λ = 0 in Theorem 1, we obtain the known corollary proven in [35]
for starlike functions associated with the cardioid domain.

Corollary 2 ([35]). Let g ∈ R(M, N) and be of the form (1). Then,∣∣∣a3 − µa2
2

∣∣∣ ≤ (M− N)|τ|
8

max{2, |τ(−(M− 2N + 5) + 2(M− N)µ)|}.

This result is sharp.

Coefficient inequality for the classR(M, N, λ, γ).

Theorem 7. Function g ∈ A is given by (1). If g ∈ R(M, N, λ, γ), then

|ρn| ≤

n
∏

k=2

(
k− 2 + |γ((L−N) τ

2 )|
1+λ(k−2)

)
(1 + λ(n− 1))(n− 1)!

, (n ∈ N).

Proof. Suppose g ∈ R(M, N, λ, γ) and the function q(z) is defined by

q(z) = 1 +
1
γ

(
zg
′
(z) + λz2g

′′
(z)

(1− λ)g(z) + λzg′(z)
− 1

)

= 1 +
1
γ

(
zD

′
(g(z))

D(g(z))
− 1

)
(23)

and
an = (1 + λ(n− 1))ρn (24)

for

D(g(z)) = z +
∞

∑
n=2

anzn.

Then, by Definition 2, we have

q(z) ≺ p̃(L, N; z),

where γ ∈ C\{0} and p̃(L, N; z) is given by (6). Hence, applying the Lemma 3, we obtain∣∣∣∣∣ q(m)(0)
m!

∣∣∣∣∣ = |cm| ≤
∣∣Q1

∣∣, m ∈ N, (25)

where
q(z) = 1 + c1z + c2z2 + . . .

and by (8), we have

D(g(z)) = z +
∞

∑
n=2

anzn.

| p̃1| =
∣∣∣(M− N)

τ

2

∣∣∣. (26)
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Also from (23), we find

zD
′
(g(z)) = {γ[q(ς)− 1] + 1}D(g(z)). (27)

Since a1 = 1, in view of (27), we obtain

(n− 1)an = γ{cn−1 + cn−2a2 + ... + c1an−1} = γ
n−1

∑
i=1

cian−i. (28)

Applying (25) into (28), we obtain

(n− 1)|an| ≤ |γ|| p̃1|
n−1

∑
i=1
|an−i|, n ∈ N. (29)

Using (24) in (29), we have

(n− 1)(1 + λ(n− 1))ρn ≤ |γ|| p̃1|
n

∑
i=1
|an−i|, n ∈ N.

For n = 2, 3, 4, we have

|ρ2| ≤
|γ p̃1|
1 + λ

,

|ρ3| ≤
|γp1|

2(1 + 2λ)
(1 + |a2|)

≤ |γ p̃1|
2(1 + 2λ)

(
1 +
|γ p̃1|
1 + λ

)
and

|ρ4| ≤
|γ p̃1|

3(1 + 3λ)
(1 + |ρ2|+ |ρ3|)

≤ |γ p̃1|
3(1 + 3λ)

(
1 +
|γ p̃1|
1 + λ

+
|γ p̃1|

2(1 + 2λ)(1 + λ)

(
1 +
|γ p̃1|
1 + λ

))
=

|γ p̃1|
6(1 + 3λ)

((
2 +

|γ p̃1|
1 + 2λ

)(
1 +
|γ p̃1|
1 + λ

))
.

Applying the Equality (26) and the mathematical induction principle, we arrive at

|ρn| ≤

n
∏

k=2

(
(k− 2) + |γ p̃1|

1+λ(k−2)

)
(1 + λ(n− 1))(n− 1)!

=

n
∏

k=2

(
k− 2 + |γ((L−N) τ

2 )|
1+λ(k−2)

)
(1 + λ(n− 1))(n− 1)!

.

This completes the proof of Theorem 7.

3.1. Inverse Coefficients

Theorem 8. Let g ∈ R(M, N, λ, γ) be given by (1), and let g−1 have the coefficients of the form
(2) −1 ≤ N < M ≤ 1. Then,

|A2| ≤
|γ|(M− N)|τ|

2(1 + λ)
(30)
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and

|A3| ≤
|γ|(M− N)|τ|

8(1 + 2λ)
max

{
2, τ

∣∣∣∣∣
(

3γ− γ

(1 + λ)2

)
M−

(
2γ− 1

(1 + λ)2

)
N − 5

∣∣∣∣∣
}

. (31)

The result is sharp.

Proof. Let g ∈ R(M, N, λ, γ), which is of the form (1). Then, using (20) and (21), we have

a2 =
(1 + λ)

γ
ρ2 =

(M− N)τc1

4
(32)

and

a3 =
γ(M− N)τc2

8
− γ(M− N)τ

8
c2

1
2
+

γ(M− N)τ2

32

×
{

γM

(1 + λ)2 −
(

γ

(1 + λ)2 + 1

)
N + 5

}
. (33)

Since g(g−1)(z) = w, it is simple to show that using (2),

A2 = −a2. (34)

By solving (32) and (34), we have

|A2| ≤
|γ|(M− N)|τ|

2(1 + λ)

and from (3), we have
A3 = 2a2

2 − a3. (35)

Putting (32) and (33) in (35), we obtain

|A3| =
|γ|(M− N)|τ|

8(1 + 2λ)

∣∣∣∣c2 −
1
2

V0c2
1

∣∣∣∣,
where

V0 = 1− τ

2

(
5 +

(
γ

(1 + λ)2 − 3γ

)
M +

(
2γ− 1

(1 + λ)2

)
N

)
.

Hence, by using Lemma 2, we have

|A3| ≤
|γ|(M− N)|τ|

8(1 + 2λ)
max

{
2, τ

∣∣∣∣∣
(

3γ− γ

(1 + λ)2

)
M−

(
2γ− 1

(1 + λ)2

)
N − 5

∣∣∣∣∣
}

.

Hence, the required result is proved.
The results (30) and (31) are sharp for the functions

g∗(z) = z +
τ

2
(M− N)z2 +

τ2

8
(M− N)(M− 2N + 5)z3 + . . .

The result

|A3| ≤
|γ|(M− N)|τ|

4(1 + 2λ)

is sharp for the function given in (22).

Taking γ = 1 and λ = 0 in Theorem 8, we obtain the known corollary proven in [35]
for starlike functions associated with the cardioid domain.
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Corollary 3 ([35]). Let g ∈ R(M, N, 0, 1) be given by (1), and let g−1 have the coefficients of the
form (2), −1 ≤ N < M ≤ 1. Then,

|A2| ≤
(M− N)|τ|

2

and

|A3| ≤
(M− N)|τ|

8
max{2, τ|2M− 2N − 5|}.

Taking λ = 1 in Theorem 8, we obtain the new result for convex functions of complex
order γ associated with the cardioid domain.

Theorem 9. Let g ∈ R(M, N, γ) be given by (1), and let g−1 have the coefficients of the form (2),
−1 ≤ N < M ≤ 1. Then,

|A2| ≤
|γ|(M− N)|τ|

4
and

|A3| ≤
|γ|(M− N)|τ|

24
max

{
2, τ

∣∣∣∣(3γ− γ

4

)
M−

(
2γ− 1

4

)
N − 5

∣∣∣∣}.

Taking γ = 1 and λ = 1 in Theorem 8, we obtain the new result for a class of convex
order associated with the cardioid domain.

Theorem 10. Let g ∈ C(M, N, ) be given by (1), and let g−1 have the coefficients of the form (2),
−1 ≤ N < M ≤ 1. Then,

|A2| ≤
(M− N)|τ|

4
and

|A3| ≤
(M− N)|τ|

24
max

{
2, τ

∣∣∣∣11
4

M− 7
4

N − 5
∣∣∣∣}.

Theorem 11. Let g ∈ R(M, N, λ, γ) and be of the form (1), and let g−1 have the coefficients of
the form (2) −1 ≤ N < M ≤ 1. Then, for complex numbers µ and |z| < τ2 :∣∣∣A3 − µA2

2

∣∣∣
≤ |γ|(M− N)|τ|

8(1 + 2λ)
max

{
2,
∣∣∣∣τ( γ

1 + λ

(
(4− 2µ)(1 + 2λ)

(1 + λ)
− 1
)
(M− N) + N − 5

)∣∣∣∣}.

The result is sharp.

Proof. Let g ∈ R(M, N, λ, γ). Then, using (20) and (21), we have

a2 =
(1 + λ)

γ
ρ2 =

(M− N)τc1

4
(36)

and

a3 =
γ(M− N)τc2

8
− γ(M− N)τ

8
c2

1
2
+

γ(M− N)τ2

32

×
{

γM

(1 + λ)2 −
(

γ

(1 + λ)2 + 1

)
N + 5

}
. (37)

Since g(g−1)(z) = w, it is simple to show that using (2),

A2 = −a2. (38)
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By solving (36) and (38), we have

A2 = −γ(M− N)τc1

4(1 + λ)
(39)

and from (3), we have
A3 = 2a2

2 − a3. (40)

Therefore, by using a2 = γp1 and 2a3 = γ(p1a2 + p2), one can write∣∣∣A3 − µA2
2

∣∣∣ = |γ|
2(1 + 2λ)

∣∣∣∣p2 −
γ

1 + λ

(
(4− 2µ)(1 + 2λ)

(1 + λ)
− 1
)

p2
1

∣∣∣∣.
Hence, by applying Lemma 1, part (iv), for

v =
γ

1 + λ

(
(4− 2µ)(1 + 2λ)

(1 + λ)
− 1
)

,

we obtain the required result

∣∣∣A3 − µA2
2

∣∣∣ ≤ |γ|(M− N)|τ|
8(1 + 2λ)

max

{
2,

∣∣∣∣∣τ
(

γ
1+λ

(
(4−2µ)(1+2λ)

(1+λ)
− 1
)

×(M− N) + N − 5

)∣∣∣∣∣
}

.

The Theorem 11 is sharp for the functions

g∗(z) = z +
τ

2
(M− N)z2 +

τ2

8
(M− N)(M− 2N + 5)z3 + . . .

and for the function given in (22).

Taking γ = 1 and λ = 0 in Theorem 11, we obtain the known corollary proven in [35]
for starlike functions associated with the cardioid domain.

Theorem 12 ([35]). Let g ∈ R(M, N, λ, γ) and be of the form (1), and let g−1 have the coefficients
of the form (2) −1 ≤ N < M ≤ 1. Then, for complex numbers µ and |z| < τ2.∣∣∣A3 − µA2

2

∣∣∣ ≤ (M− N)|τ|
8

max{2, |τ(3M− 2N − 5)− 2µ(M− N)|}.

Taking λ = 1 in Theorem 11, we obtain the new result for convex functions of complex
order γ associated with the cardioid domain.

Theorem 13. Let g ∈ R(M, N, γ) and be of the form (1), and let g−1 have the coefficients of the
form (2) −1 ≤ N < M ≤ 1. Then, for complex number µ and |z| < τ2 :∣∣∣A3 − µA2

2

∣∣∣ ≤ |γ|(M− N)|τ|
24

max
{

2,
∣∣∣∣τ(γ

2

(
(4− 2µ)3

2
− 1
)
(M− N) + N − 5

)∣∣∣∣}.

Taking γ = 1 and λ = 1 in Theorem 11, we obtain the new result for a class of convex
functions associated with the cardioid domain.

Theorem 14. Let g ∈ C(M, N, ) and of the form (1), and let g−1 have the coefficients of the form
(2) −1 ≤ N < M ≤ 1. Then, for complex number µ and |z| < τ2 :∣∣∣A3 − µA2

2

∣∣∣ ≤ (M− N)|τ|
24

max
{

2,
∣∣∣∣τ(1

2

(
3(4− 2µ)

2
− 1
)
(M− N) + N − 5

)∣∣∣∣}.

This result is sharp.
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3.2. Logarithmic Coefficients

Theorem 15. Let g ∈ R(M, N, λ, γ) be given by (1), and let the coefficients of log g(z)
z be given

in (4) −1 ≤ N < M ≤ 1. Then,

|T1| ≤
|γ|(M− N)|τ|

4(1 + λ)

and

|T2| ≤
|γ|(M− N)|τ|

16(1 + 2λ)
max

{
2, τ

∣∣∣∣∣
(

γ(1 + 2λ)

(1 + λ)2 − 1

)
(M− N) + N − 5

∣∣∣∣∣
}

.

Proof. Differentiating (4) and comparing coefficients gives

T1 =
1
2

a2 =
1
2

(
1 + λ

γ

)
ρ2

and

T2 =
1
2

(
a3 −

1
2

a2
2

)
=

1
2

{
γp2

1
2(1 + 2λ)

+
γ

2(1 + 2λ)
p2 −

γ2 p2
1

2(1 + λ)2

}
=

γ

4(1 + 2λ)

∣∣∣p2 − µp2
1

∣∣∣,
where

µ =
γ(1 + 2λ)

(1 + λ)2 − 1.

Hence, by using Lemma 1, part (iv), we obtain the required result.
Equality holds for

1 +
1
γ

(
zD

′
(g(z))

D(g(z))
− 1

)
= 1 +

(M− N)τ

2
z +

(M− N)(5− N)τ2

4
z2 + . . .

Theorem 16. Let g ∈ R(M, N, λ, γ) and be of the form (1), andlet the coefficients of log g(z)
z ,

−1 ≤ N < M ≤ 1. Then, for complex number µ and |z| < τ2 :∣∣∣T2 − µT2
1

∣∣∣
≤ |γ|(M− N)|τ|

16(1 + 2λ)
max

{
2,
∣∣∣∣τ( γ

1 + λ

(
(1 + µ)(1 + 2λ)

(1 + λ)
− 1
)
(M− N) + N − 5

)∣∣∣∣}.

This result is sharp.

Proof. Since T1 = γ
2 a2 and T2 = γ

2
(
2a2

2 − a3
)
, by using a2 = p1, and 2a3 = γ(p1a2 + p2),

one can write∣∣∣T2 − µT2
1

∣∣∣ = |γ|
4(1 + 2λ)

∣∣∣∣p2 −
γ

1 + λ

(
(4− 2µ)(1 + 2λ)

(1 + λ)
− 1
)

p2
1

∣∣∣∣.
Hence, by using Lemma 1, part (iv), for

v =
γ

1 + λ

(
(1 + µ)(1 + 2λ)

(1 + λ)
− 1
)

.
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we obtain ∣∣∣T2 − µT2
1

∣∣∣
≤ |γ|(M− N)|τ|

16(1 + 2λ)

×max
{

2,
∣∣∣∣τ( γ

1 + λ

(
(1 + µ)(1 + 2λ)

(1 + λ)
− 1
)
(M− N) + N − 5

)∣∣∣∣}. (41)

Thus, inequality (41) is our required result.
The result is sharp for the function

g∗(z) = z +
τ

2
(M− N)z2 +

τ2

8
(M− N)(M− 2N + 5)z3 + . . .

and for the function given in (22).

4. Conclusions

In the present article, three new subclasses of analytic functions are defined in relation
to the concepts of subordination and cardioid domain. We have investigated a number
of interesting problems for functions that belong to these classes of analytic functions,
including bounds for the first two Taylor–Maclaurin coefficients, estimates for the Fekete–
Szegö-type functional, and coefficient inequalities. It has been demonstrated that all bounds
that we have examined in this article is sharp. The same type of sharp results were also
investigated for the inverse and log

(
g(z)

z

)
functions. Some known consequences of our

main results are also highlighted in our study.
Based on our current investigation, future research might take the well-known quan-

tum or basic (or q-) calculus as in, for example, the relevant recent publications [36–40]. We
hope that our work will provide a foundation for further studies investigating several other
classes of analytic functions associated with the cardioid domain, and for these classes, a
number of geometrical properties such as coefficient estimates, sufficiency criteria, radii of
starlikeness, convexity, and close to convexity, extreme points, and distortion bounds can
be investigated.
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