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Abstract: In this paper, we approach two nonlinear differential equations applied in fluid mechanics
by finite element methods (FEM). Our objective is to approach the solution to these problems; the first
one is the “p-Laplacian” problem and the second one is the “Quasi-Newtonian Stokes” problem with
a general boundary condition. To study and analyze our solutions, we introduce the a posteriori error
indicator; this technique allows us to control the error, and each is shown the equivalent between the
true and the a posterior errors estimators. The performance of the finite element method by this type
of general boundary condition is presented via different numerical simulations.
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1. Introduction

One of the important objectives of numerical studies of differential problems is: to
have a “realistic simulation”; for this, many researchers have concentrated on controlling
the error by using the adaptive finite element methods (FEM) meshes. The adaptive
meshes provide effective means of optimizing calculation with reasonable results; “the
meshes are automatically modified by enhancing the scope of their applications”. The error
estimation technique provides an assessment of the accuracy of the solutions obtained by
the finite element solvers, see [1,2] for more precise details. These techniques can efficiently
offer certain flow features (stagnation, reattachment points, and recirculation eddies, with
small velocity magnitudes). Generally, this technique is based on a posteriori local error
estimation, see [3].

Nonlinear differential equations are used to model complex problems in the sciences
and engineering. Many studies have been developed to simplify these complex models.
Among these models, we mention the “p-Laplacian” equation and the “Quasi-Newtonian
Stokes” system. These nonlinear equations have had more attention in recent years, and one
of the important domains using these equations is the glaciology domain. These equations
model the dynamics of ice sheets or glaciers, see [4], and the evolution of glacier geometry,
see [5,6]. Another application in the biological domain is the common use for blood flows,
see [7] for details.

One of the important domains that uses these equations is fluid mechanics. For
example, to model “viscoelastic” fluids we use the “Quasi-Newtonian Stokes” method,
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see [8] for more details. This quasi-Newtonian law was first proposed by Carreau et al.
in [9]; a popular extension to the Carreau law is studied by Yasuda et al. in [10] and a closely
related model, the Cross law, is investigated by Cross in [11]. The well-posedness of these
problems is established in these papers [12,13]. Much mathematical modeling for complex
fluids and numerical algorithms are applied to solve linear/nonlinear equations, see [14].
The fully non-linear elliptic problems in divergence form by using a mixed finite volume
scheme are studied in [15]; the discontinuous Galerkin approximation was considered
in [5] and the hybrid high-order scheme was studied in [16]. The paper where the authors
studied the comportment of solutions of some non–linear diffusion problems and in the
boundary–layer flow of a pseudo-plastic fluid is given [17]. The a posteriori error estimator
for elliptic partial differential equations by using finite elements is presented in [18] and
proves some (elliptic) a posteriori error estimators. The p-Laplacian problem is studied by
using a FEM method in many papers, see [19–22] for details. In [23,24], the authors analyzed
a posteriori error estimators for quasi-Newtonian problems with a homogeneous Dirichlet
boundary condition. There are at least as many relevant references over the past 30 years
on the quasi-Newtonian Stokes problem concerning the posterior estimate and its use in
adaptivity; there were important developments in the Chinese [25–27], German [28–30],
and French [31,32] schools for flow fluid in complex porous media using new boundary
conditions [33] and combined mixed finite element [34].

This paper is organized as follows: in Section 2 and in order to study the p-Laplacian
problem with the new boundary condition, we introduce some useful notations, state
our main assumptions regarding the modeling equations, and following a finite element
discretization, we calculate error estimators with respect to the true error. Section 3 contains
the description of our second problem (quasi-Newtonian system) which is discretized by
a mixed finite element scheme. The a posteriori error estimator is developed in terms of
the Residus of variational formulas with respect to the real error. Section 4 presents two
numerical examples using a velocity angle error indicator.

The authors propose the study of two nonlinear differential equations that have
applications in fluid mechanics, using FEM. These problems are studied in two steps,
within the “p-Laplacian” problem, and then solving the “Quasi-Newtonian Stokes” problem
imposing a general boundary condition. To study and analyze our solutions, an a posteriori
error indicator will be introduced. In this way, there is the possibility to control the error
at each step and compare the calculated error with the a posteriori error. The obtained
results are supported by several numerical simulations that we considered significant for
the presentation of the research.

2. Approximation of p-Laplacian Equation by Finite Element Method

The section aims to study the p-Laplacian equation with a nonhomogeneous Robin
boundary condition; we use FEM to approximate this model. To analyze the error, we
use the a postriori estimates for the Dirichlet boundary condition, see [17,24,35]. First
of all, we recall some useful properties of generalized nonlinear diffusion problems and
we investigate the existence/uniqueness of the solution. Let Ω be an open-bounded
(connected) subset of Rd (d = 2, 3) whose boundary Γ = ∂Ω, and let β ∈ N∗ with conjugate
β′ = β

β+1 .

2.1. Results of the p-Laplacian Operator

We consider the generalized nonlinear diffusion problem, defined by

−∇ · ϕ(x,∇u(x)) = f (x) in Ω, (1)

where the flux ϕ : Ω×R2 → R2 is assumed to satisfy the following assumptions:
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There exist two positive constants C1, C2, and two functions b1 ∈ L1(Ω) and
b2 ∈ Lβ′(Ω) such that 

(ϕ(x, y)− ϕ(x, z), y− z) > 0, (H1)

(ϕ(x, y), y) ≥ C1|y|β − b1(x), (H2)

ϕ(x, y) ≤ C2|y|β−1 − b2(x), (H3)

for all x, y, z ∈ Ω with y 6= z.
Under these assumptions the problem (1) has a unique solution u ∈W1,β(Ω), and the

functional u 7→ −div(ϕ(·,∇u(·))) is a Leray–Lions operator which satisfies

u ∈
(

Lβ(Ω)
)2
7→ ϕ(·,∇u(·)) ∈

(
Lβ′(Ω)

)2
.

The p-Laplacian equation is defined by

−∇ · a(∇u) = f in Ω, (2)

where the vector field a(ζ) = |ζ|β−2ζ and β ∈ N∗.
The p-Laplacian equation is a nonlinear diffusion problem. Now, we recall some key

lemmas useful to prove the monotonicity and continuity properties of such operators,
see [12,20].

Let z = (z1, z2) ∈ R2 and let us define the following operator

A(·) : u ∈ V → A(u) = −∇
(
|∇u|β−2∇u

)
∈ V′,

where space V depends on the boundary condition and V′ its dual. In order to prove the
ellipticity of the problem, we need the following lemma.

Lemma 1. For all y, z ∈ R2, we have
(
|z|β−2z− |y|β−2y, z− y

)
≥ α|z− y|β−1 if β ≥ 2,

(|z|+ |y|)2−β
(
|z|β−2z− |y|β−2y, z− y

)
≥ α|z− y|2 if 1 < β ≤ 2,

where α > 0 is independent of y and z.

Proof. See [12]. �

Proposition 2 (Ellipticity). For all u, v ∈ V, we have the following ellipticity properties{
(A(u)− A(v), u− v) ≥ α||u− v||β if β ≥ 2,
(||u||+ ||v||)2−β(A(u)− A(v), u− v) ≥ α||u− v||2 if 1 < β ≤ 2,

(3)

Proof. A direct consequence Lemma 2.1 from [12] for a detailed proof. �

To proof the continuity property, it needs the following lemma,

Lemma 3. For all y, z ∈ R2, we have{
|z|β−2z− |y|β−2y ≤ α|z− y|(|z|+ |y|)β−2 if β ≥ 2,
|z|β−2z− |y|β−2y ≤ α|z− y|β−1 if 1 < β ≤ 2,

where α > 0 is independent of y and z.
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Proof. See [12]. �

Proposition 4 (Continuity). For all u, v ∈ V, we have the following continuity properties{
||A(u)− A(v)||∗ ≤ α||u− v||(||u||+ ||v||)β−2 if β ≥ 2,
||A(u)− A(v)||∗ ≤ α||u− v||β−1 if 1 < β ≤ 2,

(4)

here α > 0, independent to u and v.

Proof. A (direct) consequence of the lemma 2.1, see also [12] for a detailed proof. �

2.2. Mathematical Problem

The practical applications of the p-Laplacian equations [4,5,36] have previously been
mentioned; which, proved useful in a wide range of applications. For example, glacier
dynamics are an important topic in engineering and hydrology. Thus, the ice flow is
assumed to be an incompressible fluid with nonlinear viscosity. Next, let us consider the
problem of the model

−∇ · a(∇u) = f in Ω , (5)

with a(ζ) = |ζ|β−2ζ and f ∈ Lβ′(Ω). Note that if β = 2, it coincides with the linear
Laplacian operator, i.e., A = −∆.

This equation can then be carried with the following new boundary conditions{
α(u)u +

(
|∇u|β−2∇u

)
· n = g on ΓND,

u = 0 on ΓD,
(6)

where α ∈ L∞(Γ) (α > 0) and g ∈W1− 1
β ,β(∂Ω).

Theorem 1. The problems (5) and (6) have a unique solution u ∈W1,β(Ω).

Proof. The proof is a consequence of ellipticity–continuity assumptions on the operator A.
�

The systems (5) and (6) are equivalent to a minimization problem (see [12,13]) defined
by: find u ∈ V such that

J(v) ≤ J(u), ∀v ∈ V, (7)

where
J(u) =

1
β

∫
Ω
|∇u|β + 1

2

∫
ΓND

α|u|2 −
∫

Ω
f v−

∫
ΓND

gv, (8)

for all v ∈ V.
The function J is continuous, strictly convex, and differentiable operator with

lim
||v||→∞

J(v) = +∞; it results, see [37], that J is Gateaux differentiable and (7) admits a

unique solution characterized by its variational formulation: find u ∈ V such that∫
Ω

(
|∇u|β−2∇u

)
∇v +

∫
ΓND

αuv =
∫

Ω
f v +

∫
ΓND

gv, (9)

for all v ∈ V.
Now, in order to analyze the finite element approximation of the problem (9), we

consider a regular mesh Th, h > 0, of the domain Ω. For any element T ∈ Th, we define:
ωT the set of elements share at least one edge with T; ω̃T the set of all elements sharing at
least one vertex with T; ε(T) the set of edges of T; hT the diameter of the simplex T; and
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h = max
T∈Th

hT . Respectively, for edge elements E ∈ ∂T with T ∈ Th: ωE is the set of elements

sharing at least one edge with E; ω̃E the set of all elements sharing at least one vertex with
E; and hE the diameter of a face E of T. Let εh =

⋃
T∈Th

ε(T) designate the set of all edges;
hence, one can divide it into interior and exterior edges such that εh = εh,Γ ∪ εh,Ω with

εh,Ω = {E ∈ εh : E ⊂ Ω}, εh,Γ = {E ∈ εh : E ⊂ Γ}.

Let Vh ⊂ V = W1,β(Ω), the finite dimensional spaces associated to regular partition
of Ω, and a discrete weak formulation is defined using finite dimensional spaces as: find
the vector uh ∈ Vh such that∫

Ω

(
|∇uh|β−2∇uh

)
∇vh +

∫
Γ

αuhvh =
∫

Ω
f vh +

∫
Γ

gvh, (10)

for all vh ∈ Vh.

2.3. A Posteriori Error Estimator

We illustrate the proposed technique with results of the a posteriori error estimation
for the p-Laplacian problem. Denoting u the solution of (5) and (6) and uh the approched
solution of (10). Our aim is to estimate the velocity error e = u− uh ∈ V by using some
important results.

Lemma 6. There is a constant C > 0 for all the elements K ∈ Th and v ∈W1,β(Ω), such that

hT‖v‖
β
0,β,∂K ≤ C

(
‖v‖β

0,β,K + ‖v‖β
1,β,K

)
, (11)

Proof. See [24]. �

Lemma 7 (Clement interpolation estimate). There is a constant C > 0, for any K ∈ Th and
for all E ∈ ∂K, let v ∈ V and πh the operator of the interpolation of discontinuous functions defined
by Clement satisfying

‖v− πhv‖0,β,K ≤ Ch1−m
K ∑

K′∈SK

‖v‖0,β,ω̃K′
(12)

for all v ∈ H1(SK), and m = 0 or 1.
Where SK =

⋃
{K′, K

⋂
K′ 6= ∅}. In particular, for vh, is the quasi-interpolant of vdefined

by averaging as in
‖v− vh‖0,β,K ≤ Ch1−m

k |v|1,β,ω̃K′
(13)

with m = 0 or 1.

Proof. See [12,24]. �

The residual error estimator R : V 7→ R is given by

〈R, v〉 =
∫

Ω
|∇uh|β−2∇uh∇v +

∫
Γ

αuhv−
∫

Ω
f v−

∫
Γ

gv, (14)

By applying the Green formula, we obtain

〈R, v〉 = ∑
K∈Th

{∫
K |∇uh|β−2∇uh∇v +

∫
Γ∩K αuhv−

∫
K f v−

∫
Γ∩K gv

}
= ∑

K∈Th

{∫
K

(
−∇ ·

(
|∇uh|β−2∇uh

)
− f

)
v +

∫
∂K |∇uh|β−2∇uh · nv +

∫
Γ∩K αuhv + |∇uh|β−2∇uh · nv− gv

}
= ∑

K∈Th

{∫
K

(
−∇ ·

(
|∇uh|β−2∇uh

)
− f

)
v + ∑

l∈∂K

∫
l |∇uh|β−2∇uh · nv + ∑

l∈Γ∩∂K

∫
l

(
αuh + |∇uh|β−2∇uh · n− g

)
v
}

.

(15)
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Because R, vh = 0 for all vh ∈ Vh, we use the interpolation operator πh to obtain

〈R, v〉 = ∑
K∈Th

{∫
K

(
−∇ ·

(
|∇uh|β−2∇uh

)
− f

)
(v− πhv) + ∑

l∈∂K

∫
l |∇uh|β−2∇uh · n(v− πhv)

+ ∑
l∈Γ∩∂K

∫
l

(
αuh + |∇uh|β−2∇uh · n− g

)
(v− πhv)

} (16)

and

〈R, v〉 ≤ ∑
K∈Th

{∫
K

∣∣∣−∇ · (|∇uh|β−2∇uh

)
− f

∣∣∣
0,β′ ,K
|v− πhv|0,β,K + ∑

l∈∂K

∫
l

∣∣∣|∇uh|β−2∇uh · n
∣∣∣
0,β′ ,l
|v− πhv|0,β,l

+ ∑
l∈Γ∩∂K

∫
l

∣∣∣αuh + |∇uh|β−2∇uh · n− g
∣∣∣
0,β′ ,l
|v− πhv|0,β,l

}
.

(17)

So, by (12), we get

〈R, v〉 ≤ C ∑
K∈Th

hK

∣∣∣−∇ · (|∇uh|β−2∇uh

)
− f

∣∣∣
0,β′ ,K

· ‖v‖1,β,K + ∑
K∈Th

{
C ∑

l∈∂K

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣
0,β′ ,l

.|v− πhv|0,β,l

+C ∑
l∈Γ∩∂K

∣∣∣αuh + |∇uh|β−2∇uh · n− g
∣∣∣
0,β′ ,l

.|v− πhv|0,β,l

}
.

(18)

For the first term of the second member, we have

I1 = ∑
K∈Th

hK

∣∣∣−∇ · (|∇uh|β−2∇uh

)
− f

∣∣∣
0,β′ ,K

.‖v‖1,β,K ≤ C

(
∑

K∈Th

hβ′

K

∣∣∣−∇ · (|∇uh|β−2∇uh

)
− f

∣∣∣β′
0,β′ ,K

) 1
β′

‖v‖1,β,K. (19)

Now, we increase the second term as follows

I2 = ∑
l∈∂K

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣
0,β′ ,l
· |v− πhv|0,β,l

= ∑
l∈∂K

h
1
β′
l

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣
0,β′ ,l

.h
− 1

β′
l |v− πhv|0,β,l

≤
(

∑
l∈∂K

hl

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣β′
0,β′ ,l

) 1
β′
×
(

∑
l∈∂K

h
− β

β′
l |v− πhv|β0,β,l

) 1
β

.

(20)

Using (11), we have

∑
l∈∂K

h
− β

β′
l |v− πhv|β0,β,l ≤ C ∑

K∈Th

h
− β

β′
K |v− πhv|β0,β,∂K

≤ C ∑
K∈Th

h
−(1+ β

β′ )

K

(
|v− πhv|β0,β,∂K + hβ

K|v− πhv|β1,β,K

)
≤ C ∑

K∈Th

h
−(1+ β

β′ )

K

(
hβ

K|v|
β
1,β,K + hβ

K|v|
β
1,β,K

)
.

(21)

As 1 + β
β′ = β, it implies that

I2 ≤ ∑
l∈∂K

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣
0,β′ ,l

.|v− πhv|0,β,l

≤ C
(

∑
l∈∂K

hl

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣β′
0,β′ ,l

) 1
β′
× |v|1,β,Ω.

(22)

Now, it is simple to increase the third term as follows



Mathematics 2023, 11, 1943 7 of 20

I3 = ∑
l∈Γ∩∂K

h
1
β′
l

∣∣∣αuhv + |∇uh|β−2∇uh · nv− g
∣∣∣
0,β′ ,l
· h
− 1

β′
l |v− πhv|0,β,l

≤
(

∑
l∈Γ∩∂K

hl

∣∣∣αuh + |∇uh|β−2∇uh · n− g
∣∣∣β′
0,β′ ,l

) 1
β′
×
(

∑
l∈∂K

h
− β

β′
l |v− πhv|β0,β,l

) 1
β

≤
(

∑
l∈Γ∩∂K

hl

∣∣∣αuh + |∇uh|β−2∇uh · n− g
∣∣∣β′
0,β′ ,l

) 1
β′
× |v|1,β,Ω.

(23)

Hence, by combining (19), (22), and (23) we get

〈R, v〉 ≤ C


(

∑
K∈Th

hK

∣∣∣∇ · (|∇uh|β−2∇uh

)
+ f

∣∣∣β′
0,β′ ,K

) 1
β′

+

(
∑

l∈∂K
hl

∣∣∣[|∇uh|β−2∇uh · n
]

l

∣∣∣β
0,β′ ,l

) 1
β′

+C

(
∑

l∈Γ∩∂K
hl

∣∣∣αuh + |∇uh|β−2∇uh · n− g
∣∣∣ β′

0,β′ ,l

) 1
β′
‖v‖.

(24)

As a
1
β′ + b

1
β′ ≤ 2

1
β (a + b)

1
β′ for a and b ≥ 0, we have the following estimate

‖R‖∗ = ‖A(u)−A(uh)‖∗ ≤
(

C ∑K∈Th
η
β′

K

) 1
β′ ,

with the contribution element of ηK, the residual error estimator is given by

η
β′

K = hβ′

K ‖RK‖
β′

0,β′ ,K + ∑l∈∂K hl‖Rl‖
β′

0,β′ ,l , (25)

his components are given by

RK =
{
∇ ·

(
|∇uh|β−2∇uh

)
+ f

}
K

, (26)

and

Rl =

{
1
2

[
|∇uh|β−2∇uh · n

]
l

if l ∈ εh,Ω,

α(uh)uh + |∇uh|β−2∇uh · n− g if l ∈ εh,Γ.
(27)

where [·]l is the jump of the derivative of uh over the interior edge l = T ∩ S, defined by[
|∇uh|β−2∇uh · n

]
l
=
((
|∇uh|β−2∇uh · n

)∣∣∣T − (|∇uh|β−2∇uh · n
)∣∣∣

S

)→
n E,T . (28)

It remains to connect ‖R‖∗ and ‖u − uh‖, which uses a coercivity property of the
operator A : V 7→W−1,β′ for β ∈ ]1, 2[, where we have

〈A(u)− A(v), u− v〉 ≥ C
‖u− v‖2

(‖u‖+ ‖v‖)2−β
, (29)

for all u, v ∈ W1,β(Ω), where C is a constant that does not depend on either u or v. By
taking v = 0, in (29), with u as the solution of problem (5), we get (since A(0) = 0)

〈A(u), u〉 ≥ α‖u‖β.

As A(u) = f , then α‖u‖β ≤ f , u ≤ ‖ f ‖W−1,β′ (Ω)
.‖u‖, which implies (since the injection

of Lβ′(Ω) in W−1,β′(Ω) is continuous)

‖u‖ ≤
(

1
C
‖ f ‖W−1,β′ (Ω)

) 1
β−1 ≤ C

(
‖ f ‖Lβ′ (Ω)

) 1
β−1 .
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Similarly, for uh, we have

(‖u‖+ ‖uh‖)2−β ≤ C
(
‖ f ‖Lβ′ (Ω)

) 2−β
β−1 . (30)

Finally, from (19), (22), and (23), we obtain the following result.

Theorem 8. For any mixed finite element approximation defined on regular grids Th, the residual
estimator satisfies

‖e‖ ≤ C

(
∑

K∈Th

η
β′

K

) 1
β′

,

where C is independent of β, Ω, a, and f .

Proof of Theorem 8. A direct consequence of these inequalities (15) to (29). �

Remark 9. Some remarks are in order: for β ≥ 2, we obtain

‖e‖ ≤ C

(
∑

K∈Th

η
β′

K

) 1
β

where C is independent of u and f , in this case and instead of (29), we have

〈A(u)− A(v), u− v〉 ≥ α‖u− v‖β,

∀u, v ∈W1,β(Ω).

This result also holds for stable (and unstable) mixed approximations defined on a
regular triangulation.

3. Approximation of Quasi-Newtonian Stokes Problem by Finite Element Method

In reality, the comportment of fluids is more complex; this type of fluid is modeled by
nonlinear operators or tensors. Let us start this part with some definitions of fluid that we
will treat. The type of fluid that is more important is modeled by a nonlinear operator; the
problem is the quasi-Newtonian Stokes flow. For many details on the different models and
algorithms solving these problems, see [14].

3.1. Definition of Quasi-Newtonian Stokes Problem

We denote by u the velocity vector, p the pressure, σ the stress tensor, D(u) the
symmetric gradient of the velocity vector, and f the external forces.

Definition 1 (Quasi-Newtonian fluid). The fluid is said to be quasi-Newtonian when there exists
a positive function µ : R+ 7→ R+ called the “viscosity” function, such that the stress deviator σ is
expressed as

σ = −pI+ 2µ
(
|2D(u)|2

)
D(u). (31)

There are two classical laws of quasi-Newtonian Stokes problems, the first one is the
“Carreau law viscosity” and the second one is the “power law viscosity”.

Definition 2 (Carreau law viscosity). The Carreau law expresses the viscosity as

µ(s) = µ∞ + (µ0 − µ∞)(1 + λs)
−1+n

2 , ∀s ∈ R+, (32)
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where µ0, µ∞, λ, n ∈ R+∗ are given real constants satisfying µ0 ≥ µ∞ when n ≤ 1 and µ0 ≤ µ∞
when n ≥ 1.

The Figure 1 presents Carreau law viscosity for n < 1 and for n > 1. We can see that
under simplification conditions, the Carreau law viscosity can be rewritten as power law
viscosity defined by

µ(ζ) = Kζ
−1+n

2 , ∀ζ ∈ R, (33)

where K and n ∈ R+∗.
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Note that, when n = 1, both the power law and Carreau law are reduced to a Newto-
nian fluid model with constant viscosity. When n < 1, the viscosity is decreasing with the
shear rate and the fluid is said to be “shear thinning” or “pseudoplastic”. The tensor norm
and the shear rate are defined as follows (see [14], Definition 1.9 for more precise details).

Definition 3 (Tensor norm). The following tensor norm is defined as

|τ|2 =
τ : τ

2
=

1
2

3

∑
i=1

3

∑
j=1

τ2
i,j, ∀τ ∈ R3×3. (34)

Definition 4 (Shear rate). The shear rate, denoted by
.
γ, is defined by

.
γ = |2D(u)|.

Note that, the stress tensor σ in Newtonian fluid flow is “generally” defined by
σ = −pI+ 2µD(u), where µ is the fluid viscosity (a bound function).

3.2. Mathematical Problem

To simplify this study, the stationary case where the flow is incompressible remains;
hence, we neglect the inertia term which will allow us to focus on the nonlinearity of results
(from the viscosity law). The governing system can be written as{

−div(2µ(|2D(u))|2)D(u)) +∇p = f in Ω,
divu = 0 in Ω,

(35)
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where f ∈ X′, we define the general boundary condition Ca,µ by

Ca,µ : a(u)u +
(

2µ
(
|2D(u)|2

)
D(u)− pI

)
· n = g on Γ, (36)

where g ∈ Γ and a(u) are a bounded function defined in the boundary.
The existence and unique solution (u, p) of the problem (35) and (36) is defined in the

product space X × M with X =
(

H1(Ω)
)2 and M = L2(Ω). The operator

A = 2µ
(
|2D(u)|2

)
D(u) : X 7→ X′ , appearing in (35), satisfies the following two propositions.

Proposition 10. For all u, v ∈ X, we have

〈A(u)−A(v), u− v〉 ≥ C(u, v)‖u− v‖2, (37)

where
C(u, v) =

{
α1 + α2(‖u‖+ ‖v‖)2−β

}−1
,

with α1, α2 > 0.

Proposition 11. For all u, v in X and all β > 1, there exists a positive constant C > 0 such that

‖A(u)− A(v)‖X′ ≤ C(u, v)‖u− v‖X . (38)

Proof of Proposition 10 and 11. See [38]. �

It should be noted that conditions (37) and (38) are satisfied for a fluid with a power
law viscosity, see, e.g., [12,39]. For the existence and uniqueness of the solution, we refer to
the works [17,40] by Baranger and Najib. The variational formulation to the problem (35)
and (36) is equivalent to: find (u, p) ∈ X×M such that{

〈A(u), v〉+ 〈Bv, p〉 = 〈 f , v〉,
〈Bu, q〉 = 〈g, q〉,

(39)

for all (v, q) ∈ X×M, where

〈A(u), v〉 =
∫

Ω

(
2η
(
|2D(u)|2

)
: D(u)

)
D(v)dx +

∫
Γ

αuvdγ(x), (40)

and
〈Bv, q〉 =

∫
Ω

q div(v). (41)

Theorem 12. The problem (39) has a unique solution(u, p) ∈ X ×M if and only if (40) has a
unique solution and B is surjective satisfying the inf-sup condition.

Proof. See [17,41]. �

The functional spaces X and M are Hilbert spaces, then (u, p) (resp. (U, P)) is a
solution of problem (39) associated to the couple ( f , g) (resp. (F, G)) such that

‖u−U‖+ ‖p− P‖ ≤ C(‖ f − F‖∗ + |g− G|∗),

where C is a positive constant, see [42] for more details.
We have to describe the discrete approximation problem corresponding to (39)–(41)

by using notations of Section 2; to this aim, we define the finite element spaces (Xh, Mh) ⊂
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(X, M), where the discrete approximation of the quasi-Newtonian flow problem (with Ca,µ
boundary condition) can be equivalently written as: find (uh, ph) ∈ Xh, Mh such that

∫
Ω

(
2µ|2D(uh)|2

)
D(uh) : D(vh) + phvhd +

∫
Γ auhvhdγ =

∫
Ω f vdx +

∫
Γ gvhdγ, x

∫
Ω qh divuh dx = 0,

(42)

for all (vh, qh) ∈ Xh ×Mh.
Under properties (3.2) and (3.2), and assuming the inf-sup condition is satisfied in the

discrete approximation problem (42), we obtain one solution, (uh, ph) ∈ Xh ×Mh.

3.3. A Posteriori Error Estimator

A posteriori error indicator and residual error for quasi-Newtonian problems with
Dirichlet and Newman boundary conditions are developed in these papers [17,24,35].
Based on these results, one can adapt their estimates to the case of our problem (42); by
using the notation µh = 2µ|2D(uh)|2, we get

〈R, v〉 = ∑
K∈Th

∫
K

div
(

2µ|2D(uh)|2
)

D(uh)D(v)− ∑
K∈Th

∫
K

phdivv− ∑
K∈Th

∫
K

f v + ∑
K∈Th

∫
∂K∩Γ

αuhv + ∑
K∈Th

∫
∂K∩Γ

gv. (43)

From Green’s formula, and for any element K, we obtain

〈R, v〉 = ∑
K∈Th

(∫
K(A(uh) +∇ph − f )v +

∫
∂K(µhD(uh)n− phn)v +

∫
∂K∩Γ αuhv +

∫
∂K∩Γ gv

)
= ∑

K∈Th

(∫
K(A(uh) +∇ph − f )v +

∫
∂K(µhD(uh)n− phn)v +

∫
∂K∩Γ αuhv + (µhD(uh)n− phn)v− gv

)
= ∑

K∈Th

(
∫

K(A(uh) +∇ph − f )v + ∑
l∈εh

∫
l(µhD(uh)n− phn)v + ∑

l∈εΓ

∫
l αuhv + (µhD(uh)n− phn)v− gv)

where εΓ is the set of all edges of all elements Th divided into interior and exterior edges
εh = εh,Γ ∪ εh,Ω with εh,Ω = {E ∈ εh : E ⊂ Ω} and εh,Γ = {E ∈ εh : E ⊂ Γ}. As 〈R, vh〉 = 0
for all vh ∈ Xh, and for vh = πhv, we get

〈R, v〉 = 〈R, v− πhv〉 = ∑
K∈Th

∫
K(A(uh) +∇ph − f )(v− πhv)

+ ∑
l∈εh

∫
l(µhD(uh)n− phn)(v− πhv)

+ ∑
l∈εΓ

∫
l(αuh + (µhD(uh)n− phn)− g)(v− πhv).

(44)

Hence

〈R, v〉 ≤ ∑
K∈Th

|A(uh) +∇ph − f |0,K|v− πhv|0,K + ∑
l∈εh

|µhD(uh)n− phn|0,l |v− πhv|0,l

+ ∑
l∈εΓ

|αuh + (µhD(uh)n− phn)− g|0,l |v− πhv|0,l .
(45)

In order to deal with the three terms of the right-hand side, we write

∑
K∈Th

|A(uh) +∇ph − f |0,K|v− πhv|0,K ≤
(

∑
K∈Th

h2
K|A(uh) +∇ph − f |20,K

) 1
2
(

∑
K∈Th

h−2
K |v− πhv|20,K

) 1
2

(46)
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we use Lemma 3 (when m = 0) to obtain

∑
K∈Th

|A(uh) +∇ph − f |0,K|v− πhv|0,K ≤
(

∑
K∈Th

h2
K|A(uh) +∇ph − f |20,K

) 1
2

‖v‖. (47)

Defining the vector s

s = |µhD(uh)n− phn|0,l =
∣∣[σ(uh, ph)n]l

∣∣
0,l = |[σ

hn]l |0,l ,

the second term of the right-hand side is rewritten as

∑
l∈εh

s|v− πhv|0,l ≤
(

∑
l∈εh

hl |s|2
) 1

2
(

∑
l∈εh

h−1
l |v− πhv|20,l

) 1
2

. (48)

Observe that(
∑

K∈Th

∑
l∈εh

h−1
l |v− πhv|20,l

) 1
2

≤
(

∑
K∈Th

Ch−1
K |v− πhv|20,l

) 1
2

= C

(
∑

K∈Th

h−1
K |v− πhv|20,l

) 1
2

,

(49)

then, one can use lemma 3 (with β = 2) to get

(
∑

K∈Th

∑
l∈εh

h−1
l |v− πhv|20,l

) 1
2

≤ C

(
∑

K∈Th

h−2
K |v− πhv|20,K + ∑

K∈Th

h2
K|v− πhv|21,K

) 1
2

≤ C

(
∑

K∈Th

|v|21,K

) 1
2

= C‖v‖.

(50)

Thus, the second term of (45) is increased by

C

(
∑

l∈εh

∣∣[σ(uh, ph)n]l
∣∣2
0,l

) 1
2

‖v‖.

To treat the last term of (45), we write §

∑
l∈εh

|αuh + s− g|0,l |v− πhv|0,l ≤
(

∑
l∈εh

hl |αuh + s− g|2
) 1

2
(

∑
l∈εh

h−1
l |v− πhv|20,l

) 1
2

,

by using lemma 3 and (50), the last term of (45) is increased by

C

(
∑

l∈εh

∣∣[(αuh + σ(uh, ph)− g)n]l
∣∣2
0,l

) 1
2

‖v‖. (51)

Finally, we conclude

〈R, v〉 ≤ C

(
∑

K∈Th

h2
K|A(uh) +∇ph − f |20,K

) 1
2

‖v‖+ C

(
∑

l∈εh

∣∣[σ(uh, ph)n]l
∣∣2
0,l

) 1
2

‖v‖

+C

(
∑

l∈εh

∣∣[(αuh + σ(uh, ph)− g)n]l
∣∣2
0,l

) 1
2

‖v‖,

(52)
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where

‖R‖∗ ≤ C

(
∑

K∈Th

h2
K|A(uh) +∇ph − f |20,K

) 1
2

+ C

(
∑

l∈εh

∣∣[σ(uh, ph)n]l
∣∣2
0,l

) 1
2

+C

(
∑

l∈εh

∣∣[(αuh + σ(uh, ph)− g)n]l
∣∣2
0,l

) 1
2

.

(53)

Finally, from (47), (50), and (51) we obtain the following result:

Theorem 13. There exists a constant C (independent of h) such that

‖u− uh‖+ ‖p− ph‖ ≤ C

(
∑

K∈Th

η(K)2

) 1
2

(54)

where
η(K) = h2

K|A(uh) +∇ph − f |20,K + ∑
l∈εh∩K

∣∣[σ(uh, ph)n]l
∣∣2
0,l

+ ∑
l∈εΓ∩K

∣∣[(αuh + σ(uh, ph)− g)n]l
∣∣2
0,l + |divuh|20,K.

(55)

Proof of Theorem 13. A direct consequence of these inequalities (43) to (53). �

Remark. For more complex models where the dependence of the viscosity with respect to the second
invariant is more strongly nonlinear (for example Carreau law with µ∞ = 0 or power law), we
should use both methods of Sections 2 and 3 and a nonlinear version of Theorem 3.3, in [43].

These systems are written as a big matrix (his component is nonlinear). In these
simulations, we used the GMRES (GMRES is a generalized minimal residual algorithm
applied to solve nonsymmetric linear systems, see [31,41,42] for more details.) algorithm to
accelerate simulation.

4. Numerical Simulations

To conclude this paper, and in order to see the performance of the finite element
method for the nonlinear equations, two different numerical simulations are represented:
the first one uses the finite element software package “IFISS toolbox “ (IFISS software library
is an algorithm executed under MATLAB for the interactive numerical study of differential
equations for incompressible flow problems) to solve the Navier–Stokes equations with
different rectangular discretization sizes of meshes (16× 16, 32× 32, 64× 64, 128× 128,
256× 256) and multiple elements (Q1–Q1, Q1–P0, Q2–Q1 and Q2–P1); while the second
one, uses the engineering simulation software “COMSOL Multiphysics software (COM-
SOL Multiphysics is a cross-platform finite element analysis, solver, and multi-physics
simulation software. It allows conventional physics-based user interfaces and coupled
systems of partial differential equations (PDEs)“. Inspired by the model defined in this
paper [44] (applied in a porous media), we consider a “nonlinear Brinkman equation” with
an inhomogeneous boundary condition, where the change of the parameter represents the
change of the velocity field u and the pressure p in a different figure.

4.1. Fist Experience

We consider a Poiseuille (the Poiseuille flow problem is a steady horizontal flow
in a channel driven by a pressure difference between the two ends) channel flow so-
lution with an analytic solution of the Navier–Stokes equations as u =

(
1− y2, 0

)
and

p = −2νx, see [45,46] for more details. Where the boundary conditions are of Dirichlet
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or Neumann type on all the boundary—the inflow boundary is considered in the part
[x = −1,−1 < y < 1]—a no-flow Dirichlet condition, u = 0, is applied on the characteristic
boundaries y = {−1, 1} and an outflow condition is considered in the rest of the boundary
(i.e., [x = 1,−1 < y < 1]). Figures 2–5 represent the uniform streamline and the pressure
associated with, respectively, 16× 16 and 256× 256 in cases Q1–Q1, Q1–P0, Q2–Q1 and
Q2–P1 mixed approximation.
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In the previous figures, we can notice that the results are well-presented if we take the
mesh to be very small.

Table 1 represents the residual error estimator η, the estimated velocity divergence
error ‖ ∇ ·←u h ‖0,Ω, and the Stokes solution residual ηS for difference discretization (16× 16,
32× 32, 64× 64, 128× 128, and 256× 256) in these elements, cases Q1–Q1, Q1–P0, Q2–Q1
and Q2–P1 mixed approximations.

Table 1. Residual error estimator, estimated velocity divergence error, and Stokes solution residual
for 16× 16, 32× 32, 64× 64, 128× 128, and 256× 256.

Elements Errors Number of Girds

16× 16 32× 32 64× 64 128× 128 256× 256

Q1–Q1

η 5.86 × 100 1.34 × 100 9.99 × 10−1 8.38 × 10−1 2.37 × 10−1

‖ ∇ ·←u h ‖0,Ω 8.77 × 10−2 2.22 × 10−2 5.65 × 10−3 1.47 × 10−3 3.92 × 10−4

ηS 4.22 × 100 1.75 × 100 9.43 × 10−1 5.58 × 10−1 3.26 × 10−1

Q1–P0

η 5.98 × 100 1.90 × 100 1.28 × 100 9.93 × 10−1 2.47 × 10−1

‖ ∇ ·←u h ‖0,Ω 1.29 × 10−1 4.09 × 10−2 1.35 × 10−2 7.39 × 10−3 1.00 × 10−3

ηS 1.11 × 101 3.90 × 100 1.45 × 100 1.65 × 100 3.51 × 10−1

Q2–Q1

η 5.36 × 100 2.05 × 100 6.09 × 10−1 2.25 × 10−1 1.02 × 10−1

‖ ∇ ·←u h ‖0,Ω 1.05 × 10−1 3.23 × 10−2 6.06 × 10−3 1.31 × 10−3 3.2 × 10−4

ηS 3.24 × 100 2.14 × 100 1.30 × 100 7.61 × 10−1 4.29 × 10−1

Q2–P1

η 5.36 × 100 1.67 × 100 4.92 × 10−1 1.55 × 10−1 6.14 × 10−2

‖ ∇ ·←u h ‖0,Ω 1.07 × 10−1 1.28 × 100 5.25 × 10−3 1.23 × 10−3 3.03 × 10−4

ηS 2.70 × 100 6.09 × 10−1 1.21 × 100 7.18 × 10−1 4.09 × 10−1
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A good way to explore the capabilities of this method is to see the convergence time.
Table 2 presents the solve time of finite element methods with different discretization
and elements.

Table 2. Solve time of finite element methods for 16× 16, 32× 32, 64× 64, 128× 128, and 256× 256.

Elements 16×16 32×32 64×64 128×128 256×256

Q1–Q1 1.71 × 10−1 s 2.08 × 10−1 s 8.75 × 10−1 s 3.78 × 100 s 1.99 × 101 s
Q1–P0 8.24 × 10−2 s 3.58 × 10−1 s 3.69 × 10−1 s 5.53 × 100 s 2.42 × 101 s
Q2–Q1 3.19 × 10−2 s 1.88 × 10−1 s 1.30 × 100 s 6.55 × 100 s 2.66 × 101 s
Q2–P1 1.69 × 10−1 s 1.88 × 100 s 5.33 × 100 s 3.25 × 101 s 5.66 × 101 s

4.2. Second Experience

The second experience comes from the second example (pore–scale flow experiments)
defined by Sirivithayapakorn and Keller in [44] to model the transport of colloids in
saturated porous media, and by Auset and Keller in [47] to control the dispersion of colloids.
Inspired by the same model examples, and considering the new boundary conditions, the
domain covers [0.640 µm × 0.320 µm], see Figure 10. The flow in the pores does not
penetrate the solid grains and the inlet fluid pressure is known as p = 0.715 Pa, see
Figure 10, and assumes that the boundary is changed at the outlet. Top and bottom
boundaries are modeled by α(u)u + (−pI + K) · n = f , where the change of the parameter
α(u) represents the change of the velocity field and the pressure in the figures. The primary
zone of interest is the rectangular region with an upper-left corner at (0, 0) and lower-right
coordinates at [581.6 µm × 265.0 µm].
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Figure 10. Geometry and boundary conditions of the reservoir (the color code is blue for 0 and red
for 1 ). (a) Geometry of the reservoir; (b) boundary conditions of the reservoir.

Instead of solving for the creeping flow in the channels, the incompressible, stationary
Brinkman equations are used, with the Stokes—Brinkman assumptions used next. Figure 11
shows the reservoir and localization of the boundary conditions. Figures 11 and 12 represent
the velocity and pressure of the model defined for these simulations. We use the finite
element method to approach the unknown functions (pressure and velocity), change the
value of µ in the boundary condition to see the comportment of the fluid in the reservoir,
and take the two cases µ >> 1 and µ << 1.

In this simulation, we can see the difference between Figures 11 and 12: the distribution
of the lines is modified when the parameter is changed. For this, in modeling the linear or
nonlinear problems, we can count on this boundary condition, i.e., we can treat complex
boundary conditions. This method, “the finite element method”, remains valid in our case
to solve these types of problems.
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5. Conclusions & Perspectives

In this paper, we studied two nonlinear differential equations, the “p-Laplacian”
problem and the “Quasi-Newtonian Stokes” problem. This model is applied in many
domains, for example in fluid mechanics, and we approach these models with a general
boundary condition using the finite element method (FEM). For the theoretical study, we
introduced the a posteriori error indicator to control the errors. The performance of this
method is presented via different numerical simulations. From these perspectives, we
can apply the P1/P1 Bubble method to approach this model for the study of the element,
see [48] for a linear Brinkman model. Another problem that we can treat is to couple
this model (quasi-Newtonian Stokes problem (35)) with Darcy’s law, see [49] for how the
authors use the finite element methods to approach the coupled Darcy—Stokes problem.
Another model which we can choose for permeability is a tensor in the equation and in the
boundary condition for the quasi-Newtonian Stokes problem in (35) and (36) (i.e., we can
choose a more complex model), see for example [50–53] applied to the linear model.
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