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Abstract: Physics-informed neural networks (PINNs) provide a new approach to solving partial
differential equations (PDEs), while the properties of coupled physical laws present potential in
surrogate modeling. However, the accuracy of PINNs in solving forward problems needs to be
enhanced, and solving inverse problems relies on data samples. The smoothed finite element method
(S-FEM) can obtain high-fidelity numerical solutions, which are easy to solve for the forward problems
of PDEs, but difficult to solve for the inverse problems. To the best of the authors’ knowledge, there
has been no prior research on coupling S-FEM and PINN. In this paper, a novel approach that
couples S-FEM and PINN is proposed. The proposed approach utilizes S-FEM to synthesize high-
fidelity datasets required for PINN inversion, while also improving the accuracy of data-independent
PINN in solving forward problems. The proposed approach is applied to solve linear elastic and
elastoplastic forward and inverse problems. The computational results demonstrate that the coupling
of the S-FEM and PINN exhibits high precision and convergence when solving inverse problems,
achieving a maximum relative error of 0.2% in linear elasticity and 5.69% in elastoplastic inversion by
using approximately 10,000 data points. The coupling approach also enhances the accuracy of solving
forward problems, reducing relative errors by approximately 2–10 times. The proposed coupling of
the S-FEM and PINN offers a novel surrogate modeling approach that incorporates knowledge and
data-driven techniques, enabling it to solve both forward and inverse problems associated with PDEs
with high levels of accuracy and convergence.

Keywords: physics-informed deep learning; smoothed finite element method (S-FEM); partial
differential equations (PDEs); inverse problems

MSC: 68U001

1. Introduction

Partial differential equations (PDEs) are essential in engineering applications, as
most natural and complex systems are governed by physical phenomena that can be
described by PDEs [1–3]. However, finding solutions to most PDEs poses a significant
challenge and often requires complex numerical techniques. Currently, the finite element
method (FEM) [1,4], the finite difference method (FDM) [5], and the material point method
(MPM) [6] are the primary numerical methods used for solving PDEs. Discretization is
often necessary when solving complex PDEs by using numerical methods, such as FEM,
FDM, and MPM. The computational efficiency and accuracy of a model are closely linked
to the mesh density and computational step size.

Physics-informed deep learning, which has emerged in recent years, is based on novel
ideas for solving PDE problems [7]. An example of this is physics-informed neural net-
works (PINNs), which are typical representatives that utilize automatic differentiation to
incorporate PDEs into the loss function of the neural network. This approach can solve
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various types of PDEs accurately, and the computational accuracy remains unaffected by
variations in computational step size [8–10]. As a result, compared to traditional numerical
methods, the solving process and results for high-dimensional PDE problems are no longer
restricted. In addition, the PINN framework can tackle the inverse problems associated
with PDEs by inferring the unknown coefficient and/or source terms of the governing equa-
tions from measured data [8]. PINNs are a class of neural networks designed for solving
supervised learning tasks that are required to satisfy not only the constraints of the training
samples but also the physical information constraints of the PDEs [7,11]. Compared to
purely data-driven neural networks, PINNs incorporate physical information constraints
into the training process. Hence, the utilization of fewer data samples to learn more gener-
alized models is possible [7,12]. In recent years, PINN has become an increasingly popular
research topic at the intersection of machine learning and computational mathematics and
has made significant progress in both theory and applications [7,8,13–22].

For example, Raissi et al. [8] employed PINN to accurately solve the Schrödinger and
Allen–Cahn equations, as well as to perform parameter inversions of the Navier–Stokes
and Korteweg–de Vries equations. Ehsan Haghighat et al. [13] developed SciANN, an
artificial neural network framework based on Python, to solve both the forward and inverse
problems of PDEs using the PINN approach. Lu et al. [14] introduced the residual-based
adaptive refinement (RAR) method and the construction geometry method to enhance
the training efficacy of the PINN in complex computational domains. They also created a
Python toolkit called DeepXDE, based on TensorFlow. DeepXDE has the capability to solve
both forward problems, based on initial and boundary conditions, and inverse problems,
taking into account additional measurements [14]. Jagtap et al. [15] proposed a scalable
hyperparameter for the activation function of the PINN to enhance its efficiency. This
hyperparameter optimizes the network’s performance by dynamically adjusting the loss
function involved in the optimization process.

Researchers are increasingly focusing on combining traditional numerical methods
with deep learning techniques to solve PDEs. For instance, Milan et al. [23] proposed a
hybrid approach that combines finite-volume-based CFD simulations with neural networks
to accelerate the simulation of high-pressure fluid flow in propulsion applications while
reducing the memory footprint. Kochkov et al. [24] recently proposed an end-to-end
deep learning approach to improve computational fluid dynamics for turbulence and
large eddy simulations. The proposed method offers a remarkable acceleration factor of
40 to 80 while maintaining some stability over long simulations [24]. Zhang et al. [25]
introduced HiDeNN-FEM, a hierarchical deep neural network representing the FEM, which
has demonstrated its potential in solving multidimensional higher-order continuity and
topology optimization problems. Moreover, Mitusch et al. [26] proposed a hybrid FEM-NN
model that shows good convergence for multiple types of PDEs. Moreover, Uriarte et al. [27]
proposed a deep learning approach for solving linear parametric PDEs using FEM, which
utilizes a neural network architecture to simulate the finite element refinement mesh, thereby
improving the interpretability and accuracy of numerical integration in deep learning.

Although many researchers have successfully combined traditional numerical meth-
ods with deep learning to solve difficult problems, the implementation of these approaches
is complicated, and it is challenging to solve both forward and inverse problems simulta-
neously. PINN offers a novel approach to solving PDEs, and its ability to handle coupled
physical laws demonstrates its potential as a surrogate model [8]. PINN can serve as an
integrated method for both training and identification purposes. During PDE solving,
unknown parameters in the equation can be identified directly based on additional in-
formation. When solving forward problems, PINN only requires information about the
control equations, initial conditions, and boundary conditions, and does not rely on any
data. However, its computational accuracy is lower than traditional numerical computation
methods [12]. Moreover, PINN can solve inverse problems using partial data samples,
which may include real field data, exact solutions to the problem, or high-fidelity synthetic
data [28]. In practical engineering problems, exact solutions are seldom attainable, and
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acquiring enough real field data can be arduous. Therefore, numerical calculation methods
are generally utilized to synthesize the dataset required for training.

The smoothed finite element method (S-FEM), which combines the FEM with the strain
smoothing technique, is a new numerical method introduced by Liu G. R. et al. [29] in
recent years. By employing strain smoothing techniques, the S-FEM eliminates the need for
coordinate mapping and Jacobian transformations, which helps to prevent computational
errors and inaccuracies caused by mesh distortions in complex models [29]. Moreover, the
low-order S-FEM can achieve the same level of computational accuracy as the high-order
FEM while simultaneously reducing computational complexity and costs for obtaining
high-fidelity numerical solutions. S-FEM represents a numerical technique that integrates
the benefits of FEM and meshless methods. In the context of inverse problems, these
methods demonstrate similarities to FEM and are frequently augmented with optimization
algorithms [30–32]. The present research is mainly directed toward solving inverse prob-
lems related to geometric heat conduction through the integration of the smooth gradient
concept of the S-FEM with the fixed grid FEM [33,34].

To enhance the computational accuracy of the PINN and overcome the limitation of
the S-FEM for solving inverse problems [33,34], we propose a novel method that couples
S-FEM with the PINN to solve the forward and inverse problems of PDEs. The S-FEM is
employed to create a high-precision dataset that is necessary for the PINN inversion process.
Initially, the material parameter combinations to be inverted are determined, followed
by selecting multiple sets of material parameter combinations as inputs for the smoothed
finite element simulation, within the limits of reasonable values of these parameters. The
displacement–stress data are then calculated using the S-FEM. The displacement and stress
data are subsequently incorporated into the loss function component of the PINN as data
constraints that operate in conjunction with physical constraints to invert the unknown
material parameters. The primary benefit of the pure PINN in resolving forward problems
of PDE is its freedom from data dependence, which permits its solution via the control
equations, and initial and boundary conditions. However, its precision is comparatively
lower than that of more established numerical computational techniques [12]. Consequently,
a high-precision dataset created through S-FEM is incorporated into the loss function
component of the PINN that solves PDEs without data dependence. The integration of
data-driven and physics-informed coordination improves the accuracy of the PINN without
data dependence. To verify the computational accuracy of the S-FEM-coupled PINN, we
solve the linear elastic and elastoplastic forward and inverse problems using this coupling
method. The results of this solution will be used to compare the accuracy with that of pure
S-FEM and PINN for solving the same problem.

The rest of this paper is organized as follows. Section 2 provides an overview of
physics-informed deep learning and the S-FEM. Section 3 introduces the three equations
of linear elastic problems, the constitutive relations of elastoplastic problems, and the
implementation of the S-FEM-coupled PINN. Section 4 analyzes the accuracy of the S-
FEM-coupled PINN in comparison with S-FEM and PINN in solving linear elastic and
elastoplastic problems through examples. Section 5 presents a discussion on the benefits
and limitations of coupling S-FEM with the PINN, along with the potential directions for
future research. Finally, Section 6 summarizes the contents of this paper.

2. Background

In this section, we provide a brief introduction to the physics-informed deep learning
and smoothed finite element method.

2.1. Physics-Informed Deep Learning

The most widely utilized physics-informed deep learning algorithmic framework is
the PINN proposed by Professor Karniadakis and his collaborators [7,8]. PINN is mainly
used for solving forward and inverse problems for PDEs [8]. In the PINN framework, a fully
connected feed-forward neural network is used as the core of surrogate modeling to predict
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the output of the PDEs. The automatic differentiation of the neural network is also used
to control the differential operator in the PDEs [35]. The main idea of the neural network
approach to solving PDEs is to use neural networks and sample data possessing partial
differential properties to approximate the explicit form of the PDEs in the corresponding
region. The process of modeling PDEs involves searching for nonlinear functions that meet
specific constraints. In contrast, neural networks are considered versatile approximators
of nonlinear functions, thus sharing similarities with the former [7]. Due to the prevalent
use of automatic differentiation techniques in deep neural networks, we can effectively
integrate the differential form constraints derived from PDEs into the design of the neural
network’s loss function [8]. In this way, neural networks that adhere to physical constraints
are obtained. This is the essential idea behind PINNs. The neural network trained in
this manner not only approximates the observed data but also inherently satisfies the
physical properties, such as symmetry, invariance, and conservation of the PDEs, due to the
incorporation of physical constraints in the loss function during training [8]. The subsequent
section illustrates the design methodology of the PINN using a generic form of PDEs as an
example. Specifically, let the function u = u(t, x) satisfy a PDE of the following form.

ut + N(u, λ) = 0, x ∈ Ω, t ∈ [0, T] (1)

where N(u, λ) is a generic function with parameter λ that differentiates with respect to
u, x is a space variable, t is a time variable, Ω is a subset of the Euclidean space RD, and
T is the termination moment. Given the initial state of u(t, x), boundary conditions, and
physical parameters λ, the traditional physical model can solve the PDEs to predict the
value of u(t, x) at any point in time and space. When an analytical solution is not available,
numerical methods such as the FEM and the FDM can be used to solve the equation. While
the PINN establishes a neural network as an alternative model to approximate the solution
of the PDEs, we define uN(t, x) as the neural network that approximates the function u(t, x),
r(t, x) = uN

t + N(uN , λ) as the residual of the PDEs, and we define the loss function of the
PINN, Loss = Lossu + Lossr, where

Lossu =
1

Nu

Nu

∑
i=1

∣∣∣uN(ti
u, xi

u)− ui
∣∣∣2 (2)

Lossr =
1

Nr

Nr

∑
i=1

∣∣∣r(ti
r, xi

r)
∣∣∣2 (3)

Equation (2) represents the data-driven part of the loss function, i.e., the training data
obtained through the initial state and boundary conditions in the forward problem (and the
training data obtained through experimental observations, numerical simulations, etc. in
the inverse problem). Equation (3) represents the physics-informed part of the loss function,
which is the residual value of the training points of the PDEs obtained using automatic
differentiation techniques.

To be able to train a neural network that approximates a function uN(t, x) that satisfies
the constraints of the PDEs in addition to minimizing the error with the label data, the PINN
solution principle depicted in Figure 1 is adopted. After inputting time and space data, the
function is first approximated by a neural network. Subsequently, automatic differentiation
techniques are utilized to derive the residuals of the PDEs and the constraints of the initial
value residual, which are then incorporated into the loss function as regularization terms.
Finally, an optimization algorithm, such as gradient descent, is employed to minimize the
loss function, allowing for the determination of the neural network connection weight
parameters and the physical parameters of the PDEs.
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Figure 1. The principle of the PINN solution.

2.2. Smoothed Finite Element Method

In recent years, several effective numerical methods have been proposed to enhance
the performance of low-order FEM in problem-solving, particularly in improving computa-
tional accuracy and preventing volume and shear locking [29,36–38]. The S-FEM, which
combines the FEM with the strain smoothing technique, was proposed by Liu G.R. and
his research team [29]. In S-FEM, the shape function is constructed in the same element
form as FEM, and the smoothing operation is performed on a separate smoothing domain
than that used in FEM. The workflow of the S-FEM is similar to that of FEM, with the key
difference being that all calculations in S-FEM are carried out on the smoothing domain,
whereas in FEM, all calculations are performed on the finite element mesh.

Currently, there are four approaches to constructing smoothing domains: (1) A cell in
a finite element is regarded as a fundamental unit, and it is further divided into several
sub-cell domains to form a cell-based smoothing domain. (2) A cell node in a finite element
is taken as a fundamental unit, and the closed area formed by connecting the node and
the centroids of its adjacent elements is a node-based smoothing domain. (3) A cell edge
in a finite element is regarded as a fundamental unit, and the closed region formed by
connecting the nodes of the edge and the centroids of its adjacent elements is an edge-based
smoothing domain. (4) A cell face in a finite element is taken as a fundamental unit, and
the closed area formed by connecting the nodes of the face and the centroids of its adjacent
elements is a face-based smoothing domain. The four smoothing domain construction
methods correspond to four S-FEMs, i.e., the cell-based S-FEM (CS-FEM) [39,40], node-
based S-FEM (NS-FEM) [41], edge-based S-FEM (ES-FEM) [42,43], and face-based S-FEM
(FS-FEM) [44]. In addition to the above four methods, there are also hybrid S-FEM [45,46],
improved S-FEM [47,48], etc. The smoothing domains of CS-FEM exist in the interior of the
element, while the smoothing domains of other methods exist between adjacent elements.
The smoothing domains are linearly independent, ensuring the stability and convergence
of the S-FEM model. At the same time, due to the strain smoothing technique used in
the smoothing domain calculation, the over-rigidity of the finite element model is further
reduced, and the accuracy of the displacement and stress calculation results is greatly
improved [29,49].

3. Materials and Methods

In this section, we introduce the three equations of linear elastic problems, the constitutive
relations of elastoplastic problems, and the implementation of the S-FEM-coupled PINN.

3.1. Linear Elasticity

To describe linear elastic problems, three primary equations are used: (1) the equilib-
rium differential equation, which represents the momentum balance relationship; (2) the
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physical equation, which represents the constitutive relationship; and (3) the strain com-
patibility equation, which represents the kinematic relationship. These equations are
shown below:

σij,j + fi = 0 (4)

σij = λδijεkk + 2µεij (5)

εij =
1
2
(ui,j + uj,i) (6)

where σij is the stress tensor. For two-dimensional problems, here, i, j = 1, 2 (or i, j = x, y).
The function fi represents the volume force, ui is the displacement, εi is the strain tensor,
and δi is the Kronecker symbol. The summation convention is used here [50], with subscript
commas indicating partial derivatives. The forward problem of linear elastic PDEs is to
solve its displacement field, stress field, and strain field, and the inverse problem is to solve
the material parameters λ and µ.

3.2. Elastoplasticity

The appropriate selection and use of the constitutive relation is crucial in correctly
solving elastoplastic problems. In this paper, the von Mises yield criterion is utilized
to determine whether the material has entered the plastic stage. The power-hardening
stress–strain relationship represents the constitutive relationship of the material, and the
total strain theory is adopted to solve elastoplastic problems.

The von Mises yield criterion:

σ̄=
1√
2

√(
σxx − σyy

)2
+
(
σyy − σzz

)2
+(σzz − σxx)

2+6
(

τ2
xy + τ2

yz + τ2
zx

)
= σs (7)

where σ̄ is the equivalent stress calculated according to Equation (7), σs is the yield stress of
the material, and the material enters the plastic phase when σ̄=σs.

To make the power-hardening stress–strain curve satisfy the Hooke law when ε̄ ≤ εs,
the following stress–strain relationship is adopted:

σ̄ =

{
Eε̄(0 ≤ ε̄ ≤ εs)
B(ε̄− ε0)

m(ε̄ ≥ εs)
(8)

where E is the Young’s modulus, m is the power-hardening index, and εs is the equivalent
strain corresponding to the yield stress σs of the material. To ensure that σ̄ and dσ̄

dε̄ are
continuous at ε̄ = εs, the values of ε0 and B are taken as follows:

ε0 = εs(1−m) (9)

B =
Eεs

(εs − ε0)
m (10)

The complete expression of the total strain theory can be found in Equations (11)–(13).

eij =
3
2

ε̄

σ̄
sij (11)

σ̄ = ϕ(ε̄) (12)

σm = 3Kεm (13)

In Equation (11), eij = εij − εmδij is the deflection strain tensor, sij = σij − σmδij

is the deflection stress tensor, ε̄ =
√

2/3eijeij is the equivalent strain, and σ̄ =
√

3/2sijsij

is the equivalent stress. Equation (12) is calculated in this paper using the power-hardening
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form of Equation (8). In Equation (13), σm=
(
σxx+σyy+σzz

)/
3 is the mean stress,

εm =
(
εxx+εyy+εzz

)/
3 is the mean strain, and K is the bulk modulus.

3.3. Workflow of the S-Fem

In a solid mechanics problem, the problem domain is denoted by Ω, and the boundary
is denoted by Γ = Γu ∪ Γt. The essential boundary is represented by Γu, while the natural
boundary is represented by Γt. The workflow of the S-FEM is illustrated in Figure 2 and
the detailed procedures and operations are as follows [29,36,49]:

(1) The discretization of the problem domain. The S-FEM can use arbitrary polygonal
elements to discretize the problem domain. Generally, triangular or quadrilateral elements
are used to discretize two-dimensional domains, while tetrahedral or hexahedral elements
are employed for three-dimensional domains.

(2) Construction of shape functions to create displacement fields.
(3) Construction of a strain smoothing field. The strain smoothing technique can be

used directly on the smoothing domain to construct a strain smoothing field using the
shape function values for any type of cell. This procedure requires only a line or area
partition directly on the boundary of the smoothing domain, without coordinate mapping.
This characteristic is also the reason why the S-FEM is insensitive to mesh distortions.

(4) Establishment of a discrete linear algebraic system of equations. The assumed
displacement field and the strain smoothing field are used to establish a discrete linear
algebraic system of equations through the smoothing Galerkin method. In the S-FEM, this
process only involves simple summation operations for the relevant parameters of the
smoothing domain.

(5) Imposition of boundary conditions and system equation solutions to obtain dis-
placement solutions.

(6) Reconstruction of the strain field using the obtained displacement solution. The
stress of the equivalent node is obtained in the smoothing domain using the weighted
average method, and the continuous stress field in the problem domain is then obtained
using the shape function interpolation method.
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Figure 2. Flowchart of the S-FEM.

3.4. Neural Network Setup

In this paper, a fully connected neural network is implemented within the deep
learning framework of TensorFlow using Python language. For the elastoplastic statics
problem, the input of the neural network is the node spatial coordinates and the output is
the node displacements and stresses. For the elasticity problem, the material parameters
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for the inversion are the Lamé parameters λ, µ in Equation (5). For the elastic–plastic
problem, the parameters that need to be inverted are λ, µ, and σs. Moreover, σs corresponds
to εs in Equation (8), which is the condition for determining whether the material enters
plasticity in Equation (7). According to the control equations, initial conditions, boundary
conditions, and sample point data, constraints are set and loss functions are computed. The
physical quantities obtained from the network’s output and those labeled in the training
samples are substituted into the PDEs, boundary condition, and initial condition. The
difference between the two is then used to construct a loss function. The connection weights
between each neuron in the neural network are adjusted by minimizing the loss function to
achieve convergence.

The Adam optimizer is selected for gradient descent optimization, and tanh is used
as the activation function of the neural network. The parameters of the neural network
model are selected and set according to the specific problem, mainly including batch
size, learning rate, learning rate decay, epochs/iterations, adaptive weights, initializer, etc.
The loss function was calculated using the mean squared error (MSE). After the neural
network model is established, the model is compiled first, and then the model is trained.
Optimization methods are used to continuously minimize the loss function to make the
neural network converge and obtain the parameter values for the inversion. Finally, the
unknown displacement and stress fields of the model are predicted. The PINN structure
used in this paper for the inverse elastoplastic static problem is illustrated in Figure 3.
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x

y

...

..
.

..
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  or
max ?it
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Model 
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Figure 3. Illustration of the neural network construction for the elastoplastic static inverse problem.

3.5. The Implementation of the S-FEM-Coupled PINN

In the elastic–plastic inverse problem, data for pure PINNs are typically obtained from
either measured data or synthesized data from numerical methods (such as FEM). However,
obtaining measured data can be challenging, while synthesized data from numerical
methods may be less accurate or more expensive. In contrast, the coupling method uses
synthesized data from the S-FEM, which is easier to obtain than measured data and has
higher accuracy and lower cost than FEM.

To solve the inverse problem with S-FEM-coupled PINN, material parameters are set
as unknown variables in the PINN, which are identified during the training process. The
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input of the PINN consists of spatial coordinates, while its output involves displacement
and stress fields. In the elastoplastic statics problem, the unidentified material parameters
include the Lamé parameter and the yield stress. As presented in Figure 4, the proposed
method in this paper starts by discretizing the problem domain using the S-FEM to obtain
the spatial coordinates of a series of nodes, which are then used as input variables for PINN.
The smoothing domain, displacement field, and smoothed strain field are constructed
based on the S-FEM calculation procedure. On this basis, the smoothed stiffness matrix
is calculated and assembled. Finally, the system equations are solved after imposing the
boundary conditions to obtain the nodal displacements and equivalent nodal stress of the
problem. These values are then embedded as data constraints in the loss function of the
PINN. The physical constraints, including the equilibrium differential equations, geometric
equations, and physical equations of the elastic–plastic problem, are also embedded in
the loss function of the PINN. The physical loss and data loss are combined as the total
loss function, which is optimized using optimization methods to continuously reduce the
value of the loss function. This results in the neural network output being gradually closer
to the true value. A threshold value or a maximum number of iteration steps is used to
determine whether to continue the training of the neural network or not. The material
parameters obtained from the inversion of each iteration step of the training process are
output to facilitate the analysis of the inversion results. The algorithmic flowchart for
the implementation and training of the S-FEM-coupled PINN in TensorFlow is illustrated
in Figure 5.

Modify/Construct the 

strain field

Calculate the smoothed

stiffness matrix

Domain discretization 

with polygonal elements

Create a displacement 

field

Impose the boundary 

conditions and solve the 

system of equations

Assemble the global 

stiffness matrix

Total Loss
Optimization 

Method

Done

No

Yes

S-FEM

PINN

x

y

...

..
.

..
.

..
.

...

...

ux

uy

σxy

σxx

σyy

μ

λ

σs

Residual on PDE

MSEr

Training Data 
(Displacement, Stress)

MSEu

Input Neural Network
Output

Loss Function

Spatial 

Coordinates

  or
max ?it
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plastic inverse problem.
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In the elastoplastic forward problems, pure PINNs solve the forward problem without
known data and are optimized by embedding boundary conditions, equilibrium differential
equations, geometric equations, and physical equations into the loss function. The coupling
method improves the solution accuracy by incorporating synthesized data from the S-FEM
and using both physical and data constraints in the loss function. By adding constraints,
the coupling method combines the advantages of both methods and achieves more accurate
and efficient solutions.

To solve the forward problem with S-FEM-coupled PINN, the material parameters are
known and the spatial coordinates serve as the input to the PINN, while the output is the
displacement and stress fields. To obtain the spatial coordinates, a small-scale discretization
of the problem domain is carried out using the S-FEM. The nodal displacements and equiv-
alent nodal stress values are then obtained using the S-FEM and used as data constraints in
the loss function of the PINN. The boundary conditions, equilibrium differential equations,
and physical equations of the elastoplastic problem are also embedded in the loss function
of the PINN. The neural network is trained to minimize the loss function, thereby achieving
convergence. Once trained, the neural network can be used to predict the displacement
and stress of a large-scale node with the same geometric boundary conditions.
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4. Results and Analysis

In this section, we analyze the results of the forward and inverse problems of the
S-FEM-coupled PINN for practical examples of the linear elastic and elastoplastic problems.
Furthermore, a comparative analysis is conducted between the forward problem results of
the S-FEM and PINN with those obtained from the coupled approach.

4.1. Linear Elasticity
4.1.1. Problem Setup

To evaluate the accuracy of the S-FEM-coupled PINN in solving PDEs, a linear elastic
plane strain problem was solved using three different methods: S-FEM-coupled PINN,
S-FEM, and PINN. The geometric model and boundary conditions of the problem were
adopted from the literature [28], and are illustrated in Figure 6. The linear elastic plane
strain problem involves three main types of PDEs:

(1) Equilibrium differential equations. See Equations (14) and (15).

σxx,x + σxy,y + fx = 0 (14)

σxy,x + σyy,y + fy = 0 (15)

(2) Geometric equations. See Equations (16)–(18).

εxx = ux,x (16)

εyy = uy,y (17)

εxy =
1
2
(ux,y + uy,x) (18)

(3) The stresses obtained from the equilibrium differential equation and the strains
obtained from the geometric equation are substituted into the following physical equations.
See Equations (19)–(21).

(λ + 2µ)εxx + λεyy − σxx = 0 (19)

(λ + 2µ)εyy + λεxx − σyy = 0 (20)

2µεxy − σxy = 0 (21)

The model illustrated in Figure 6 is subjected to volume forces in the x-direction and
y-direction, denoted by fx and fy, respectively, as described in Equations (22) and (23).

fx = λ[4π2 cos(2πx) sin(πy)− π cos(πx)Qy3]

+ µ[9π2 cos(2πx) sin(πy)− π cos(πx)Qy3] (22)

fy = λ[−3 sin(πx)Qy2 + 2π2 sin(2πx) cos(πy)]

+ µ[−6 sin(πx)Qy2 + 2π2 sin(2πx) cos(πy) + π2 sin(πx)Qy4/4] (23)

where λ and µ are material parameters that are required to be identified using the S-FEM-
coupled PINN, the true values of λ and µ are 1 and 0.5, respectively, and Q is the applied
load and has a value of 4.

The exact solution to the displacement of the linear elastic plane strain problem can be
computed from Equations (24) and (25).

ux(x, y) = cos(2πx) sin(πy) (24)

uy(x, y) = sin(πx)Qy4/4 (25)
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Figure 6. Illustration of geometric and boundary conditions for the linear elastic plane strain problem.

According to the above conditions, the data loss part of the PINN corresponding to
the linear elasticity problem is shown in Equation (26); and the PDE loss part is shown in
Equation (27).

Lossu =
1
N

N

∑
i=1

(∣∣∣ui
x − ui∗

x

∣∣∣2 + ∣∣∣ui
y − ui∗

y

∣∣∣2 + ∣∣∣σi
xx − σi∗

xx

∣∣∣2
+

∣∣∣σi
yy − σi∗

yy

∣∣∣2 +∣∣∣σi
xy − σi∗

xy

∣∣∣2) (26)

Lossr =
1
N

N

∑
i=1

(∣∣∣σi
xx,x + σi

xy,y + f i∗
x

∣∣∣2 + ∣∣∣σi
xy,x + σi

yy,y + f i∗
y

∣∣∣ 2

+
∣∣∣(λ + 2µ)εi

xx + λεi
yy − σi

xx

∣∣∣2 + ∣∣∣(λ + 2µ)εi
yy + λεi

xx − σi
yy

∣∣∣2
+

∣∣∣2µεi
xy − σi

xy

∣∣∣2) (27)

where the physical quantity marked with an asterisk is the known data and N is the number
of sample points of the input data.

4.1.2. The Results of the S-FEM-coupled PINN

For the linear elastic plane strain problem illustrated in Figure 6, we adopt the S-
FEM-coupled PINN to perform material parameter inversion for the Lamé parameters,
λ and µ. Firstly, we utilize the S-FEM to generate 16 × 16 quadrilateral element node
data based on the computational process outlined in Section 3.3. Next, we imported the
displacement and stress data obtained into the PINN, which was constructed in Section 3.4.
The neural network parameters are set according to Table 1, with the data loss component
and the physical loss component given equal importance, and their weights are set as 1.
The material parameters λ and µ are initialized as unknown variables, with an initial value
of 2.0. We initialize the neural network by the Glorot uniform method, which initializes the
input tensor by drawing samples from a uniform distribution within [−limit, limit], where
limit =

√
(6/( f an_in + f an_out)) ( f an_in is the number of input units in the weight tensor

and f an_out is the number of output units). Following the above methods for parameter
and network initialization, we optimize the training process, and invert λ and µ.
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Table 1. The neural network parameters for solving the linear elastic inverse problems.

Neural Network Parameters Values

Layers [40] × 4
Activation Functions tanh
Batch Size 64
Learning Rate 0.001
Epochs 4000
Initializer Glorot uniform

The variation in the identification of material parameters with an increasing number
of training steps is illustrated in Figure 7. It can be seen that the inversion results for both
material parameters reach convergence at approximately 3000 training steps. The relative
error between the convergence of the inversion result of parameter λ at 0.935 and its true
value of 1.0 is 6.5%, and the relative error between the convergence of the inversion result
of parameter µ at 0.487 and its true value of 0.5 is 2.6%.
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Figure 7. Convergence process of material parameter inversion for the linear elastic problem. The
dashed lines in the figure represent the convergence values of the inversion parameters.

Given the small-scale dataset used in the implementation of the linear elasticity prob-
lem, the parameter inversion results are not as accurate. To address this, a comparative
analysis of the inversion results of different scale datasets was conducted. Four datasets of
sizes 16 × 16, 32 × 32, 64 × 64, and 128 × 128 were synthesized using S-FEM and coupled
with the PINN for inversion. The convergence of the inversion results was observed in
Figure 8, where the results reached convergence at approximately 3000 training steps for
the 16 × 16 dataset and approximately 100 steps for the 128 × 128 dataset. The convergence
of the parameter inversion results is significantly faster with an increase in the size of
the dataset. The relative error between the inversion results and the actual values was
compared in Tables 2 and 3, where it is observed that the parameter µ could be accurately
identified with an error of 0 when the dataset increased to 64 × 64. Additionally, the relative
error of the parameter λ was only 0.2% when the dataset was increased to 128 × 128, indi-
cating a significant improvement in the accuracy of parameter inversion with an increase
in the dataset size.



Mathematics 2023, 11, 2016 14 of 28

0 1000 2000 3000 4000

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

0 1000 2000 3000 4000

1.0

1.5

2.0

2.5

 Data 16×16

 Data 32×32
P

ar
am

et
er

 i
d
en

ti
fi

ca
ti

o
n

 r
es

u
lt

s

 Data 64×64

Epochs

 Data 128×128

Lamé Parameter (λ)

0.935

0.963

0.990

0.998

(a)

0 1000 2000 3000 4000

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0 1000 2000 3000 4000

0.5

1.0

1.5

2.0

P
ar

am
et

er
 i

d
en

ti
fi

ca
ti

o
n

 r
es

u
lt

s

 Data 16×16

 Data 32×32

 Data 64×64

Epochs

 Data 128×128

Lamé Parameter (µ)

0.487

0.499

0.500

0.500

(b)

Figure 8. Comparison of inversion results of linear elastic material parameters for different data sizes.
The dashed lines in the figure represent the convergence values of the inversion parameters. (a) Lamé
Parameter λ, (b) Lamé Parameter µ.

Table 2. Comparison of the relative errors between the inversion results and the true values of the
linear elasticity parameter λ for different data sizes.

Data Exact Predicted Relative Error

16 × 16 1.000 0.935 6.5%
32 × 32 1.000 0.963 3.7%
64 × 64 1.000 0.990 1.0%
128 × 128 1.000 0.998 0.2%

Table 3. Comparison of the relative errors between the inversion results and the true values of the
linear elasticity parameter µ for different data sizes.

Data Exact Predicted Relative Error

16 × 16 0.500 0.487 2.6%
32 × 32 0.500 0.499 0.2%
64 × 64 0.500 0.500 0
128 × 128 0.500 0.500 0

4.1.3. Comparison between the S-FEM-coupled PINN, S-Fem, and PINN Results

To verify the computational accuracy of the S-FEM-coupled PINN for the linear elastic
forward problem, we compared and analyzed the results obtained for each of the following
three methods for the elastic plane problem, as illustrated in Figure 6.

(1) The S-FEM was used to synthesize 16 × 16 quadrilateral cell node data and coupled
with the PINN to predict the displacement and stress fields of a uniformly generated
200 × 200 node model.

(2) The S-FEM was utilized directly to calculate the displacement and stress fields of
199 × 199 quadrilateral cells discretized into a 200 × 200 node model.

(3) The PINN was employed directly to predict the displacement and stress fields of a
uniformly generated 200 × 200 node model.

The neural network parameters for the coupling method and the pure PINN were set
according to Table 4. We first visualized the results of the S-FEM-coupled PINN and com-
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pared them with the exact solution. As shown in Figures 9 and 10, the top portions of the
figures present the exact solution contours, calculated according to Equations (24) and (25).
Meanwhile, the bottom portions show the predicted contours. It can be demonstrated from
Figures 9 and 10 that the displacement and stress contours obtained by the S-FEM-coupled
PINN are consistent with the exact solution.

On this basis, we conducted a detailed comparative analysis of the displacement and
stress results obtained from the three methods. As illustrated in Figure 11, the results
indicate a high degree of similarity between the three methods and the exact solution.

Table 4. The neural network parameters for solving the linear elastic forward problems.

Neural Network Parameters Values

Layers [40] × 4
Activation Functions tanh
Batch Size 64
Learning Rate 0.001
Epochs 1000
Initializer Glorot uniform
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Figure 9. Comparison of the displacement contours obtained by using the S-FEM-coupled PINN to
calculate the linear elastic forward problem with the exact solution.
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Figure 10. Comparison of the stress contours obtained by using the S-FEM-coupled PINN to calculate
the linear elastic forward problem with the exact solution.
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Figure 11. Comparison of the displacements and stresses at the top boundary nodes of the model
obtained by different linear elastic forward problem-solving methods; (a) y-direction displacements,
(b) yy-direction stresses, (c) xy-direction stresses.

Moreover, the results of five nodes on the top boundary y = 1.0 of the model were
selected for detailed comparison with the exact solution. The comparison results are
presented in Tables 5–7. The comparison of relative errors indicates that the error in solving
the linear elasticity problem with pure PINN is quite large. This is because the training
was conducted using only 16 × 16 sampling points consistent with S-FEM-coupled PINN,
leading to low accuracy of the prediction results. This finding also confirms that the
accuracy of solving forward problems using pure PINN can be significantly improved by
adding a small amount of the S-FEM synthesis data.

To comprehensively compare the computational performance of these three methods,
we executed the above three methods in the environment shown in Table 8 and compared
their computational times. The computational time of the coupling method includes the
time for synthesizing S-FEM data and the time for PINN training and prediction. The
computational time of the pure PINN includes only the time for training and prediction,
while the computational time of the S-FEM represents the total computational time. The
results in Table 9 show that although the computational time of the S-FEM-coupled PINN
is slightly slower than that of the pure PINN, its computational accuracy is significantly
higher. It is worth noting that for a simple linear elasticity problem, the computational time
of the coupling method is relatively slower than that of the pure S-FEM method.

Table 5. The relative error comparison between the displacement of the top boundary node in the y-
direction obtained by different linear elastic forward problem-solving methods with the exact solution.

Position
Method Relative Error

Exact Solution S-FEM PINN S-FEM + PINN S-FEM PINN S-FEM + PINN

0.1005 0.31052 0.31053 0.17244 0.30000 0.003% 44.467% 3.388%
0.3015 0.81179 0.81181 0.71908 0.77000 0.002% 11.420% 5.148%
0.5025 0.99997 0.99997 0.99110 1.02000 0.000% 0.887% 2.003%
0.7035 0.80247 0.80245 0.87858 0.87800 0.002% 9.484% 9.412%
0.9045 0.29547 0.29546 0.42953 0.35200 0.003% 45.372% 19.132%
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Table 6. The relative error comparison between the stress of the top boundary node in the yy-direction
obtained by different linear elastic forward problem-solving methods with the exact solution.

Position
Method Relative Error

Exact Solution S-FEM PINN S-FEM + PINN S-FEM PINN S-FEM + PINN

0.1005 2.484 2.427 1.375 2.210 2.30% 44.65% 11.04%
0.3015 6.494 6.381 5.767 6.250 1.74% 11.20% 3.76%
0.5025 8.000 7.932 7.925 7.770 0.84% 0.93% 2.87%
0.7035 6.420 6.423 7.029 6.390 0.05% 9.49% 0.46%
0.9045 2.364 2.378 3.428 2.260 0.60% 45.01% 4.39%

Table 7. The relative error comparison between the stress of the top boundary node in the xy-direction
obtained by different linear elastic forward problem-solving methods with the exact solution.

Position
Method Relative Error

Exact Solution S-FEM PINN S-FEM + PINN S-FEM PINN S-FEM + PINN

0.1005 0.225 0.206 0.118 0.139 8.39% 47.57% 38.30%
0.3015 1.417 1.405 1.145 1.370 0.84% 19.21% 3.30%
0.5025 1.558 1.558 1.693 1.440 0.02% 8.65% 7.59%
0.7035 −0.485 −0.473 0.082 −0.538 2.46% 116.97% 10.93%
0.9045 −2.797 −2.777 −2.422 −2.630 0.70% 13.40% 5.98%

Table 8. Environment configurations.

Environment Configurations Details

OS Windows 11 Professional
Deep learning framework TensorFlow2.9-GPU
CPU AMD Ryzen 7 6800H with Radeon Graphics
CPU RAM (GB) 16
CPU Frequency (GHz) 3.2
GPU NVIDIA GeForce RTX3060 Laptop GPU

Table 9. Comparison of the computational times of different methods for solving the linear elastic
forward problem.

Methods Computational Time (s)

S-FEM + PINN 12.88
S-FEM 2.84
PINN 10.49

In addition, we utilized S-FEM to synthesize four datasets of 16 × 16, 32 × 32, 64 × 64,
and 128 × 128 coupled with the PINN to predict the same problem, and then analyzed
the effect of data size on the computational results. The pure PINN selects configuration
points of the same scale as S-FEM synthesis data to train for solving the same forward
problem. As demonstrated by the comparison results in Figures 12–14, the computation
accuracy of the S-FEM-coupled PINN approach is notably higher than that of the pure
PINN in small datasets. With the increase in the dataset size added in S-FEM-coupled
PINN, the training sampling points of the pure PINN also increase proportionally, resulting
in an improvement in the computation accuracy of both the coupling method and pure
PINN. It is noteworthy that when the data scale is increased to 128 × 128, the results of the
S-FEM-coupled PINN and PINN are highly consistent with the exact solution.
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Figure 12. Comparison of the y-direction displacements at the top boundary nodes of the model
obtained by different linear elastic forward problem-solving methods and different data scales
(a) Data 16 × 16, (b) Data 32 × 32, (c) Data 64 × 64, (d) Data 128 × 128.
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Figure 13. Comparison of the yy-direction stresses at the top boundary nodes of the model obtained
by different linear elastic forward problem-solving methods and different data scales (a) Data 16× 16,
(b) Data 32 × 32, (c) Data 64 × 64, (d) Data 128 × 128.
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Figure 14. Comparison of the xy-direction stresses at the top boundary nodes of the model obtained
by different linear elastic forward problem-solving methods and different data scales (a) Data 16× 16,
(b) Data 32 × 32, (c) Data 64 × 64, (d) Data 128 × 128.

4.2. Elastoplasticity
4.2.1. Problem Setup

A geometric model of an elastoplastic plane stress problem is illustrated in Figure 15.
The PDEs involved in the elastoplastic plane stress problem are as follows.

1
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0xy 

Left & Right Boundary Condition

x
y

0xu 

Figure 15. Illustration of geometric and boundary conditions for elastoplastic plane stress problems.

(1) Equilibrium differential equations. See Equations (14) and (15).
(2) Geometric equations. See Equations (16)–(18).
(3) The stresses obtained from the equilibrium differential equations and the strains

obtained from the geometric equations are substituted into the following physical equations.
See Equations (28)–(31).

εxx − εm =
3
2

ε̄

σ̄
(σxx − σm) (28)



Mathematics 2023, 11, 2016 20 of 28

εyy − εm =
3
2

ε̄

σ̄
(σyy − σm) (29)

εzz − εm =
3
2

ε̄

σ̄
(−σm) (30)

εxy =
3
2

ε̄

σ̄
σxy (31)

where σm=
(
σxx+σyy

)/
3, εm = σm/(3K), εzz = 3εm − εxx − εyy.

The elastic–plastic problem includes a fixed bottom, normal constraints on the left and
right boundaries, and a free boundary at the top. The model is subjected to a volume force
fy = 2.548 in the y direction, while no other external forces are present. The model includes
the following material parameters: Young’s modulus (E = 2.1), Poisson’s ratio (ν = 0.3),
initial yield stress (σs0 = 1.5), power hardening exponent (m = 0.1), and equivalent strain
corresponding to the initial yield stress (εs = σs0/E). The Young’s modulus and Poisson’s
ratio can be expressed in terms of the Lamé constants λ and µ as E = µ(3λ+2µ)

/
(λ+µ)

and ν = λ
/

2(λ+µ) . Here, the Lamé constants, λ and µ, and the initial yield stress, σs0, are
the material parameters to be inversed. In this paper, the finite element solution obtained
by using the encrypted quadratic eight-node quadrilateral cell computation is employed as
the reference solution.

The data loss part of the PINN corresponding to the elastic–plastic problem is shown
in Equation (32) and the PDE loss part is shown in Equation (33).

Lossu =
1
N

N

∑
i=1

(∣∣∣ui
x − ui∗

x

∣∣∣2 + ∣∣∣ui
y − ui∗

y

∣∣∣2
+

∣∣∣σi
xx − σi∗

xx

∣∣∣2 + ∣∣∣σi
yy − σi∗

yy

∣∣∣2 + ∣∣∣σi
xy − σi∗
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∣∣∣2) (32)

Lossr =
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4.2.2. The Results of the S-FEM-Coupled PINN

For the elastoplastic plane stress problem depicted in Figure 15, the S-FEM is combined
with the PINN to perform material parameter inversion for λ, µ and the initial yield stress
σs0 of the model. Initially, the S-FEM is employed to synthesize 100 × 100 quadrilateral
element node data, following the process detailed in Section 3.3. The node coordinates
obtained from the discrete problem domain using S-FEM are standardized using the z-
score method, and the node displacement and stress data are also standardized. Next, the
parameters of the neural network are set according to the values presented in Table 10. Both
the data loss part and the physical loss part of the neural network are equally weighted,
with both being assigned a value of 1. The unknown material parameters λ, µ, and the
initial yield stress, σs0, are initialized to a value of 1.0. Additionally, the Glorot uniform
method is used to randomly initialize the network weights. Once the neural network
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parameters are established using the aforementioned methods, training is optimized, and
λ, µ, and σs0 are inverted.

Table 10. The neural network parameters for solving the elastoplastic inverse problems.

Neural Network Parameters Values

Layers [80] × 5
Batch Size 64
Activation Functions tanh
Initial Learning Rate 0.005
Learning Rate Decay 0.5/500 epochs
Epochs 3000
Initializer Glorot uniform

The identification of the material parameters as the number of training steps increases
is illustrated in Figure 16. It can be seen that the inversion results for all three material
parameters reach convergence at approximately 1000 steps, which has good convergence.
The relative errors between the inversion results and the true values of the material are
compared in Table 11. It can be seen that the relative error between the inversion results
of the parameter µ and the true value is only 1.6%, and the relative error between the
inversion of the initial yield stress σs0 and the true value is only 0.13%, which has a very
accurate inversion.
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Figure 16. Convergence process of material parameter inversion for the elastic–plastic problem. The
dashed lines in the figure represent the convergence values of the inversion parameters.

Table 11. Comparison of the relative errors between the inversion results of the elastic–plastic
parameter and the true values.

Material Parameters Exact Predicted Relative Error

Lamé Parameter 1 (λ) 1.212 1.143 5.69%
Lamé Parameter 2 (µ) 0.811 0.824 1.60%
Initial yield stress (σs0) 1.500 1.498 0.13%
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4.2.3. Comparison between the S-FEM-coupled PINN, S-Fem, and PINN Results

To verify the computational accuracy of the S-FEM-coupled PINN for the elastic–
plastic forward problem, we compared and analyzed the results obtained for each of the
following three methods for the elastoplastic plane stress problem, as shown in Figure 15.

(1) The S-FEM was employed to synthesize nodal data for 100 × 100 quadrilateral cells,
which was then coupled with the PINN to predict the displacement and stress fields of a
uniformly generated 201 × 201 nodes model.

(2) The S-FEM was used to calculate the displacement and stress fields directly at the
201 × 201 nodes formed by the discretization of 200 × 200 quadrilateral cells.

(3) The PINN was utilized to predict the displacement and stress fields directly at the
uniformly generated 201 × 201 node model.

The neural network parameters for the coupling method and the pure PINN were
set according to Table 12. We first visualized the results of the S-FEM-coupled PINN and
compared them with the reference solution. As shown in Figure 17, the top portion of the
figure shows the reference solution contours calculated using encrypted quadratic finite
elements, while the bottom portion shows the predicted contours. It can be seen from
Figure 17 that the displacement and stress contours obtained by the S-FEM-coupled PINN
are consistent with the reference solution.

On this basis, we conducted a detailed comparative analysis of the displacement and
stress results obtained from the three methods, as shown in Figure 18. The results show
that the S-FEM-coupled PINN achieved comparable accuracy to that of the S-FEM, with
both methods being very close to the reference solution. However, the accuracy of the
PINN was found to be lower in comparison.

Table 12. The neural network parameters for solving the elastoplastic forward problems.

Neural Network Parameters Values

Layers [80] × 5
Batch Size 64
Activation Functions tanh
Learning Rate 0.0001
Epochs 1000
Initializer Glorot uniform

Y-Displacement_Reference XX-Stress_Reference YY-Stress_Reference

Y-Displacement_Predicted XX-Stress_Predicted YY-Stress_Predicted
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Figure 17. Comparison of the displacement and stress contours obtained by using the S-FEM-coupled
PINN to calculate the elastic–plastic forward problem with the reference solution.
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Figure 18. Comparison of the displacements and stresses of the left boundary nodes of the model cal-
culated by different elastic–plastic forward problem-solving methods; (a) y-direction displacements,
(b) xx-direction stresses, (c) yy-direction stresses.

Moreover, the accuracy of each method is evaluated by calculating the relative errors
at five nodes on the top boundary y = 1.0 of the model, as shown in Tables 13–15. The
results show that the S-FEM-coupled PINN method outperforms the pure PINN method in
terms of accuracy. The improvement in accuracy can be attributed to the incorporation of
the S-FEM-synthesized data in the training of the neural network.

To further evaluate the performance of the three methods, we conducted experiments
on the elastic–plastic problem and compared their computational times using the exper-
imental setting presented in Table 8. As shown in Table 16, the computational time of
the S-FEM-coupled PINN is faster than that of the S-FEM due to the utilization of the
S-FEM in synthesizing a small dataset and training it with the PINN, resulting in faster
computational time. Additionally, the computational time of the pure PINN is the fastest
in this case due to the use of the GPU version of TensorFlow for training and only training
for 1000 epochs. However, the computational accuracy of the pure PINN is not as high as
that of the coupling method. The comprehensive evaluation of the computational accuracy
and efficiency shows that for complex elastic–plastic problems, the coupling method has
higher computational efficiency than the S-FEM for solving forward problems and higher
computational accuracy than the pure PINN.

Table 13. The relative error comparison between the displacement of the top boundary node in
the y-direction calculated by different elastic–plastic forward problem-solving methods and the
exact solution.

Position
Method Relative Error

S-FEM S-FEM + PINN PINN Reference Solution S-FEM S-FEM + PINN PINN

0.1 0.106 0.106 0.108 0.104 2.01% 1.84% 3.72%
0.3 0.290 0.302 0.316 0.280 3.65% 7.98% 12.93%
0.5 0.428 0.433 0.453 0.417 2.76% 3.99% 8.67%
0.7 0.520 0.522 0.528 0.508 2.26% 2.61% 3.76%
0.9 0.566 0.566 0.560 0.554 2.08% 2.06% 0.97%
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Table 14. The relative error comparison between the stress in the xx-direction of the boundary node
at the top of the model calculated by different elastic–plastic forward problem-solving methods and
the exact solution.

Position
Method Relative Error

S-FEM S-FEM + PINN PINN Reference Solution S-FEM S-FEM + PINN PINN

0 0.684 0.712 1.001 0.674 1.49% 5.58% 48.49%
0.2 0.565 0.565 0.769 0.540 4.72% 4.70% 42.50%
0.4 0.459 0.453 0.527 0.459 0.14% 1.31% 15.00%
0.6 0.306 0.308 0.287 0.306 0.21% 0.75% 6.24%
0.8 0.154 0.152 0.055 0.153 0.42% 0.30% 63.87%

Table 15. The relative error comparison between the stress in the yy-direction of the boundary node
at the top of the model calculated by different elastic–plastic forward problem-solving methods and
the exact solution.

Position
Method Relative Error

S-FEM S-FEM + PINN PINN Reference Solution S-FEM S-FEM + PINN PINN

0 2.586 2.410 2.262 2.540 1.79% 5.11% 10.96%
0.2 2.135 1.922 1.804 2.038 4.72% 5.69% 11.50%
0.4 1.531 1.436 1.328 1.529 0.14% 6.07% 13.12%
0.6 1.021 0.942 0.850 1.019 0.21% 7.56% 16.58%
0.8 0.512 0.422 0.383 0.510 0.42% 13.17% 24.89%

Table 16. Comparison of the computational times of different methods for solving the elastic–plastic
forward problem.

Methods Computational Time (s)

S-FEM + PINN 107.17
S-FEM 153.34
PINN 23.33

5. Discussion

The S-FEM-coupled PINN is a surrogate modeling method that is driven by both
knowledge and data. This approach is more interpretable and generalizable when com-
pared to traditional machine learning techniques. Compared to traditional numerical
methods, the S-FEM-coupled PINN can address the limitations of separately solving PDE
inverse problems. Furthermore, it overcomes the drawbacks of traditional inverse analysis
methods, such as subjectivity, complexity, low accuracy, and low efficiency. After conduct-
ing a comparative analysis of the example results presented in Section 4, we identified
several specific characteristics of the S-FEM-coupled PINN. (1) By incorporating a portion
of the high-fidelity dataset synthesized by S-FEM, the accuracy of the PINN in solving PDE
forward problems with no data dependence was improved. (2) The S-FEM was employed
to synthesize high-fidelity datasets and coupled with the PINN to solve the inverse prob-
lem of PDEs, resulting in improved convergence and accuracy of the inverse solutions.
(3) The S-FEM-coupled PINN possesses integrated training and identification, enabling
simultaneous forward and inverse problem-solving of PDEs with improved accuracy.

Only regular two-dimensional elastic and plastic problems have been examined in
this paper using the S-FEM-coupled PINN. Further research is necessary to implement this
approach for more complex, high-dimensional problems. The S-FEM-coupled PINN has
improved the accuracy of the PINN in solving forward problems but has not addressed
its limitations in terms of efficiency. To train an effective PINN model, a large number
of collocation points are typically necessary to match the differential equations. Relevant



Mathematics 2023, 11, 2016 25 of 28

research has been conducted to include the input/design parameters of each instance
in the input layer of the PINN network to avoid retraining the network for each new
instance [51]. However, during the training process, the PINN model still needs to undergo
a large number of optimization iterations. In practice, the number of collocation points
and training iterations often grows with problem complexity, thereby complicating the
search for appropriate neural network hyperparameters [16]. Establishing a rigorous
initial/boundary condition for a continuous PINN presents a challenge, as the accuracy
and precision of computations can be significantly affected by the proper setting of such
conditions, particularly when label data are scarce or unavailable [17].

There is always a trade-off between computational efficiency and the requirement
for high-quality data. The PINN offers the advantage of employing fully connected deep
neural networks for the analytical approximation of PDE derivatives through automatic
differentiation. However, applying it directly to model the solution of high-dimensional
systems can result in computational bottlenecks and pose optimization challenges. Convo-
lutional neural networks offer superior scalability and faster convergence for PDE modeling
systems, thanks to their lightweight architecture and efficient filtering capabilities in the
computational domain [3]. In order to reduce training costs and achieve efficient learning,
there has been growing interest in physics-informed convolutional neural networks and
physics-informed graph neural networks, due to their superior efficiency and scalabil-
ity [3,17,52–54]. In the future, integrating the S-FEM with physics-informed convolutional
neural networks has the potential to enhance computational accuracy and efficiency.

The high accuracy of PINN in solving PDEs and its unique parameter inversion method
make it applicable in various fields, including computational fluid dynamics [55,56], meta-
material design [57], and reactive diffusion systems [58]. Despite the need to solve PDE
problems in geotechnical engineering, the exploration and application of the PINN algo-
rithm in this field are still in their early stages, with no established trends or significant
research efforts to date. The PINN algorithm has shown promise in the inversion of
geotechnical engineering parameters and offers a new method with significant potential for
determining and calibrating physical and mechanical parameters in this field. Combining
the PINN algorithm with numerical computations holds promise for improving the reliabil-
ity, accuracy, and efficiency of geotechnical parameter inversion in the future. Moreover, in
the future, we will study the applicability conditions and application scenarios of the pure
PINN, S-FEM, and S-FEM-coupled PINN, respectively, for specific engineering problems.
These studies are expected to provide researchers with guidelines for selecting appropriate
tools for solving PDEs.

6. Conclusions

In this paper, we improved the computational accuracy of surrogate modeling by
coupling S-FEM and physics-informed deep learning. The main idea of this paper was
to augment the data-free PINN solution for forward PDE problems by incorporating a
high-fidelity dataset synthesized using the S-FEM. In addition to enhancing the accuracy
of the PINN in solving forward problems, this paper also presents the inverse parameter
estimation of material properties using the training recognition integration of the PINN. In
this paper, the solutions of forward and inverse problems for linear elastic and elastoplastic
problems are implemented by using the S-FEM-coupled PINN. This paper provides a
comparison of the accuracy of the S-FEM-coupled PINN, S-FEM, and PINN methods for
solving linear elastic and elastoplastic plane problems. The results indicate that (1) the
S-FEM-coupled PINN is effective in solving the inverse problem of PDEs, achieving high
convergence and accuracy compared to purely numerical computation methods, (2) in
comparison to PINNs without data dependence, the S-FEM-coupled PINN can enhance the
accuracy of solving forward problems of PDEs. The proposed method has great potential
and a wide range of applications in the field of geotechnical engineering, particularly in
solving the inverse problems of PDEs. In the future, we will combine the PINN with
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numerical methods to improve the reliability, accuracy, and efficiency of the inversion of
geotechnical parameters.
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Nomenclatures
σij Stress Tensor
εij Strain Tensor
ui Displacement
fi Volume Force
δij Kronecker Symbol
σ̄ Equivalent Stress
σs Yield Stress
ε̄ Equivalent Strain
eij Deflection Strain Tensor
sij Deflection Stress Tensor
σm Mean Stress
εm Mean Strain
E Young’s Modulus
υ Poisson’s Ratio
K Bulk Modulus
λ Lamé Parameter 1
µ Lamé Parameter 2 / Shear Modulus
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