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Abstract: Recent research has focused on sheet shear cutting operations. However, little research has
been conducted on bar shear cutting. The main objective of the present investigation is to study bar
shear cutting with numerical and experimental analysis. Bar shear cutting is an important operation
because it precedes bulk metalworking processes for instance machining, extrusion and hot forging.
In comparison to sheet shear cutting, bar shear cutting needs thermomechanical modelling. The
variational formulation of the model is presented to predict damage mechanics in the bar shear cutting
of aluminium alloys. Coupled thermomechanical modelling is required to analyse the mechanical
behaviour of bulk workpieces, in which the combined effect of strain and temperature fields is
considered in the shear cutting process. For this purpose, modified hardening and damage Johnson–
Cook laws are developed. Numerical results for sheet and bar shear cutting operations are presented.
The comparison between numerical and experimental results of shearing force/tool displacement
during sheet and bar shear cutting operations proves that the use of a thermomechanical model in
the case of the bar shear cutting process is crucial to accurately predict the mechanical behaviour of
aluminium alloys. The analysis of the temperature field in the metal bar shows that the temperature
can reach T = 388 ◦C on the sheared surface. The current model accurately predicts the shear cutting
process and shows a strong correlation with experimental tests. Two values of clearance (c1 = 0.2 mm)
and (c2 = 1.2 mm) are assumed for modeling the bar shear cutting operation. It is observed that for
the low shear clearance, the burr is small, the quality of the sheared surface is better, and the fractured
zone is negligible.

Keywords: shear cutting; thermomechanical model; ductile fracture; Johnson–Cook model

MSC: 74R99

1. Introduction

Finite element methods are increasingly being developed and used for predicting the
behaviour of workpiece and tool components in manufacturing processes. Metal forming
and cutting processes require knowledge of the mechanical behaviour and damage of
the workpiece [1]. In fact, the accuracy of a finite element model of any metalworking
process is always dependent on the robustness of the identification of the constitutive law
of materials [2–4].

In decoupled models, plasticity and damage fields are independent. Various numerical
models take into consideration the stress triaxiality term in damage prediction [5,6]. Others
models consider the damage variable as a function of the cavity properties in porous
materials [7,8]. When predicting the behaviour and ductile damage of metallic materials
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during cutting and forming processes, Johnson–Cook models are the most widely used
laws [9,10]. Their accuracy has been proven in various works [11–14]. The Johnson–Cook
plasticity law considers the thermo-plastic behaviour of workpieces in manufacturing
processes with high deformation rates and high temperature variations. In addition, the
Johnson–Cook damage criterion takes into account the influence of stress triaxialities on
damage strain. This model was considered in computational manufacturing processes
because it takes into account the high deformation rates and high temperature fields
obtained in these processes, such as shear cutting and machining. The material parameters
of this model are determined by experimental tests.

Recently, the shear cutting process has been widely used by mechanical industries and
investigated by a larger number of numerical studies. This is due to the increasing demand
for a reliable and optimal shearing process in aeronautical and automotive developments.
In terms of numerical studies, the sheet shear cutting process has interested researchers
more than the bar shear cutting process. Sheet and bar metalworking differ in the blank di-
mensions, evolution of the temperature field during cutting operations, and the anisotropy
of the workpiece; each case should be studied distinctly. In this context, research works
on sheet shear cutting [15–17] are more developed than those on the bar shear cutting
process [18,19]. The impact of cutting parameters such as clearance and cutting speed on
the quality of the sheared workpiece, shearing efficiency and tool life has been studied.

Optimization of the workpiece geometry and tool wear during shear cutting operations
is a priority in the metalworking industry. Experimental and numerical studies have been
performed to analyse the impact of friction, cutting speed, punch force, etc. on workpiece
and cutting tools [20–22]. These studies are based on the efficiency of the computed material
models, which contain hardening and damage laws. In addition, a burr deformation
can frequently be illustrated in shear cutting operations on the cutting edge [23]. The
burr should be deburred before the next step of manufacturing operation, such as the
blanking and turning steps. Accurate shear cutting parameters have been determined
for a burr-free cutting edge. A pre-shear cutting operation was studied from a numerical
and experimental point of view [19]. The thermal field was not considered in the 3D
numerical model. Behrens et al. [18] develop an experimental study in order to show the
influence of microstructural conditions, clearance and shear rate on the shear plane quality
of aluminium bars.

In recent years, researchers have studied sheet shear cutting processes with experimen-
tal and numerical investigations. However, only a few results have been determined for
the bar shear cutting process. Sheet shearing studies are more advanced than bar shearing
studies because of the continuous development of automobile and aeronautic fabrication.
Accordingly, it is of interest that we conduct a study about the bar shear cutting process,
which is an important operation that principally precedes bulk forming processes. In this
paper, a mechanical and thermomechanical numerical modelling are developed. Based on
experimental and numerical tests, the thermal term should be considered in plasticity and
damage models to simulate the bar shear cutting process. For this purpose, a variational
formulation of the thermomechanical model of shear cutting operation is developed. The
efficiency of the plasticity and damage Johnson–Cook models are proved. The governing
laws take into account the effect of the temperature field on the flow stress and the damage
strain. Numerical tests of shear cutting operations are presented in order to prove the accu-
racy of the modified Johnson–Cook models in predicting ductile damage. The numerical
results of sheet and bar shearing operations are presented in this paper. The comparison
between the numerical and experimental results of the shear force/tool displacement, dur-
ing the shearing operations of plates and bars, proves that the use of the thermomechanical
model in the case of the bar shearing process is essential to flawlessly predict the behaviour
of aluminium materials. In fact, the temperature field influences mechanical properties
such as hardening, ductility and strain damage. The effect of shear clearance is investigated
in order to emphasize the effect of this parameter on burr formation, the quality of the
sheared surface and the dimensions of the fractured zone.
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2. Materials and Methods

The experiments are carried out using specific shearing tools (Figure 1). The exper-
imental cutting tests are conducted using a universal tensile machine (Figure 1a). Shear
cutting tests are carried out with a constant cutting speed and at ambient temperature.
Figure 1b,c show the 3D design of the employed shearing tools, which are used to cut
aluminium sheets and round bars, respectively.
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Figure 1. Experimental shear cutting tools: (a) tensile machine; (b) specific sheet shearing tool;
(c) specific bar shearing tool.

Two grades of aluminium alloys are considered for the experimental and numerical
tests. The first material is the 5083 aluminium sheet. Its thickness is 2 mm, and its elastic
properties are illustrated in Table 1. The second material is the Al6061-T6 round bar. This
aluminium bar has a diameter of 18 mm. Table 2 illustrates its thermomechanical properties.

Table 1. Elastic properties of 5083 aluminium sheet [24].

Yield Strength (MPa) Poisson’s Ratio Young’s Modulus (MPa)

106.3 0.33 75.6
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Table 2. Al6061-T6 aluminium bar properties [25].

Density
(g/cm3)

Tensile
Strength

(MPa)

Yield
Strength

(MPa)

Young’s
Modulus

(GPa)

Poisson’s
Ratio

Thermal
Conductivity

(W/mK)

2.7 310 275 69 0.33 167

3. Constitutive Models of Mechanical Behaviour and Damage
3.1. Governing True Stress–Strain Model

The true stress–strain equation is determined in order to set up a finite element
simulation of the shear cutting operation. It is deduced from the engineering stress–strain
curve, which is plotted by recording the engineering stress variation with the engineering
strain until the bifurcation of the specimen. Both terms are known as nominal stress and
nominal strain. The engineering stress–strain curve is obtained by progressively applying
load F to a tensile test and measuring the engineering deformation (Equation (1)) from this
experimental test. This curve reveals the mechanical properties of the workpiece.

ε =
L − L0

L0
(1)

where L is the current length of the gauge section, and L0 is the original length of the
gauge section.

The engineering stress is calculated by dividing the applied load F by the original
cross-section S0. The nominal stress is given by Equation (2).

σ =
F
S0

(2)

However, the curve based on the instantaneous cross-section area S is called the
true stress–strain curve. The instantaneous applied load divided by the instantaneous
cross-sectional area of specimen S gives the true stress, as shown in Equation (3):

σv =
F
S

(3)

For the true strain, Equation (4) gives the definition of this term:

dε =
dL
L

(4)

Both sides, which are given by Equation (4), are integrated, and the boundary condi-
tions are applied. We obtain the following equation:

εv =
∫ L

L0

dL
L

(5)

True strain is a logarithmic term. It is given by Equation (6):

εv = Ln
(

L
L0

)
= Ln(1 + ε) (6)

3.2. Empirical Formulations and Identification of Hardening Model

Good knowledge of the mechanical properties is needed in order to perform accurate
numerical modelling of the manufacturing processes. Diverse empirical formulations have
been proposed in order to predict the plastic deformation behaviour of materials in metal
forming and cutting processes. One of the most commonly used formulations was proposed
by Hollomon [26]. This power-law empirical relationship depends on two parameters: the
strain-hardening coefficient and the strain-hardening exponent, respectively. Ludwik’s law
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has an additional stress factor [27]. This model depends on three parameters, which are the
yield strength, the coefficient of plastic resistance and the strain-hardening exponent. The
Hollomon power law is not capable of describing the plastic behaviour at low strains for
face-centred cubic steels with low stacking-fault energy (SFE). In fact, the stacking fault
introduces an irregularity into the normal sequence of atoms. This irregularity carries
the SFE. A modified Holloman relationship [28,29] was developed, which is extended to
all metals regardless of the SFE. Two additional parameters are added in the modified
Holloman law. In the same context, Swift [30] proposed a flow formulation by modifying
the Holloman relationship. He takes into account a pre-strain term as a structural parameter.

Furthermore, when a workpiece is subjected to a high temperature as in forming and
cutting processes, its strength tends to decrease. The thermal field has an effect on the
evaluation of the flow stress model. In fact, in the shear cutting process, the temperature
sensitivity should be taken into account when we define the plasticity and the damage laws.
We define in these models the temperature sensitivity term T, which is defined as shown in
Equation (7). We denote T0 and Tm as the reference and melting temperatures, respectively.

T =
T − T0

Tm − T0
(7)

Furthermore, an empirical plasticity law named the Johnson–Cook model (Equation (8))
was developed and is usually used to describe the ductile material’s behaviour under strain
hardening, strain rate hardening and thermal conditions [31].

σeq =
(

A + B
(

εpl

)n)(
1 + C Ln

( .
ε
))(

1 − (T)m) (8)

The constitutive parameters may be determined experimentally. In the current study,
the reference temperature (Equation (7)) and the reference strain rate (Equation (9)) are
taken, respectively, as 20◦ and 1 s−1. In the flow stress model, we have

.
ε =

.
ε
.

ε0
(9)

The strain-hardening effect depends on three parameters, which are A, B and n. They
are called the yield stress, flow stress and the strain-hardening coefficient, respectively.
The strain rate strengthening effect depends on the strain rate coefficient, denoted as C.
The last term represents the temperature effect. It contains the temperature dependence
coefficient m. In our model of the shear cutting test, the strain rate’s strengthening influence
is neglected.

However, two laws are considered. In the first one, the temperature effect is not taken
into account. The modified Johnson–Cook law is given by Equation (10).

σeq =
(

A + Bεn
pl

)
(10)

After rearranging Equation (10) and taking the logarithmic function on both sides of
this law, a linear relationship between Ln

(
σeq − A

)
and Ln

(
εpl

)
was determined, as shown

in Equation (11):
Ln
(
σeq − A

)
= n.Ln

(
εpl

)
+ Ln(B) (11)

This relationship is a linear function. Based on the experimental tensile test, the flow
stress model given by Equation (10) is calibrated. Then, the strain-hardening parameters
are predicted.

In the second law, the modified Johnson–Cook model is given by Equation (12):

σeq =
(

A + B
(

εpl

)n)(
1 − (T)m) (12)
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In order to linearize this relationship, it is necessary to rearrange it, as follows, by
considering the logarithmic function of the three terms:

Ln

1 −
σeq

A + B
(

εpl

)n

 = m.Ln(T) (13)

After identification of the strain-hardening parameters (Equation (11) and fitting of
the different data points, the temperature dependence coefficient m can be identified.

3.3. Constitutive Model of Ductile Damage

When the fracture initiation occurs in the workpiece, its strength property reduces
during plastic deformation. The relationship between the damaged stress σD and the
damage parameter D gives the damage evolution, as shown in Equation (14).

σD = (1 − D)σeq; 0 ≤ D ≤ 1 (14)

The damage occurs when D reaches the maximum value Dmax = 1.
Furthermore, numerical models take into account the influence of stress triaxiality η

on the strain damage. The triaxiality factor is a dimensionless ratio between hydrostatic
and Von Mises equivalent stresses. We denote σI, σII and σIII as the principal tensor stresses.
We then have

η =
σm

σeq
=

σI+σI I+σI I I
3√

1
2

[
(σI − σI I)

2 + (σI I − σI I I)
2 + (σI I I − σI)

2
] (15)

The triaxiality factor gives us an idea of the stress states in the sheared piece. Therefore,
stress triaxiality is an important factor to consider in the design and analysis of ductile
materials, particularly in high-stress and high-strain applications in which the risk of
fracture is significant. By understanding the relationship between stress triaxiality and
fracture behaviour, engineers can optimize the design of materials and structures to improve
their strength, durability, and safety.

One of the damage models used in cutting processes is the Hooputra criterion [32].
It is widely used in the sheet shear cutting process, in which it assumes that the damage
strain depends only on the triaxiality factor (Equation (16)).

D =
∫ ∆εpl

ε f

ε f = a1ea3η + a2e−a3η
(16)

where ∆ε is the equivalent plastic strain increment, and ε f is the damage strain. The
influence of the thermal term is not considered in this model. The material parameters,
which are a1, a2 and a3, should be identified experimentally. The maximal damage variable
was fixed to Dmax = 1. The failure happens when the damage variable reaches Dmax.

Otherwise, as shown in Equation (17), the Johnson–Cook damage model describes the
damage strain as a function of the stress triaxiality, strain rate and temperature fields.

ε f =
(

D1 + D2 eD3η
)(

1 + D4 Ln
( .
ε
))
(1 − D5T) (17)

The damage material parameters (D1 to D5) are determined from experimental charac-
terization tests. The cumulative damage parameter D is calculated as shown in Equation (18).

D = ∑
(

∆εpl

ε f

)
(18)
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The modified Johnson–Cook law (Equation (19)) describes the fracture strain when
the effect of strain rate is neglected. Only four parameters should be identified.

ε f =
(

D1 + D2 eD3η
)
(1 − D5T) (19)

When the effect of temperature is also neglected, the second modified Johnson–Cook
law describes the fracture strain:

ε f =
(

D1 + D2 eD3η
)

(20)

Both models (Equations (19) and (20)) will be used in numerical computations of shear
cutting tests.

4. Variational Formulation of Shear Cutting Operations

Friction forces should be considered in any cutting process, mainly in machining and
shear cutting tests. These forces play a critical role in the prediction of cutting parameters.
In shear cutting operations, friction is mainly present between the workpiece and the tool.
The contact force Ffr (Equation (21)) is decomposed into two parts, which are tangential
and normal terms.

Ff r = Fn
f r + Ft

f r (21)

The internal heat flux results only from the plastic strain and the contact friction
between the workpiece and the shear cutting tools.

In addition, the fundamental governing equation of the dynamic system in continuum
mechanics is given by Equation (22).

div(σ) + fd = ρ
..
U (22)

where σ is the symmetric stress tensor; it is defined with the behaviour law. fd is the volume
force, ρ is the mass density of workpiece, and

..
U is the acceleration. Based on the principle of

virtual work, the total work done by the applied forces during a small virtual displacement
δU is zero. This principle is shown in Equation (23):

Wint + Winert = ∑ Wext (23)

where Wint and Winert are the internal and inertial virtual work, respectively. They are
defined, respectively, by the following equations.

Wint =
∫
V

σ δ
.

U dV

Winert =
∫
V

ρ
..
U δU dV

(24)

In the same context, Equation (25) is the mathematical relationship of the external
virtual work.

∑ Wext =
∫
V

fd δU dV +
∫

S f r

(
Fn

f r + Ft
f r

)
δU dS +

∫
Sτ

τ δU dS (25)

where τ is the stress vector on the surface Sτ .
The variational form of the mechanical problem is given by the following equation:∫

V
σ : δε dV +

∫
V

ρ
..
U δ

.
U dV

=∫
V

fd δ
.

U dV +
∫

S f r

(
Fn

f r + Ft
f r

)
δ

.
U dS +

∫
Sτ

τ δU dS
(26)
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In addition, the thermal equation is given by Equation (27). Cv, T and k are the
specific heat of the isotropic materials, the temperature rate and the thermal conductivity,
respectively.

ρ Cv
.
T = div(k.grad(T)) + Qconv + Qmec (27)

Qconv is the work created by heat convection between the tools and the workpiece.
Qmec is generated by the mechanical contribution. It is given by Equation (28).

Qmec = ηpl Qpl + η f r Q f r (28)

where ηp is the fraction of plastic work converted into heat Qpl, ηfr is the fraction of friction
work converted into heat in the workpiece Qfr. The contact surface between the workpiece
and the cutting tool is denoted Sf. The weak variational form of Equation (27) is expressed
as follows: ∫

V

(
ρCp

.
T − k∆T − ηpl σ :

.
ε
)

δTdV

=

−
∫

S f r

(
η f r f f rτf r

.
U + h(T − Ttool)

)
δTdS

(29)

The space of functions and their derivatives are L2-integrable and belong to the H1

space. We denote δT as an arbitrary temperature variation. Ttool is the temperature of the
tool, and h is heat transfer coefficient due to thermal convection. Then, thermomechanical
problem consists of solving the following system (Equation (30)).

∫
V

(
σ : δε + ρ

..
U δ

.
U − fd δ

.
U
)

dV =
∫

S f r

(
Fn

f r + Ft
f r

)
δ

.
U dS +

∫
Sτ

τ δU dS∫
V

(
ρCp

.
T − k∆T − ηpl σ :

.
ε
)

δTdV = −
∫

S f r

(
η f r f f rτf r

.
U + h(T − Ttool)

)
δTdS

(30)

Using the finite element method, the continuum mechanical problem described in
Equation (30) is discretized, in which the total computation step is decomposed into a ∆t
time step (Appendix A).

After developing mathematical equations of thermomechanical shear cutting problem,
numerical results will be presented in the next sections. The accuracy of the developed
numerical models will be evaluated.

5. Numerical Models of Shear Cutting Operation
5.1. Numerical Model of Sheet Shear Cutting

The studied material is the 5083 aluminium alloy. A finite element code ABAQUS/Explicit
is used in order to simulate the shear cutting operation of the 5083 aluminium sheet, which
is meshed using a four-node bilinear axisymmetric quadrilateral element (CAX4R). In this
section, the J2 yield criterion is used to describe the yielding behaviour of the aluminium
material. As illustrated in Figure 2, we use a refined mesh in the failure zone. In our
numerical model, the punch, the die and the holder are supposed rigid solids.

The diameters of the punch and die are 12 mm and 12.25 mm, respectively. The
Coulomb friction model is used with a friction coefficient of 0.3. The parameters corre-
sponding to the isotropic hardening are given in Table 3.
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Figure 2. Numerical model of the sheet shear cutting operation.

Table 3. Behaviour parameters of 5083 aluminium sheet [24].

Young’s modulus (MPa) 75,636

Poisson’s ratio 0.33

Isotropic hardening parameters (MPa) σ
(

εpl

)
= 106.36 + 235.77

(
1 − e−9 εpl

)
+ 54.36

(
1 − e−514 εpl

)

5.2. Numerical Model of Bar Shear Cutting

The bar shear cutting process is modelled in this section. Figure 3 shows the numerical
model of this process. The bar is assumed to be composed of isotropic materials. Therefore,
The J2 yield criterion, also known as the Von Mises yield criterion, is used for predicting the
yield behaviour of the aluminium bar under complex stress states. In order to consider the
element deletion method, the sample is fine-meshed in the shear zone. In fact, the element
mesh size is 0.1 mm in this zone.
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Figure 3. Moving and fixed parts of the shear cutting model.

All tools are considered rigid solids. The aluminium bar is modelled as an elastoplastic
solid. The action applied by the punch on the bar causes a high shear deformation in the
shear zone. The punch has a shear speed of Vsh = 200 mm/min. The holder and the die are
clamped in this model. The Coulomb friction model is used with a friction coefficient of 0.3.

Experimental characterization tests are elaborated on the 6061-T6 aluminium bar
by [33] in order to predict the Johnson–Cook parameters for the aluminium alloys. They
are estimated as drawn in Table 4.
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Table 4. Johnson–Cook parameters of Al6061-T6 aluminium bar [33].

A (MPa) B (MPa) n m D1 D2 D3 D5

250 79.7 0.5 1.5 −0.77 1.45 −0.47 1.6

The plasticity and damage mechanics are modelled with the modified Johnson–Cook
model. For the bar shear cutting process simulations, two models are used. The first one con-
siders only the mechanical behaviour and damage laws of the bar (Equations (10) and (19)).
The second considers the thermal effect (Equations (12) and (20)) during the shear cutting
process, which can significantly affect the flow stress and damage strain of the material.

For the mechanical model, the sheared workpiece is meshed with an eight-node
linear brick element called C3D8 in Abaqus software. It is a fully integrated element.
However, if we consider the thermomechanical model, the hexahedral thermally coupled
elements with trilinear displacement and temperature (C3D8T) are used. In this model,
four degrees of freedom are defined, which are three displacements in spatial directions
with the temperature field.

6. Numerical Results and Discussion
6.1. Mechanical Model for Predicting Sheet Shear Cutting Operation

Mechanical models are used for the sheet metal in order to simulate the sheet shear
cutting operation. In fact, Figure 4 illustrates the computed result.
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Figure 4. Numerical prediction of the sheet shear cutting operation for punch displacement of
1.1 mm.

Figure 5 illustrates a comparison between experimental and numerical curves. Figure 5
depicts the evolution of the shearing force vs. punch displacement during the shearing
operation. It is notable that whether for the numerical or experimental results, a sudden
drop in the shear force is detected, which is caused by a brutal crack propagation in the
sheet metal. There is good correlation between the both curves, which proves the efficiency
of the mechanical model in computing the sheet shear cutting operation.
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6.2. Thermomechanical Model for Predicting Bar Shear Cutting Operations

The bar shear cutting process of the Al6061-T6 alloy is simulated with the finite element
code ABAQUS/Explicit. We denote with “Model 1” the modified Johnson–Cook plasticity
and damage laws (Equations (10) and (19)), and with “Model 2” the modified Johnson–
Cook laws (Equations (12) and (20)). Computed shearing force vs. tool displacement curves
are illustrated in Figure 6.
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The experimental shearing force was illustrated in the same Figure 6. During the
experimental and numerical shear cutting operation, the clearance value is c = 0.1 mm.

The force–tool displacement curve contains four parts. The first is the elastic defor-
mation. In this part, the curve evolution is linear. The second is the plastic deformation
with hardening. If the curve attains the maximum value of shear cutting force, we obtain
the plastic deformation with partial section reduction. Finally, macro crack nucleation
and propagation are illustrated in the last zone. In Model 1, the temperature term is not
considered in plasticity and damage relationships. This model incorrectly predicts the
evolution of shearing force in the function of tool displacement. The numerical plastic
deformation parts are smaller than the experimental parts, as shown in Figure 6. However,
the maximum shear cutting force is approximately the same for both numerical models
and for the experimental test. It has been noted in Figure 6 that using Model 2 gives a
result very close to the experimental result. Finally, in the case of the bar shear cutting
process, the temperature field should be considered in the constitutive behaviour of the
aluminium material. This is because the shear cutting process can generate significant
heat due to plastic deformation and friction between the cutting tool and the workpiece.
The localized heating can affect the material’s flow stress, damage accumulation, and
microstructure evolution, leading to changes in the material’s mechanical properties and
potential failure modes.

A set of numerical tests of Model 2 are carried out in order to predict displacement
(Figure 7) and temperature (Figure 8) fields that occur via shear cutting operations.
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The computed temperature fields in the bar metal show that the sheared surface
reaches T = 90.7 ◦C with a punch displacement U2 = 0.51 mm (Figure 8a), and T = 388 ◦C
with U2 = 2.4 mm (Figure 8b). The temperature distribution on the sheared surface
with U2 = 2.4 mm is illustrated in Figure 8c. We deduce that the temperature increases
significantly with the displacement of punch.

Friction work has a significant effect on the temperature fields in the bar workpiece
generated during a shear cutting process. In fact, frictional forces are generated during
the displacement of punch, which causes energy to be converted into heat. This explains
the increase in temperature on the sheared surface. Therefore, this temperature, which is
generated by friction, affects the mechanical properties of the bar workpiece.

In the shear cutting process, it is important to consider thermomechanical modelling
that takes into account the temperature generated during cutting. This is because the
temperature has a significant effect on the mechanical behaviour of the workpiece. This can
lead to a more efficient and effective process of shear cutting bar metal. Thermomechanical
modelling is used to predict the temperature distribution within the workpiece as well as
the resulting deformation and stresses.

Figure 9 illustrates the damage evolution in workpiece. An element deletion method
that eliminates the damaged element is applied to this model. This method allows a better
simulation of the contact between the workpiece and the tools. An element is deleted from
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numerical model if the cumulative damage parameter reaches Dmax = 1 at the integration
points of the element. The output variables for this element are set to zero. In the next steps,
the removed element has no energetic contribution to the shear cutting simulation.
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6.3. Influence of Clearance on the Sheared Surface Quality

After proving the accuracy of Model 2 in predicting the shearing force and the ductile
failure of the bar workpiece, a parametric analysis will be conducted in this section in order
to determine the influence of clearance c, as a shear cutting parameter, on the sheared bar
geometry. Three clearance values are chosen: c1 = 0.2 mm, c2 = 0.5 mm and c3 = 1.2 mm. The
most useful measures of sheared workpiece geometry are the burr (b) and the roughness of
the sheared surface (a).

The computed burr created in the bar is analyzed. Figure 10 illustrates the final
geometry of the workpiece.
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For the low shear clearance (c1), the burr (b1 = 0.4 mm) is small and the fractured zone
is minimal. However, when the shear clearance increases (c3), a larger fractured zone is
obtained and the burr (b3 = 2.1 mm) increases. We deduce from Figure 10 that the increase
in the shear clearance causes a high burr value.

In the same context, the influence of shear clearance on the quality of the sheared
surface is studied (Figure 11).
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With a low shear clearance (c1), the best quality of sheared surface (a1 = 0.6 mm) is
obtained. However, with a high shear clearance value (c3), a worse quality (a3 = 1.7 mm)
is found. As shown in Figure 11, the increase in the shear clearance causes the quality to
worsen.

In summary, burrs are a common occurrence in the process of shear cutting metal,
and their size and shape affect the roughness of the sheared surface. A good choice of
shear cutting parameters can minimize the size of burrs and reduce the roughness of the
sheared surface.
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7. Conclusions

A mathematical formulation of the thermomechanical problem of the shear cutting
process is developed. Various flow stress and damage models are analyzed. Modified
Johnson–Cook hardening and damage models are used to describe the mechanical be-
haviour of aluminium materials, taking into account the temperature field generated
during the bar shear cutting process.

Experimental and numerical force–displacement curves of the shear cutting process
are presented for both sheet and bar. By comparing the numerical and experimental results
of shearing force and tool displacement during both sheet and bar shear cutting operations,
it was found that the use of a thermomechanical model was crucial in accurately predicting
the mechanical behaviour of the aluminium alloys during bar shear cutting. The study
found that the thermomechanical model was able to accurately predict the temperature
distribution and strain during the bar shear cutting process. In contrast, the sheet shear
cutting process was found to be less sensitive to the use of a thermomechanical model. This
is likely due to the fact that the deformation during sheet shear cutting is more uniform
and less localized than during bar shear cutting.

In addition, numerical parametric studies are conducted in order to predict the influ-
ence of the shear clearance on the geometrical defects of bar workpiece. The evolution of
burr and the quality of the sheared surface for different values of clearance are observed.
Specifically, it is found that as the shear clearance increases, the burr height increases and
the quality of the sheared surface decreases. This is because larger clearance values result
in a larger deformation zone, which can lead to more severe deformations and greater
surface defects.

Finally, the shearing process can also affect the surface finish and cleanliness of the
bar. Surface defects can be carried over into the forging process, potentially leading to
surface defects or other quality issues in the final product. In a forthcoming publication,
the influence of the shearing process on the forging process may be studied in detail.

Author Contributions: L.B.S.: Conceptualization, Methodology, experimental investigation, Writing
—Original draft preparation, Review and Editing. A.K.C.: Software, visualization, Data curation,
investigation. M.W.: Supervision, Conceptualization, Methodology, Writing—Review and Editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Special Discretization of Thermomechanical Problem

In this Appendix, we describe the special discretization of the thermomechanical
problem used in the paper. The FEM is used to discretize both the thermal and mechanical
domains. The temperature distribution within the workpiece is approximated by solving
the heat transfer equation within each element, while the deformation of the workpiece
can be approximated by solving the momentum balance equation within each element.
Using the finite element method, the continuum mechanical problem (Equation (30)) is
discretized, in which the total computation step is decomposed into a ∆t time step. The
displacement field uk

j (x, y, z, t) and its time derivatives of each node k of the element j are
given by Equation (A1).

uj = ∑
k

βkuk
j ;

.
uj = ∑

k
βk .

uk
j ;

..
uj = ∑

k
βk ..

uk
j

δ
.
uj = ∑

k
βkδ

.
uk

j
(A1)
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where βk is the shape function at the node k.
The relationship of the mechanical problem is given in Equation (A2).( [

Mki
j

]
i
j −
{

Gk
j

})
δ

.
uk

j = 0 (A2)

where
[

Mki
j

]
is the mass matrix of the element j,

{
Gk

j

}
is the resultant force’s vector at the

node k of the element j, and i
j is the acceleration at the node i of the element j. We represent

[Dk] as a matrix, which relies the differential matrix developed in the thermomechanical
problem with the shape function matrix. All vectors and matrices used for each element j
of the mechanical equilibrium are given in Equation (A3).{
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j

}
=
∫
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∫
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(A3)

In a cutting operation, the contact forces Ffr (Equation (21)) between tools, which are the
punch and the die, and the workpiece are decomposed into normal and tangential components.

The normal force is responsible for holding the workpiece in place and preventing
it from moving away from the shear cutting tool. The tangential force is responsible for
actually shearing the metal bar.

Therefore, based on the virtual work formula for this formulation, we obtain n
∑

j=1

[Mki
j

]
i
j −

 ∫
S f r
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]tr

Fn
f r dS+
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S f r
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(A4)

If the influence of temperature fields is taken account on the strain expression, the
strain field becomes

ε = εel + ε pl + εth (A5)

Equation (A6) illustrates the temperature variable of each node, symbolized by k of
the element j.

Tj = ∑
k

βk
TTk

j ;
.
T j = ∑

k
βk

T
.
T

k
j (A6)

where βk
T is the shape function related to temperature field at the node k. For each node k

of the element j, the semi-discrete thermal energy balance is illustrated in Equation (A7).
Here, the capacitance matrix is represented by

[
Cki

j

]
. In the same equation,

[
Hk

j/int

]
and[

Hk
j/ext

]
are the internal and external heat flux vectors, respectively.([

Cki
j

] .
T

i
j +
[

Hk
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δTk

j =
[
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]
δTk

j (A7)

We obtain the system Equation (A8):[
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j

]
=
∫
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For all elements, the thermal semi-discrete equilibrium equality is given by Equation (A9).

∑
j

∫
Vj
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T

]tr[
βi

T
]
dV

 .
T

i
j
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(A9)
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