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1. Introduction
Let ¢ : (M™,g) — (N",h) be a smooth map between two Riemannian manifolds.
The energy density of ¢ was the smooth function on M given by:

m

e(¢)p = Y_h(dpp(ei) dpg(ei)),

i=1

m
for any p € M and any orthonormal basis {ei} . of T,M. If M was a compact Riemannian

=1
manifold, the energy functional E(¢) was the integral of its energy density.

E(9) = | e(p)dos. 0
For any smooth variation {¢}ic; of ¢ with ¢g = ¢ and V = %h:o, we had
the following:
d
FE@)lm0o=— [ n(x(@), V)des, @
where
©(¢) = trgVdg, ®)

is the tension field of ¢. Then, we found that ¢ : (M™, g) — (N", h) was harmonic if, and
only if,
T(¢) = 0. @)

If (x')1<i<m and (y*)1<4<n denoted local coordinates on M and N, respectively, then
Equation (4) took the following form:

. N a(Pﬁ o7
— AP* T -1 ) =0, 5
T(¢) ;( ¢+ T, 552 (5)
1<i,j<m
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Where A(Plx = Z 1<a<n

1<i,j<m (\/ axz

[3 , are the Christoffel symbols of the Levi-Civita connections of (N™, h). The biharmonic

(/g g’l =7 ) is the Laplace operator on (M",g), and

maps, which provide a natural generalization of harmonic maps, were defined as the
critical points of the bi-energy function:

1 2
= = 14
5 [ TR, ©
E L . _ _d¢y .
or any smooth variation {¢ }¢j of p with g = pand V = aF |t—0, we had the following:

qwo——/ (Ta(¢), V) dog. @)

The Euler—Lagrange equation attached to the bi-energy was given by the vanishing of
the bitension field, as follows:

T(¢) = —(AT(P) + trgRN (T(¢), dp)dep). ®)

where A=trace (V¢V? — V%) is the rough Laplacian on the sections of the pull-back
bundle ¢ !TN, V¢ is the pull-back connection, and RN is the curvature tensor on N.
Clearly, any harmonic map was always a biharmonic map, and a proper biharmonic map
would not be harmonic. The harmonic and biharmonic maps have been studied by many
authors [1-4]. Currently, the theories of harmonic and biharmonic maps have become a
very important field of research in differential geometry. Najma in [5] studied the harmonic
maps between the Kdhler and Kenmotsu manifolds. After that, Zagane and Ouakkas in [6]
studied the biharmonicity on Kenmotsu manifolds, and they calculated the stress bi-energy
tensor from a Kdhler manifold to a Kenmotsu manifold. Moreover, Mangione in [7] studied
harmonic maps and their stability on f-Kenmotsu manifolds. In [8], Ichi Inoguchi and Eun
Lee investigated the biharmonic curves on f-Kenmotsu 3D-manifolds.

Motivated by the above studies, in this paper, we obtained results concerning the har-
monicity and biharmonicity of (], ¢)-holomorphic maps from a Kéhler manifold (N?7, ], i) to
an f-Kenmotsu manifold (M?"*1, f, ¢, ¢, 7, ) and we provided the necessary and sufficient
conditions for the biharmonicity of the identity map I : M — M from an f-Kenmotsu mani-
fold (M?"*1, f, ¢,&,7,¢) toan f-Kenmotsu manifold with the Schouten-van Kampen connection.

The structure of this paper is as follows: After the introduction, we described some well-
known basic formulas and the properties of the f-Kenmotsu manifold and the f-Kenmotsu
manifold with the Schouten—van Kampen connection.

In Section 2, we initiated a study of harmonic and biharmonic maps when the do-
main was a Kdhler manifold (N n T, h), and the target was an f-Kenmotsu manifold
(M1 f,0,&,1,¢). We proved that for F : N — M being a (], ¢)-holomorphic map of
constant energy density e(F), then F would be biharmonic if, and only if:

~2e(F)((f o F)(f' o F) +2(f o F)*)¢ +3(f o F)dF(grad(f o F)) + A(fo F)E = 0. (9)

On the other hand, we proved if the function f o F was constanton Nand F : N — M
was a (], ¢)-holomorphic map of constant energy density, then F would be biharmonic if,
and only if:

(foF)(f'oF)+2(foF)’ =0. (10)

Finally, we provided an example of a (], ¢)-holomorphic map from a Kihler manifold
to an f-Kenmotsu manifold, which verified Theorem 3.

In Section 3, we proved that any (], ¢)-holomorphic map from a Kéhler manifold
(N n T, h) to an f-Kenmotsu manifold (M2”+1, f., 9,8, 1,8) with the Schouten-van Kampen
connection was harmonic. In the same section, we also studied the biharmonicity of
the identity map I : M — M from an f-Kenmotsu manifold (M?**1, f,¢,¢&,1,¢) to an
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f-Kenmotsu manifold with the Schouten-van Kampen connection (Mznﬂ, f,9,6,1,8). We
obtained the following results: Firstly, the identity map I : M — M would be biharmonic
if, and only if, the function f was harmonic. Secondly, if f was a constant function, then the
identity map I : M — M from an f-Kenmotsu manifold with the Schouten-van Kampen

connection (MZnH, f,9,&1,8) to an f-Kenmotsu manifold (M?>"*1, f, ¢, & 1, ¢) would be
biharmonic if, and only if,  was biharmonic vector field.

2. Preliminaries

A (2n + 1) dimensional real differentiable manifold M was assumed to be an almost
contact metric manifold if it had an almost contact metric structure (¢, §, 7, g), where ¢ is a
(1,1) type tensor field, ¢ a global vector field, 7 is a 1-form, and g is a Riemannian metric
compatible with (¢, ¢, 1, g), satisfying the following [9-12]:

p*=—1+7®¢ (@) =1,
=0, no9=0, n(X)=g(X3), (11)
g(eX, 9Y) = g(X,Y) —n(X)n(Y),

for any vector fields X, Y € I'(TM), where I'(TM) denotes the Lie algebra of all differen-
tiable vector fields on M?"*! and I is the identity transformation.
An almost contact metric manifold was a Kenmotsu manifold if

(Vx@)Y = g(¢X,Y)Z —1(Y)pX, (12)

where V denotes the Riemannian connection of g.
In a Kenmotsu manifold, we had the following relations [13-15]:

(Vxn)(Y) = 8(X,Y) = n(X)n(Y). (13)
Vx¢ =X —3(X)g, (14)
R(X,Y)¢ = n(X)Y = n(Y)X, (15)

for any vector fields X, Y on M, and R denotes the Riemannian curvature tensor on M.
We assumed that M was an f-Kenmotsu manifold if the Levi-Civita V of ¢ satisfied the
following condition [16-22]:

(Vx9)Y = (89X, V)E = 1(Y)X), (16)

where f € C®(M), such thatdf A n = 0. If the function f was equal to a constant &« > 0, we
obtained an a-Kenmotsu manifold, which were Kenmotsu manifolds for « = 1. If f = 0, then
the manifold would be cosymplectic [23,24]. An f-Kenmotsu manifold was assumed to be
regular if f2 + f' # 0, where f' = &(f). For an f-Kenmotsu manifold from (11) and (16), it
followed that:

Vxé = f(X - n(X)E), a7)

then using (17), we had

(Vxm) (Y) = £(2(X,Y) = n(X)n (X)) (18)
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The condition df A = 0 held if dim(M) > 5; however, this did not hold, in general,
if we had dim(M) = 3 [25]. The characteristic vector field of an f-Kenmotsu manifold
also satisfied:

RX,)E= (24 ) (n(X)Y = n(V)X), (19)
REVZ = (P +f)(n(2)Y -g(¥,2)¢), 0)
1R Y)Z] = (f2+ ) ((Y, 2)n(Z)n(Y)). @1

*
The Schouten—van Kampen connection V associated with the Levi-Civita connection
V was given by [26-29]:

VXY = VxY — g(Y)Vx& + (Vi) (Y)E, (22)

for any vector fields X,Y € T'(TM). Using (13) and (14), the above equation yielded
the following:

*
VxY =VxY+g(XY)—n(Y)X. (23)
By taking Y = ¢ in (23) and using (14), we obtained

%xé =0. (24)

Let M be an f-Kenmotsu manifold with the Schouten—-van Kampen connection. Then,
using (17) and (18) in (22), we obtained the following [30,31]:

VY = VY + £ (3(X, V)8~ n(Y)X). (25)

*
Let R and R be the cu£vature tensors of the Levi-Civita connection V and the Schouten—
van Kampen connection V, then

R(X,Y) = (Y%, Vy) = Vixy, R(X,Y) = (%X, %y) ~Vixy)

*
By direct calculations, we obtained the following formula connecting R and R on an
f-Kenmotsu manifold M:

R(X,V)Z =R(X,V)Z + f(3(Y,2)X ~ (X, 2)Y) (26)
+ 1 (80, 2)1(X)E - &(X, Z)n(¥)& (27)
+1()(Z)X = n(X)n(Z)Y). 8)
and
R(E,Y)Z =0. 29)

3. Harmonic and Biharmonic Maps on f-Kenmotsu Manifolds
Definition 1. A smooth map F : N — M between a Kihler manifold (N*",],h) and an
f-Kenmotsu manifold (M?"*1, f,¢,&,1,¢) was assumed to be a (], ¢)-holomorphic map if it
satisfied the following:

dFo] = ¢odF.
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Lemma 1 ([6]). Let F: N — M bea (], ¢)-holomorphic map from a Kihler manifold (N*", ], h)
toan f-Kenmotsu manifold (M?"*1, f, 9,&,1,8). Then, we had, for any X € T(TN),

(7 0 dF)(X) = 0.

We could ask now if such a map would be harmonic when the domain was a
Kéhler manifold.

Lemma 2. Let F: N — M bea (], ¢)-holomorphic map from a Kihler manifold (N*", ], h) to
an f-Kenmotsu manifold (M1, f, @, &1, ), then we had the following:

8(t(F),¢) = =2(f o F)e(F).

where e(F) is the energy density of the map F.

2n
Proof. Considering a local orthonormal basis {ei}‘ .o TyN for any p € N, we obtained
1=

the following:

—dF(VYe),¢)
i=1
= Z
=1
2n 2n

=Y (Vi 2(aF(e), €) — g(aF(e), Vi) ) - ;g(dF (Vei),€)
)

Y.s(vid
_ Eg(vdp dF(e;) — AF(VNe;),€)
d

Vo dF (), €) — Zg(dFV ), <)

i=1
2

n 2n
= L (Vi 1P () = g(dF(e). Vilky£) ) = Ln@F(Vejen)

As F was a (], ¢)-holomorphic map, then by using Lemma 1, we obtained 7 (dF(e;)) =
0 and 5 (dF (Va] e;)) = 0. Then, we had the following:

2n
$(t(F), &) = - ;g(dF<ez->,v%(g,,)c).

Using the Equation (17), we obtained the following:
2n

3(x(F),8) = — ; ((f o ) (9(dF (@), dF(er)) — g(dF (e, n(dF())?)) )
= — Z foF)g(dF(e;),dF(e;))
_ 2o r(r)
O

Theorem 1. Let F: N — M be a (], ¢)-holomorphic map from a Kéhler manifold (N>", ], h) to
an f-Kenmotsu manifold (M>"*1, f, 9,&,1,¢). Then, the tension field of the map F was given by:

©(F) = =2(f o Fle(F)¢, (30)
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Proof. For any (], ¢)-holomorphic map F : N — M, we have the following formula for
its tension field [32]

p(x(F)) = dE(div]) — B,

where B is defined by B(X,Y) = (VL ¢)dFY for any vector fields X, Y € I'(TN). Since N
was a Kdhler manifold, V] = 0, then we had

2n

div] =) (Ve])e; =0,

i=1

2n
where {ei} ~_is an orthonormal local basis on TN. By using the relation (16) and doing a

=1
straightforward calculation, we obtained the following:

2n 2n
1B =Y (VE@)dF(e) = Y (VAL g)dF(e;)
i=1 i=1

- 2 £ o F) ((9(dF(er)), dF ()G — 1(dF(e;) p(dF(er)))

= (foF)( 1(dF(e))p(dF(e)) )-

I\)

As F was a (J, ¢)-holomorphic map, then by using Lemma 1, we found the following:

Z(fOF)( (dF(ez))(P(dF(e,»))) —0

1=

As aresult, o(7(F)) = 0 = ¢*(t(F)) = 0, that is,

T(F) = n(t(F))¢ = g(t(F),§)¢ = —2(f o F)e(F)¢.
O

Theorem 2. Let (N?",],h) be a Kihler manifold and (M?>"*1, f,9,&,1,8) be an f-Kenmotsu
manifold. Then, any (], ¢)-holomorphic map F : N — M would be harmonic if, and only if, it
was a constant map or f o F = 0.

Proof. According to Theorem 1, if the map F was harmonic, then (f o F)e(F) = 0. We
assumed that f o F # 0. There existed an open subset U on M, such that f o F # 0 was
everywhere on U. Therefore, e(F) = 0 was on U. From the harmonicity of F, we concluded
that e(F) = 0 on M, that is, F was a constant map. [J

Biharmonic Maps on f-Kenmotsu Manifolds

Theorem 3. Let F : N — M be a (], ¢)-holomorphic map from a Kihler manifold (N*", ], h)
to an f-Kenmotsu manifold (M*"*1, f,¢,&1,8). Then, the bitension field of F was given by
the following:

—2(=2e()A((fo F)(f o F) +2(f o F)))¢

+3(foF)e ( )dF(gmd(foF)) (foF)A(e(F))S
+e(F)A(f o F)¢ + 2g(grad(f o F), grad(e(F)))¢
2(f

° )2dF(gmd(e<P)))).
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Proof. By definition of the bitension field of the map F, we had:
(F) =try(VE)?t(F) + tr,RM(7(F),dF)dF
= = 2(n(VF)2(f o F)e(F)E + tr,RM((f o F)e(F)g, dF)dF )
2n
=—2Y (VEVE(foF)e(F)E = VEy, (f o Fe(F)g
i=1 !
+ RM((f o F)e(F),dF(e)dF(e)), (31)

2n
where {ei} - is an orthonormal local basis on TN. A direct calculation provided the following:
1=

2n 2n
» (VEVE(fe Fe(F)E) = » (VE((f o F)e(F)VES) + VE(ei((f o F)e(F))E)
-y ((fo F)e(P)VEVEE + e((f o Fle(F)) VEg
i=1
+ei((f o F)e(F)VEE +eiles((f o F)e(F)))E)
2n
-4 <(fo F)e(F)Vi, Ve + 2V grad((for)e()) S
+eiles((f o FJe(F))e),
and
2n 2n
% (Vo o PeR)z) = 15 (o P(FIVE, o8 + Ve (f 0 FeC)2)

Based on the following:
2n

A((foP)e(F) = Y (eiei((f o F)e(F))) = Veei((f o Ple(F) )¢,

i=1

and
F\2 2 FF F
(Ve =) (VEVEE -y, ©),
i=1 !

we could deduce that

tr(VE)2(f 0 Fe(F)& =(f o F)e(F)try(VF)2E + A((f 0 F)e(F))E + 2V gra((forye(r))S
=(f o F)e(F)try(VF)?E + (f o F)A(e(F))E + e(F)A(f o F)G
+2g(grad(f o F), grad(e(F)) +2(f © F) Vi q(o(r)6
+2e(F)Viraa(for) &- (32)

After calculating the term try,(VF)2&, we obtained the following:

F\2 & FF F
(Ve = ) (VEVEE = VEy, )
i=1 i
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By using Equation (17), we obtained:
2 ViE= 2 Var(e)S = 2<f o F) (dF(e;) = (dF(e))E),
=1

= (foF) Ldr(),
i=
which gave us:
%vFvFg ZvF (f o F)dF(e;),
and

2n
;V Neb = Vdp(vNe,)C
2n
L (AF(Vher) = n(dF(Vhe))E)
- zzn(f o F)dF(VDey),

i=1

we conclude that

2n
(V)¢ = ) (VE(f o F)F(e;) = (f o F)AF(V}ey))
i=1

2n
_ ; (ei((f o F))dF(e;) + (f o F)VEdE(e;) — (f o F)dF(Vg’ei))

=dF(gradf) + (f o F)t(F)
=dF(gradf) —2(f o F)%e(F)g, (33)

Now, by simplifying the terms Vgr d(e(E)) C and Vgra d(fo F)(;‘ we had the following:

Verad(e(F) =V aF(grad(e(r))®
= (f o F) (dF(grad(e(F)) — ydF(grad(e(F))¢)
= (f o F)dF(grad(e(F)),
and
Verad(foF)S =V aF(grad(foF))
= (f o F) (4F(grad(f o F)) — ydF(grad(f o F))¢)
= (f o F)dF(grad(f o F)),

which finally gave us:

tr,(VE)2(f o F)e(F)& = — 2(f o F)*(e(F))?¢ + (f o F)e(F)dF (grad(f o F))
+ (foF)A(e(F))E +e(F)A(f o F)g
+2g(grad(f o F), grad(e(F)))¢
+2(f o F)?dF(grad(e(F)))
+2(f o F)e(F)dF(grad(foF))
34)
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By using Equation (19), we obtained the following:

traRM (fe(F)2, dF)AE =(f o F)e(F) " R(, dE(es))dE(e)
i=1
2n

=(Fo F)e(B)(f o B+ (f o F) Y (n(dF(e:)dF(es) — g(dF(ei), dE(ei))¢)

i=1

= —2(f o F)*(e(F))*¢ —2(f o F)(f' o F)(e(F))%¢. (35)
If we replaced (34) and (35) in (31), we arrived at the following;:
o (F) = —2( = 2((F)*((fo F)(f' o F) +2(f o F)*)¢

+3(f o F)e(F)dF(grad(f o F)) + (f o F)A(e(F))¢
+e(F)A(f o F)¢ +2g(grad(f o F), grad(e(F)))¢
+2(

fo F)ZdF(grad(e(F)))>.

O

Corollary 1. Let (N?",],h) be a Kihler manifold and (M***1, f, ¢, &,11,8) be an f-Kenmotsu
manifold. Then, any (], ¢)-holomorphic map F : N — M would biharmonic if, and only if:

2(e(F)*((fo F)(f' o F) +2(f o F)*)¢

+3(f o F)e(F)dF(grad(f o F)) + (f o F) A(e(F)
+e(F)A(f o F)E+2g(grad(f o F),grad(e(F)))¢
+2(f o F)2dF(grad(e(F))) = 0.

)¢

Corollary 2. Let (N?", ], h) be a Kihler manifold and (M?"+1, ¢, &1, g) be a Kenmotsu manifold;
then, any (], ¢)-holomorphic map F : N — M would be biharmonic if, and only if:

—4e(F)?¢ + A(e(F))E + 2dF (grad(e(F)) =0.

Corollary 3. Let (N?",],h) be a Kiihler manifold and (M*"*1, f, @, &,11,8) be an f-Kenmotsu
manifold. Then, any (], ¢)-holomorphic map F : N — M of constant energy density would
biharmonic if, and only if:

—2¢(F)((f o F)(f' o F) 4+ 2(f o F)3)& + 3(f o F)dF(grad(f o F)) + A(f o F)& =0.

Corollary 4. Let F : N — M be a (], ¢)-holomorphic map of constant energy density from a
Kiéhler manifold (N, ], h) to an f-Kenmotsu manifold (M?>"*1, f, ,&,1,¢). If the function f o F
was constant on N, then F would biharmonic if, and only if, ff' + 23 = 0 was on F(N).

Example 1. Let the five-dimensional manifold M = R* x (0, 00) be equipped with the Riemannian
metric § = t72%(dy? + dy3 + dy3 + dy3) + dt?, for some constant a € R. We considered the
following orthonormal basis:

e =t"—1, e *t"‘i e *t"‘i e *t"‘i e *2
1 ay]/ 2 ayzl 3 ay3/ 4 ay4/ 5 at

We considered a 1-form 1 defined by:
n(X) =g(X,es), VX eT(TM).
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That is, we chose es = ¢. We defined the tensor field ¢ by the following:
pler) = —e2, gle2) =e1, gles) = —ea, @lea) =e3, @(es) = 0.
By the linearity properties of g and ¢, we obtained the following:
n(es) =1, "X = =X +75(X)es,

89X, oY) = g(X,Y) =y (X)y(Y),
for any vector fields X, Y on M. Therefore, (M, ¢, ¢, 1,8) formed an almost contact metric manifold.
Otherwise, we had [e;, e5] = —at e fori=1,2,3,4and [e;, e]-] = 0.Let V be the Levi-Civita
connection of (M, §). By using Koszul's formula, we obtained the following for i,j = 1,2, 3,4 with
i#:

o 114
Veiei = ¥€5, Vgi65 = —;e,», Veie]' = Vesei = Ve5€5 =0.

The above relations indicated that Vx¢ = f{X —n(X){} for & = esand f = —%.
Therefore, we could say that (M*'*1,f, 9,& 1,¢) was an f-Kenmotsu manifold. Moreover,
(M2 £, 0,&,1,¢) was a reqular f-Kenmotsu manifold if, and only if, x # 0,—1, because
f2 +f/ — DC(DC+1)

2
Let F be a (], ¢)-holomorphic map, defined by the following:

F:(R%],h) — (M*L,f,0,E1,9),
(x1,%2) — (Fi(x1,x2), Fa(x1,x2), F3(x1, x2), Fs(x1, x2), F5(x1, x2))

where h = dx? + dx3, ] ( 0) =9 J(;L) = —% and F;(x1, xp) are defined by

E)x1 X7 8x2

Fi(x1,x2) = a1x+axxa+c;
B(x1,x) = ax—aixp+c
F3(x1,x2) = a3x;+agxa+c3
Fy(x1,22) = ax1 —a3x2+c4
F5(x1,x2) = ¢

where aj,¢i € Rareforall j =1,2,3,4and i =1,2,3,4,5. Note that the density energy of F was a
constant given by e(F) = (a} + a3 + a3 + a3)c5*. According to Theorem 3, the tension field of F
was given by the following:

(a2 + a3 + a2 + a2)
7(F) = —1 Cza+1 SEC I
5

As f o F was constant on N, and the density energy of F was constant, from Corollary 4, the
map F would be biharmonic if, and only if:

2(1+2
(42 oF = -0 o
5
Therefore, F was biharmonic non-harmonic if, and only if, « = —3.

4. Biharmonic Maps on f-Kenmotsu with the Schouten-van Kampen Connection

Theorem 4. Let (N?",],h) be a Kihler manifold and (M*"*1, f, ¢,&,1,8) be an f-Kenmotsu
manifold with the Schouten—van Kampen connection. Then, any (], ¢)-holomorphic map
F: N — M would be harmonic.
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Proof. Based on the (], ¢)-holomorphic map, we had the following:
p(x(F)) = dF(div]) — n,B,

where B is defined by B(X,Y) = (V& ¢)dFY for any vector fields X, Y € T(TN). Consider-

2n
ing a local orthonormal basis {ei}, on TyN for any p € N, we obtained the following:

i=1

2n

div] = Y (Ve J)e; = 0,

i=1

and by using relation (16), we found the following, as well:

2n 2n
B = Y (VEg)dF(e) = (VA p)dE(e))
i=1 i=1

2n
= L. o F) ((o(aF(en)) dF(e)E — n(@F(en)) p(dF(e)

= 2 foF)( = n(dF(e;)p(dF(e;))).
= 0.

From the above relation, we could obtain the following: ¢(7(F)) = 0 = 7(F) =
g(t(F),¢)¢. However,

8(t( Zg(VFdF é) dF(VNez) 5)
= l)jlg(vdp — dF(VYe:) )
—Eg(%” )8) - Ls (49 5)
= : (ViFe)s (4F (), ) —g(dF(er), ViE)8) ) - ig(dF(VQ’ei),g)
2

2n
-5 (V1 (@F(e)) — g (@F(er), VI 2) ) - ; n(dE(VNer)).

As F was a (], ¢)-holomorphic map, then by using Lemma 1, we found 7 (dF(e;)) = 0
and q(dF(Vé\i’ei)) = 0. Then, we had
2n

g(t(F),&e) =Y (—g(dF<ei>,V%(e,->€’))~

i=1

In addition, from relation (24), we had V%(Ev)g =0, and then, g(7(F),¢) =0. O

Biharmonic Identity Map with the Schouten—van Kampen Connection

Theorem 5. Let [ : M — M be the identity map from an f-Kenmotsu manifold
(M2 £, 0,&,1,8) to an f-Kenmotsu manifold with the Schouten—van Kampen connection

(MZ”“, f,9,8,1,8). Then the tension field of map I was given by the following:
(1) = 2nf§ (36)

Proof. Let {el, v, @(e1), ..., o(en), @} be an orthonormal local basis on TM. Then, by
definition of the tension field of map I, we found the following:
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T(I) =trgVdI
2n+1 _

= Y (Ve dite) —d1(Vie)).
i=1

Using relation (25), we had the following:
2n+1

() = Y (Flglenee—nlee))

i=1

=2nf¢.
O

Theorem 6. Let [ : M — M be the identity map from an f-Kenmotsu manifold
(M"Y £, 0,8,1,¢) to an f-Kenmotsu manifold with the Schouten—van Kampen connection

(Mznﬂ, f,9,8,1,8). Then, map I would be harmonic if, and only if, M was a cosymplectic manifold.

Theorem 7. Let [ : M — M be the identity map from an f-Kenmotsu manifold

(MZ”H, f,9,8,1,8) to an f-Kenmotsu manifold with the Schouten—van Kampen connection

(HZ”H, f,9,8,1,8). Then, map I would be biharmonic if, and only if, f was a harmonic function.

Proof. Let {el, v, @(€1), ., (p(en),cf,} be an orthonormal local basis on TM; then, by
definition of the tension field of map I, we had the following:

(1) = trg(V12T(I) + trgRM (z(1), d1)dI
= 2n(trg(V1)2fE + trgRM (£, an)dl
= 221 (vgi Ve,21fG = Vg, 2nfE + RM(2nf¢, dI(ei))dI(ei)).

The combination of Equation (24) and direct calculations provided the following:

2n+1 2n+1

Y. (Vivionfg) =2n Y. (eeif))3),

1= =

and
zil (vf eie,.z;fzfé) =2n zil (veiei(f)g)_

Based on the following:
2n+1

A = Y, (ele(f) = Veel),

i=1

we could conclude
2n+1

Y (ViVianfe) = (f)e

i=1
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Based on Equation (29), we found the following;:

tre RM(2n £, d1)dl = 2nftrg (RM([;’,dI)dI)

2n+1 _

=2nf ; (RM(élei)ei)
=0.

Finally, we obtained
v (1) = 2nA(f)E. (37)
O

Remark 1. If f was a constant or harmonic function, then I would be a proper biharmonic map.

Theorem 8. Let [ : M — M be the identity map from an f-Kenmotsu manifold with the Schouten—

van Kampen connection (M 2t f,@,&1,8) to an f-Kenmotsu manifold (M*"1, f,9,&,1,¢).
Then, the bitension field of map I was given by the following:

(1) = =21 (A()E + Fa(8) + 2V s, (38)
where A is the Laplacian on (M, £, 9,&,1,8).

Proof. Let {el, v, @(€1), . (p(en),g} be an orthonormal local basis on TM; then, by
definition of the tension field of map I, we had the following;:
T(I) =trgVdI
2n+1

= L (Ve dite) - a1(Vie)
:_2%1( el/ g 77(61) 1))
= —2nfc¢.

However, we had the following;:
(1) = trg(VH21(I) + trg RM(7(I), dI)dI

_ —Zn(trg(VI)Z FE+ trgRM( fg,dz)gu)
2n+1

_— (vlvfznfg Vim 2nf§+RM(2nfg dI(eZ))dI(el)) (39)

i=1

A direct calculation of
2n+1 2n+1
Y (Ve vianfe) =2 Y Vi (a()E+fVEE)
i=1 i=1
2n+1
=2 Y (elei(f))E+e(/)VEE +elf)VEE+ FVEVEE)
i=1
2n+1
=2n )" (ei(ei(f))é—i-ZV adf& + Ve Vs )

i=1

and
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2n+1 [ 2n+1 W ;
L (Vg 2f5) =2n )y ((VEe) (NG + /T, )

finally yielded the following:
tro (V! 2nfe = 2n(B(F)E + ftrg (V)28 +2V] q5€)- (40)
If we replaced (40) in (39), we arrived at:
(1) = =21 (B()E + f(8) +2V }raasE).
O

Corollary 5. Let [ : M — M be the identity map from an f-Kenmotsu manifold with the Schouten—

van Kampen connection (MZHH, f,9,&1,8) to an f-Kenmotsu manifold (M*"*1, f,9,&,1,8).
Then, map I would be biharmonic if, and only if:

B()E+ fra(2) +2Vgas6 = 0,

Corollary 6. Let [ : M —> M be the identity map from an f-Kenmotsu manifold with the Schouten—

van Kampen connection (Mznﬂ,f, ®,&,1,8) toan f-Kenmotsu manifold (M, f,9,&,1,8). If f
was a constant function, then map I would be biharmonic if, and only if, ¢ was a biharmonic vector field.

Corollary 7. Let [ : M — M be the identity map from an f-Kenmotsu manifold with the Schouten—

van Kampen connection (Mznﬂ,f, @,&,1,8) toan f-Kenmotsu manifold (M>"*1, f,9,8,1,¢). If
¢ was a parallel vector field (ie., V¢ = 0), then map I would be biharmonic if, and only if, f was a
harmonic function.
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