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Abstract: In both theoretical and applied research, it is often of interest to assess the strength of an
observed association. Existing guidelines also frequently recommend going beyond null‑hypothesis
significance testing and reporting effect sizes and their confidence intervals. As such, measures of
effect sizes are increasingly reported, valued, and understood. Beyond their value in shaping the
interpretation of the results from a given study, reporting effect sizes is critical for meta‑analyses,
which rely on their aggregation. We review the most common effect sizes for analyses of categorical
variables that use the χ2 (chi‑square) statistic and introduce a new effect size—פ (Fei, pronounced
“fay”). We demonstrate the implementation of these measures and their confidence intervals via the
effectsize package in the R programming language.
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1. Introduction
Over the last two decades, there have been growing concerns about the so‑called repli‑

cation crisis in psychology and other fields [1,2]. As a result, the scientific community has
paid increasing attention to the issue of replicability in science as well as to good research
and statistical practices.

In this context, many have highlighted the limitations of null‑hypothesis significance
testing and called for more modern approaches to statistics. One such recommendation,
for example, from the “New Statistics” initiative is to report effect sizes and their corre‑
sponding confidence intervals and to increasingly rely on meta‑analyses to increase confi‑
dence in those estimations [3]. These recommendations are meant to complement (or even
replace, according to some) null‑hypothesis significance testing and would help transition
toward a “cumulative quantitative discipline”.

These so‑called “NewStatistics” are synergistic because effect sizes are not only useful
for interpreting study results in themselves but also because they are necessary for meta‑
analyses, which aggregate effect sizes and their confidence intervals to create a summary
effect size of their own [4,5]. (The title of this paper is an allusion to the rhyme spoken by
the giant in the English fairy tale Jack and the Beanstalk (“Fee‑fi‑fo‑fum”).)

Unfortunately, popular software applications do not always offer the necessary imple‑
mentations of the specialized effect sizes necessary for a given research design and their
confidence intervals. In this paper, we want to focus on effect sizes for categorical data
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that are probably less well known than popular effect sizes like Cohen’s d or Pearson’s
r [6,7]. For categorical data, d and r are inappropriate measures of an effect size. Cohen’s
d refers to the standardized difference between the means of two populations, while Pear‑
son’s correlation coefficient r measures linear correlations. Hence, both measures refer to
continuous, not categorical, data.

To compare categorical data, for instance, where associations can be presented as con‑
tingency tables, several effect size metrics are available. Common effect sizes for 2‑by‑2
tables are odds ratios (OR), risk ratios (RR), or the phi (ϕ) coefficient. While phi can be in‑
terpreted similarly to a correlation coefficient, OR and RR are harder to interpret as they
are not bounded between zero and one. Furthermore, RR is not symmetrical [8]. The size
of the effect can change when columns and rows are exchanged. For tables with larger
dimensions than 2‑by‑2, other effect sizes (like Cramér’s V) are available that share the
property of phi of being able to be interpreted like a correlation coefficient and which are
discussed later.

The observed distribution of categorical data—usually measured as multinomial
variables—can also be compared to an expected distribution. Again, effect sizes to mea‑
sure the strength of such associations show some limitations regarding ease of interpre‑
tation. What is missing here is an effect size whose metric is comparable to those for
contingency tables.

This paper aims to review themost commonly used effect sizes for analyses of categor‑
ical variables that use the χ2 (chi‑square) test statistic and introduce a new effect size, פ (Fei,
pronounced “fay”), which closes the gap of a missing effect size measure in a correlation‑
like metric that is appropriate for categorical data.

Importantly, we offer researchers an applied walkthrough on how to use these effect
sizes in practice thanks to the effectsize package in the R programming language, which
implements these measures and their confidence intervals [9,10]. The presented effectsize
package closes another gap related to the aforementioned effect sizes because the uncer‑
tainty of suchmeasures—expressed by their confidence intervals—is often not included in
the output of statistical software. We cover, in turn, tests of independence (φ/phi, Cramér’s
V) and tests of goodness‑of‑fit (Cohen’s w, Tschuprow’s T, and a new proposed effect size,
.(Fei/פ

2. Effect Sizes for Tests of Independence
The χ2 test of independence between two categorical variables examines if the fre‑

quency distribution of one of the variables is dependent on the other. That is, are the two
variables correlated such that, for example, members of group 1 on variable X are more
likely to be members of group A on variable Y rather than evenly spread across Y variable
groups A and B. Formally, the test examines how likely the observed conditional frequen‑
cies (cell frequencies) are under the null hypotheses of independence. This is done by
examining the degree to which the observed cell frequencies deviate from the frequencies
that would be expected if the variables were indeed independent. The test statistic for
these tests is the χ2, which is computed as:

χ2 =
l×k

∑
i=1

(Oi − Ei)
2

Ei
,

where Oi are the observed frequencies and Ei are the frequencies expected under indepen‑
dence, and l and k are the number of rows and columns, respectively, in the contingency
table.

Instead of the deviations between the observed and expected frequencies, we can
write χ2 in terms of observed and expected cell probabilities and the total sample size
N (since p = k/N):

χ2 = N ×
l×k

∑
i=1

(
pOi − pEi

)2

pEi

,
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where pOi are the observed cell probabilities and pEi the probabilities expected under in‑
dependence.

Table 1 gives a short example in R to demonstrate whether the probability of survival
is dependent on the sex of the passenger aboard the Titanic. The null hypothesis tested
here is that the probability of survival is independent of the passenger’s sex.

Table 1. χ2 test of survival of Titanic passengers by sex, Titanic dataset from R.

Sex Survived Died

Male 367 1364
Female 344 126

χ2 = 456.9, df = 1, p < 0.001.

The performed χ2‑test is statistically significant. Thus, we can reject the hypothesis of
independence. However, the output includes no effect size, and we cannot conclude the
strength of the association between sex and survival.

2.1. Phi
For a 2‑by‑2 contingency table analysis, as the one used above, the ϕ (phi) coefficient

is a correlation‑like measure of effect size indicating the strength of association between
the two binary variables. One possibility to compute this effect size is to recode the binary
variables as dummy (“0” and “1”) variables and compute the Pearson correlation between
them [11]:

ϕ = |rAB|

Another way to compute ϕ is by using the χ2 statistic:

ϕ =

√
χ2

N
=

√√√√l×k

∑
i=1

(
pOi − pEi

)2

pEi

.

This value ranges between 0 (no association) and 1 (complete dependence), and its
values can be interpreted the same as Pearson’s correlation coefficient. Table 2 shows the
correlation coefficient and the effect size ϕ for the data shown in Table 1.

Table 2. Correlation and effect size ϕ (phi) for the survival of Titanic passengers by sex, Titanic dataset
from R.

Variable 1 Variable 2 r (95% CI) ϕ (95% CI)

Sex (male/female) Survival (survived/died) −0.46 (−0.49, −0.42) 0.46 (0.42, 1.00)

Note that ϕ cannot be negative, so wewill take the absolute value of Pearson’s correla‑
tion coefficient. Also note that the effectsize package gives a one‑sided confidence interval
by default, to match the positive direction of the associated χ2 test at α = 0.05 (that the
association is larger than zero at a 95% confidence level).

2.2. Cramér’s V (and Tschuprow’s T)

When the contingency table is larger than 2‑by‑2, using
√

χ2/N can produce val‑
ues larger than 1, which loses its interpretability as a correlation‑like effect size. Cramér
showed that while for 2‑by‑2 the maximal possible value of χ2 is N, for larger tables the
maximal possible value for χ2 is N × (min(k, l)− 1) [12]. Therefore, he suggested the V
effect size (also sometimes known as Cramér’s phi and denoted as ϕc):

Cramers V =

√
χ2

N(min(k, l)− 1)
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where V is 1 when the columns are completely dependent on the rows or the rows are
completely dependent on the columns (and 0 when rows and columns are completely in‑
dependent).

Table 3 gives a short example in R to demonstrate whether the probability of survival
is dependent on the person’s travel class or position aboard the Titanic. The null hypothesis
tested here is that the probability of survival is independent of the travel class or position.

Table 3. Effect size Cramér’sV for the survival of Titanic passengers by class/position, Titanic dataset
from R.

Class/Position Survived Died

1st 203 122
2nd 118 167
3rd 178 528
Crew 212 673

Cramér’s V = 0.29, 95% CI = 0.26, 1.00.

Tschuprow devised an alternative value, at

Tschuprows T =

√
χ2

N
√
(k − 1)(l − 1)

which is 1 only when the columns are completely dependent on the rows and the rows are
completely dependent on the columns, which is only possible when the contingency table
is a square [13].

For example, in Table 4, each row is dependent on the column value; that is, if we
know if the food is a soy, milk, or meat product, we also know whether the food is vegan
or not. However, the columns are not fully dependent on the rows: knowing the food is
vegan tells us the food is soy‑based; however, knowing it is not vegan does not allow us
to classify the food—it can be either a milk product or a meat product.

Table 4. Cramér’s V and Tschuprow’s T for food classes, example dataset from R.

Type Product
Cramér’s V (95% CI) Tschuprow’s T (95% CI)Soy Milk Meat

Vegan 47 0 0 1.00 (0.81, 1.00) 0.84 (0.68, 1.00)
Not‑Vegan 0 12 12

Accordingly, as can be seen in Table 4, Cramer’s V will be 1, but Tschuprow’s T will
not be:

We can generalize ϕ, V, and T to:
√

χ2

χ2
max

. That is, they express the square root of a

proportion of the sample‑χ2 to the maximum possible χ2 given the study design.
These coefficients can also be used for confusion matrices, which are 2‑by‑2 contin‑

gency tables used to assess machine learning algorithms’ classification abilities by compar‑
ing true outcome classes with the model‑predicted outcome class. A popular metric is the
Matthews correlation coefficient (MCC) for binary classifiers, which is often presented in
terms of true and false positives and negatives but is nothing more than ϕ [14].

3. Effect Sizes for the Goodness‑of‑Fit Tests
These tests compare the observed distribution of a multinomial variable to the ex‑

pected distribution using the same χ2 statistic. Here, in addition, we can compute an effect

size as
√

χ2

χ2
max

; all we need to find is χ2
max.
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3.1. Cohen’s w
Cohen defined an effect size—w—for the goodness‑of‑fit test [7]:

Cohens w =

√√√√ k

∑
i=1

(
pOi − pEi

)2

pEi

=

√
χ2

N
.

Thus, χ2
max = N.

Unfortunately, w has an upper bound of 1 only when the variable is binomial (has
two categories) and the expected distribution is uniform (p = 1 − p = 0.5). When the
distribution is non‑uniform or if there are more than two classes, then χ2

max > N, and so w
can be larger than 1 [15,16]. Examples are shown in Table 5.

Table 5. Effect size Cohen’s w for variables with different numbers of categories and distributions.

Observed Counts Expected Proportion Cohen’sw (95% CI)

90/10 0.5/0.5 0.80 (0.61, 1.00)
90/10 0.35/0.65 1.15 (0.99, 1.36)

5/10/80/5 0.25/0.25/0.25/0.25 1.27 (1.10, 1.73)

Although Cohen suggested that w can also be used for such designs, we believe that
this hinders the interpretation of w since it can be arbitrarily large [7].

3.2. Fei
Wepresent here a neweffect size, פ (Fei, pronounced “fay”), which normalizes goodness‑

of‑fit χ2 by the proper χ2
max for non‑uniform and/or multinomial variables.

The largest deviation from the expected probability distribution would occur when
all observations are in the cell with the smallest expected probability. That is:

pO =

{
1, if pi = min(p)
0, otherwise.

We can find (Ei−Oi)
2

Ei
for each of these values:

(pE − pO)
2

pE
=


(pi−1)2

pi
= (1−pi)

2

pi
, if pE = min(pE)

(pi−0)2

pi
= pi, otherwise.

Therefore,

k
∑

i=1

(pOi
−pEi )

2

pEi
=

k
∑

i=1
pEi −min(pE) +

(1−min(pE))
2

min(pE)

= 1 −min(pE) +
(1−min(pE))

2

min(pE)

= 1−min(pE)
min(pE)

= 1
min(pE)

− 1

So,

χ2
max = N ×

k
∑

i=1

(pOi
−pEi )

2

pEi

= N ×
(

1
min(pE)

− 1
)
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Finally, an effect size can be derived as:√√√√ χ2

N ×
(

1
min(pE)

− 1
)

We call this effect size פ (Fei), which represents the voiceless bilabial fricative in He‑
brew, keeping in linewith ϕ (which inmodernGreekmarks the same sound) andV (which
in English marks a voiced bilabial fricative; W being derived from the letter V in the mod‑
ern Latin alphabet). פ will be 0 when the observed distribution perfectly matches the one
expected (under the null hypothesis) andwill be 1when the sample contains only one class
of observations—the one with the smallest expected probability (under the null hypothe‑
sis). That is, פ is 1 (its maximal value) only when we observe only the least expected class.
When there are only two cells with uniform expected probabilities (50%), the expression
N ×

(
1

min(pE)
− 1

)
reduces to N and so פ = w. Table 6 shows the effect size Fei for the same

vectors and distributions as seen for Cohen’s w in Table 5. As can be seen, unlike Cohen’s
w, all effect size values of Fei (and their confidence intervals) are within the range from 0
to 1. (See Section 6 below for how to type the פ symbol on various computer systems.)

Table 6. Effect size Fei for variables with different numbers of categories and distributions.

Observed Counts Expected Proportion Fei (95% CI)

90/10 0.5/0.5 0.80 (0.64, 1.00)
90/10 0.35/0.65 0.85 (0.73, 1.00)

5/10/80/5 0.25/0.25/0.25/0.25 0.73 (0.64, 1.00)

The computation of פ (Fei) can be achieved with the Fei() function of the effectsize
package—fei(c(90, 10), p = c(0.35, 0.65)). This function here computes confidence intervals
using the non‑centrality parameter method (also called the “pivot method”) by finding
values for the non‑centrality parameter (“ncp”) of a noncentral χ2 distribution that place the
observed χ2 test statistic at the desired probability point of the distribution (e.g., p = 0.025
and p = 0.975 for a two‑sided 95% confidence interval). The two ncps (for the lower and
upper bounds) are then converted back to פ using the same scale‑and‑root formula as with
the sample χ2:

Lפ =

√√√√ λL

N ×
(

1
min(pE)

− 1
)

Uפ =

√√√√ λU

N ×
(

1
min(pE)

− 1
)

where λL and λU are the non‑centrality parameters corresponding to the desired tail prob‑
abilities, and Lפ and Uפ are the bounds of the confidence intervals for פ (Fei) (See also the
next section).

4. Simulation Study of the Distributional Form of the Fei Effect Size
In the previous section, we showed some results for the effect size פ (Fei) and its con‑

fidence intervals for different distributions of a multinomial variable. Like all effect sizes
discussed in this paper, פ follows a scaled non‑central χ distribution: the χ2 statistic fol‑
lows a non‑central χ2 distribution, and its square root follows a non‑central χ distribution;
this random variable is then scaled by a constant that is a function of the sample size and
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the study design. The noncentrality parameter of the non‑central χ distribution can be
found by applying the inverse of the scale to the population effect size. Therefore,

פ̂ ∼ noncentral χ
(

d f = k − 1, ncp = f−1(פ)
)√

N ×
(

1
min(pE)

− 1
)

where f−1(פ) is the inverse of the χ to פ conversion:

f−1(פ) = ×פ

√
N ×

(
1

min(pE)
− 1

)
,

פ is the population effect size, k is the number of classes, and פ̂ is the random variable
of possible observed effect sizes in a random sample. This can also be formulated in terms
of a non‑central χ2 distribution:

פ̂ ∼

√
noncentral χ2(d f = k − 1, ncp = g−1(פ))× N ×

(
1

min(pE)
− 1

)
where g−1(פ) is the inverse of the χ2 to פ conversion:

g−1(פ) = 2פ × N ×
(

1
min(pE)

− 1
)

.

To validate our assumptions, we conducted a simulation study, where we simulated
data of multinomial distributions for known true effect sizes of 0.1, 0.3, and 0.5, respec‑
tively. The datasets contained 500 simulations per effect size, for three different expected
probabilities (same as in Table 6), and 3 different sample sizes of 50, 100, and 350, resulting
in 13,500 simulated data points (500 simulations× 3 effect sizes× 3 expected probabilities
× 3 different sample sizes). Figure 1 shows the results from the simulation study.

The smallest sample size is more affected by noise, and results show more variation
(and less continuity) of simulation‑based פ (Fei) values around the true effect sizes. For
sample sizesN = 100 andN = 350, פ values closely replicate the true effect sizes and clearly
follow a non‑central χ distribution, indicating that Fei, like ϕ, V, T, and w, is a scaled
χ value.

פ (Fei) following a non‑central χ distribution also allows for power calculation. For
example, if the null probabilities are [0.35, 0.65] and the alternative probabilities are [0.545,
0.455], the scaling constant is:

C =
1

min(pE)
− 1 = 1.857,

and the population effect size is

פ =

√√√√√ k
∑

i=1

(pOi
−pEi )

2

pEi

1.857
= 0.3.

Therefore, the sample willפ follow the following distribution:

פ̂ ∼
√
noncentral χ2(d f = 1, ncp = 0.32 × 1.857 × N)× N × 1.857.

One must then find the N that produces the desired power for the significance level
that will be used to reject the null. For example, for a significant level of 0.01 and a power
of at least 0.85, an N of at least 78 is required.
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Figure 1. Comparison of true and simulation‑based actual effect size פ (Fei) for different expected
proportions, true effect sizes, and sample sizes. Histograms represent the distributions of the sample
s’פ from the simulated datasets, and the plotted lines represent density functions for (scaled) non‑
central χ distributions for the corresponding effect sizes and sample sizes.

The pwr package in R provides a function (pwr.chisq.test()) that can be used to cal‑
culate the power for goodness‑of‑fit tests. Although the function uses Cohen’s w as in‑
put/output, פ can easily be converted to Cohen’s w (e.g., by using the fei_to_w() function
from effectsize), allowing for the pwr function to be used with .פ An example can be found
in the accompanying R code.

5. Conclusions
Effect sizes are essential to interpreting the magnitude of observed effects; they are

frequently required in scientific journals; and they are necessary for a cumulative quanti‑
tative science relying on meta‑analyses. In this paper, we have covered the mathematics
and implementation in R of four different effect sizes for analyses of categorical variables
that specifically use the χ2 (chi‑square) statistic. Furthermore, with our proposal of the
effect size פ (Fei), we fill in the missing effect size for all cases of a χ2 test, as can be seen in
Table 7.
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Table 7. Effect size for χ2 tests for differently sized contingency tables.

Test Table Size Effect Size

χ2 test for independence
2‑by‑2 ϕ

Larger than 2‑by‑2 V or T
(Reduces to ϕ when table is 2‑by‑2)

χ2 test for goodness‑of‑fit

2 classes
with uniform null distribution w

More than 2 classes
and/or

non‑uniform null distribution

פ
(Reduces to w when there are

2 classes with uniform null dist).

Thus, we now have effect sizes to accompany any sized 1‑dimensional or 2‑dimensio‑
nal contingency tables that represent the sample’s χ2 relative to the maximally possible χ2,
ranging from 0 to 1, that can be easily interpreted on the scale of a correlation coefficient.

6. How to Type the פ Symbol
The Hebrew character can be inserted into documents via several methods:

1. By copying the character from https://util.unicode.org/UnicodeJsps/character.jsp?a=
05E4 (access date: 9 March 2023) or similar webpages.

2. In R, by typing the string “\u05e4”.
3. In LaTeX, by typing \char”05e4 and using a Unicode‑compatible compiler, such as

XeTeX or LuaLaTeX.
4. In Microsoft Word, from the Hebrew character of the Symbols window (Insert →

Symbol . . . ) or by typing 05e4, followed by Alt + X on the keyboard (Windows only).
5. On Windows, using the Character Map application or by holding down Alt and typ‑

ing +1508 on the numeric keypad.
6. OnmacOS, by enabling the Unicode Hex Input language from System Settings . . . →

Keyboard, then typing Opt + 05e4.
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