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1. Introduction

Let φ : (Mm, g) −→ (Nn, h) be a smooth map between two Riemannian manifolds.
The energy density of φ was the smooth function on M given by:

e(φ)p =
m

∑
i=1

h(dpφ(ei), dpφ(ei)),

for any p ∈ M and any orthonormal basis
{

ei

}m

i=1
of Tp M. If M was a compact Riemannian

manifold, the energy functional E(φ) was the integral of its energy density.

E(φ) =
∫

M
e(φ)dvg. (1)

For any smooth variation {φ}t∈I of φ with φ0 = φ and V =
dφt

dt
|t=0, we had

the following:

d
dt

E(φt)|t=0 = −
∫

M
h(τ(φ), V)dvg, (2)

where
τ(φ) = trg∇dφ, (3)

is the tension field of φ. Then, we found that φ : (Mm, g) −→ (Nn, h) was harmonic if, and
only if,

τ(φ) = 0. (4)

If (xi)1≤i≤m and (yα)1≤α≤n denoted local coordinates on M and N, respectively, then
Equation (4) took the following form:

τ(φ)α = ∑
1≤α,β,γ≤n
1≤i,j≤m

(
∆φα + gij

N
Γα

βγ

∂φβ

∂xi
∂φγ

∂xj

)
= 0, (5)
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where ∆φα = ∑ 1≤α≤n
1≤i,j≤m

( 1√
|g|

∂

∂xi (
√
|g|gij ∂φα

∂xj

)
is the Laplace operator on (Mm, g), and

N
Γα

βγ are the Christoffel symbols of the Levi-Civita connections of (Nn, h). The biharmonic
maps, which provide a natural generalization of harmonic maps, were defined as the
critical points of the bi-energy function:

E2(φ) =
1
2

∫
M
|τ(φ)|2dvg. (6)

For any smooth variation {φ}t∈I of φ with φ0 = φ and V =
dφt

dt
|t=0, we had the following:

d
dt

E2(φt)|t=0 = −
∫

M
h(τ2(φ), V)dvg. (7)

The Euler–Lagrange equation attached to the bi-energy was given by the vanishing of
the bitension field, as follows:

τ2(φ) = −(4τ(φ) + trgRN(τ(φ), dφ)dφ). (8)

where 4=trace (∇φ∇φ − ∇φ
∇) is the rough Laplacian on the sections of the pull-back

bundle ϕ−1TN, ∇φ is the pull-back connection, and RN is the curvature tensor on N.
Clearly, any harmonic map was always a biharmonic map, and a proper biharmonic map
would not be harmonic. The harmonic and biharmonic maps have been studied by many
authors [1–4]. Currently, the theories of harmonic and biharmonic maps have become a
very important field of research in differential geometry. Najma in [5] studied the harmonic
maps between the Kähler and Kenmotsu manifolds. After that, Zagane and Ouakkas in [6]
studied the biharmonicity on Kenmotsu manifolds, and they calculated the stress bi-energy
tensor from a Kähler manifold to a Kenmotsu manifold. Moreover, Mangione in [7] studied
harmonic maps and their stability on f -Kenmotsu manifolds. In [8], Ichi Inoguchi and Eun
Lee investigated the biharmonic curves on f -Kenmotsu 3D-manifolds.

Motivated by the above studies, in this paper, we obtained results concerning the har-
monicity and biharmonicity of (J, ϕ)-holomorphic maps from a Kähler manifold (N2n, J, h) to
an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g) and we provided the necessary and sufficient
conditions for the biharmonicity of the identity map I : M −→ M from an f -Kenmotsu mani-
fold (M2n+1, f , ϕ, ξ, η, g) to an f -Kenmotsu manifold with the Schouten–van Kampen connection.

The structure of this paper is as follows: After the introduction, we described some well-
known basic formulas and the properties of the f -Kenmotsu manifold and the f -Kenmotsu
manifold with the Schouten–van Kampen connection.

In Section 2, we initiated a study of harmonic and biharmonic maps when the do-
main was a Kähler manifold (N2n, J, h), and the target was an f -Kenmotsu manifold
(M2n+1, f , ϕ, ξ, η, g). We proved that for F : N −→ M being a (J, ϕ)-holomorphic map of
constant energy density e(F), then F would be biharmonic if, and only if:

−2e(F)(( f ◦ F)( f ′ ◦ F) + 2( f ◦ F)3)ξ + 3( f ◦ F)dF(grad( f ◦ F)) +4( f ◦ F)ξ = 0. (9)

On the other hand, we proved if the function f ◦ F was constant on N and F : N −→ M
was a (J, ϕ)-holomorphic map of constant energy density, then F would be biharmonic if,
and only if:

( f ◦ F)( f ′ ◦ F) + 2( f ◦ F)3 = 0. (10)

Finally, we provided an example of a (J, ϕ)-holomorphic map from a Kähler manifold
to an f -Kenmotsu manifold, which verified Theorem 3.

In Section 3, we proved that any (J, ϕ)-holomorphic map from a Kähler manifold
(N2n, J, h) to an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g) with the Schouten–van Kampen
connection was harmonic. In the same section, we also studied the biharmonicity of
the identity map I : M −→ M from an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g) to an
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f -Kenmotsu manifold with the Schouten–van Kampen connection (M2n+1, f , ϕ, ξ, η, g). We
obtained the following results: Firstly, the identity map I : M −→ M would be biharmonic
if, and only if, the function f was harmonic. Secondly, if f was a constant function, then the
identity map I : M −→ M from an f -Kenmotsu manifold with the Schouten–van Kampen
connection (M2n+1, f , ϕ, ξ, η, g) to an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g) would be
biharmonic if, and only if, ξ was biharmonic vector field.

2. Preliminaries

A (2n + 1) dimensional real differentiable manifold M was assumed to be an almost
contact metric manifold if it had an almost contact metric structure (ϕ, ξ, η, g), where ϕ is a
(1, 1) type tensor field, ξ a global vector field, η is a 1-form, and g is a Riemannian metric
compatible with (ϕ, ξ, η, g), satisfying the following [9–12]:

ϕ2 = − I + η ⊗ ξ, η(ξ) = 1,

ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ), (11)

g(ϕX, ϕY) = g(X, Y)− η(X)η(Y),

for any vector fields X, Y ∈ Γ(TM), where Γ(TM) denotes the Lie algebra of all differen-
tiable vector fields on M2n+1 and I is the identity transformation.

An almost contact metric manifold was a Kenmotsu manifold if

(∇X ϕ)Y = g(ϕX, Y)ξ − η(Y)ϕX, (12)

where ∇ denotes the Riemannian connection of g.
In a Kenmotsu manifold, we had the following relations [13–15]:

(∇Xη)(Y) = g(X, Y)− η(X)η(Y). (13)

∇Xξ = X− η(X)ξ, (14)

R(X, Y)ξ = η(X)Y− η(Y)X, (15)

for any vector fields X, Y on M, and R denotes the Riemannian curvature tensor on M.
We assumed that M was an f -Kenmotsu manifold if the Levi-Civita∇ of ϕ satisfied the

following condition [16–22]:

(∇X ϕ)Y = f
(

g(ϕX, Y)ξ − η(Y)ϕX
)

, (16)

where f ∈ C∞(M), such that d f ∧ η = 0. If the function f was equal to a constant α > 0, we
obtained an α-Kenmotsu manifold, which were Kenmotsu manifolds for α = 1. If f = 0, then
the manifold would be cosymplectic [23,24]. An f -Kenmotsu manifold was assumed to be
regular if f 2 + f ′ 6= 0, where f ′ = ξ( f ). For an f -Kenmotsu manifold from (11) and (16), it
followed that:

∇Xξ = f
(

X− η(X)ξ
)

, (17)

then using (17), we had

(∇Xη)(Y) = f
(

g(X, Y)− η(X)η(Y)
)

. (18)
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The condition d f ∧ η = 0 held if dim(M) ≥ 5; however, this did not hold, in general,
if we had dim(M) = 3 [25]. The characteristic vector field of an f -Kenmotsu manifold
also satisfied:

R(X, Y)ξ = ( f 2 + f ′)
(

η(X)Y− η(Y)X
)

, (19)

R(ξ, Y)Z = ( f 2 + f ′)
(

η(Z)Y− g(Y, Z)ξ
)

, (20)

η[R(ξ, Y)Z] = ( f 2 + f ′)
(

g(Y, Z)η(Z)η(Y)
)

. (21)

The Schouten–van Kampen connection
?
∇ associated with the Levi-Civita connection

∇ was given by [26–29]:

?
∇XY = ∇XY− η(Y)∇Xξ + (∇Xη)(Y)ξ, (22)

for any vector fields X, Y ∈ Γ(TM). Using (13) and (14), the above equation yielded
the following:

?
∇XY = ∇XY + g(X, Y)ξ − η(Y)X. (23)

By taking Y = ξ in (23) and using (14), we obtained

?
∇Xξ = 0. (24)

Let M be an f -Kenmotsu manifold with the Schouten–van Kampen connection. Then,
using (17) and (18) in (22), we obtained the following [30,31]:

?
∇XY = ∇XY + f

(
g(X, Y)ξ − η(Y)X

)
. (25)

Let R and
?
R be the curvature tensors of the Levi-Civita connection∇ and the Schouten–

van Kampen connection
?
∇, then

R(X, Y) =
(
∇X ,∇Y

)
−∇[X,Y],

?
R(X, Y) =

( ?
∇X ,

?
∇Y

)
−

?
∇[X,Y].

By direct calculations, we obtained the following formula connecting R and
?
R on an

f -Kenmotsu manifold M:

?
R(X, Y)Z =R(X, Y)Z + f 2

(
g(Y, Z)X− g(X, Z)Y

)
(26)

+ f ′
(

g(Y, Z)η(X)ξ − g(X, Z)η(Y)ξ (27)

+ η(Y)η(Z)X− η(X)η(Z)Y
)

. (28)

and

?
R(ξ, Y)Z =0. (29)

3. Harmonic and Biharmonic Maps on f -Kenmotsu Manifolds

Definition 1. A smooth map F : N −→ M between a Kähler manifold (N2n, J, h) and an
f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g) was assumed to be a (J, ϕ)-holomorphic map if it
satisfied the following:

dF ◦ J = ϕ ◦ dF.
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Lemma 1 ([6]). Let F : N −→ M be a (J, ϕ)-holomorphic map from a Kähler manifold (N2n, J, h)
to an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g). Then, we had, for any X ∈ Γ(TN),

(η ◦ dF)(X) = 0.

We could ask now if such a map would be harmonic when the domain was a
Kähler manifold.

Lemma 2. Let F : N −→ M be a (J, ϕ)-holomorphic map from a Kähler manifold (N2n, J, h) to
an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g), then we had the following:

g(τ(F), ξ) = −2( f ◦ F)e(F).

where e(F) is the energy density of the map F.

Proof. Considering a local orthonormal basis
{

ei

}2n

i=1
on TpN for any p ∈ N, we obtained

the following:

g(τ(F), ξ) =
2n

∑
i=1

g
(
∇F

ei
dF(ei)− dF(∇N

ei
ei), ξ

)
=

2n

∑
i=1

g
(
∇M

dF(ei)
dF(ei)− dF(∇N

ei
ei), ξ

)
=

2n

∑
i=1

g
(
∇M

dF(ei)
dF(ei), ξ

)
−

2n

∑
i=1

g
(

dF(∇N
ei

ei), ξ
)

=
2n

∑
i=1

(
∇M

dF(ei)
g
(

dF(ei), ξ
)
− g
(

dF(ei),∇M
dF(ei)

ξ
))
−

2n

∑
i=1

g
(

dF(∇N
ei

ei), ξ
)

=
2n

∑
i=1

(
∇M

dF(ei)
η(dF(ei))− g

(
dF(ei),∇M

dF(ei)
ξ
))
−

2n

∑
i=1

η(dF(∇N
ei

ei)).

As F was a (J, ϕ)-holomorphic map, then by using Lemma 1, we obtained η(dF(ei)) =
0 and η(dF(∇N

ei
ei)) = 0. Then, we had the following:

g(τ(F), ξ) = −
2n

∑
i=1

g
(

dF(ei),∇M
dF(ei)

ξ
)

.

Using the Equation (17), we obtained the following:

g(τ(F), ξ) = −
2n

∑
i=1

(
( f ◦ F)

(
g(dF(ei), dF(ei))− g(dF(ei), η(dF(ei))ξ)

))
= −

2n

∑
i=1

( f ◦ F)g(dF(ei), dF(ei))

= −2( f ◦ F)e(F).

Theorem 1. Let F : N −→ M be a (J, ϕ)-holomorphic map from a Kähler manifold (N2n, J, h) to
an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g). Then, the tension field of the map F was given by:

τ(F) = −2( f ◦ F)e(F)ξ, (30)



Mathematics 2023, 11, 1905 6 of 15

Proof. For any (J, ϕ)-holomorphic map F : N −→ M, we have the following formula for
its tension field [32]

ϕ(τ(F)) = dF(divJ)− trhB,

where B is defined by B(X, Y) = (∇F
X ϕ)dFY for any vector fields X, Y ∈ Γ(TN). Since N

was a Kähler manifold, ∇J = 0, then we had

divJ =
2n

∑
i=1

(∇ei J)ei = 0,

where
{

ei

}2n

i=1
is an orthonormal local basis on TN. By using the relation (16) and doing a

straightforward calculation, we obtained the following:

trhB =
2n

∑
i=1

(∇F
ei

ϕ)dF(ei) =
2n

∑
i=1

(∇M
dF(ei)

ϕ)dF(ei)

=
2n

∑
i=1

( f ◦ F)
(

g(ϕ(dF(ei)), dF(ei))ξ − η(dF(ei))ϕ(dF(ei))
)

=
2n

∑
i=1

( f ◦ F)
(
− η(dF(ei))ϕ(dF(ei))

)
.

As F was a (J, ϕ)-holomorphic map, then by using Lemma 1, we found the following:
2n

∑
i=1

( f ◦ F)
(
− η(dF(ei))ϕ(dF(ei))

)
= 0.

As a result, ϕ(τ(F)) = 0 =⇒ ϕ2(τ(F)) = 0, that is,

τ(F) = η(τ(F))ξ = g(τ(F), ξ)ξ = −2( f ◦ F)e(F)ξ.

Theorem 2. Let (N2n, J, h) be a Kähler manifold and (M2n+1, f , ϕ, ξ, η, g) be an f -Kenmotsu
manifold. Then, any (J, ϕ)-holomorphic map F : N −→ M would be harmonic if, and only if, it
was a constant map or f ◦ F = 0.

Proof. According to Theorem 1, if the map F was harmonic, then ( f ◦ F)e(F) = 0. We
assumed that f ◦ F 6= 0. There existed an open subset U on M, such that f ◦ F 6= 0 was
everywhere on U. Therefore, e(F) = 0 was on U. From the harmonicity of F, we concluded
that e(F) = 0 on M, that is, F was a constant map.

Biharmonic Maps on f -Kenmotsu Manifolds

Theorem 3. Let F : N −→ M be a (J, ϕ)-holomorphic map from a Kähler manifold (N2n, J, h)
to an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g). Then, the bitension field of F was given by
the following:

τ2(F) =− 2
(
− 2(e(F))2(( f ◦ F)( f ′ ◦ F) + 2( f ◦ F)3)ξ

+ 3( f ◦ F)e(F)dF(grad( f ◦ F)) + ( f ◦ F)4(e(F))ξ

+ e(F)4( f ◦ F)ξ + 2g(grad( f ◦ F), grad(e(F)))ξ

+ 2( f ◦ F)2dF(grad(e(F)))
)

.
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Proof. By definition of the bitension field of the map F, we had:

τ2(F) =trh(∇F)2τ(F) + trhRM(τ(F), dF)dF

=− 2
(

trh(∇F)2( f ◦ F)e(F)ξ + trhRM(( f ◦ F)e(F)ξ, dF)dF
)

=− 2
2n

∑
i=1

(
∇F

ei
∇F

ei
( f ◦ F)e(F)ξ −∇F

∇N
ei ei

( f ◦ F)e(F)ξ

+ RM(( f ◦ F)e(F)ξ, dF(ei))dF(ei)
)

, (31)

where
{

ei

}2n

i=1
is an orthonormal local basis on TN. A direct calculation provided the following:

2n

∑
i=1

(
∇F

ei
∇F

ei
( f ◦ F)e(F)ξ

)
=

2n

∑
i=1

(
∇F

ei
(( f ◦ F)e(F)∇F

ei
ξ) +∇F

ei
(ei(( f ◦ F)e(F))ξ

)
=

2n

∑
i=1

(
( f ◦ F)e(F)∇F

ei
∇F

ei
ξ + ei(( f ◦ F)e(F))∇F

ei
ξ

+ ei(( f ◦ F)e(F))∇F
ei

ξ + ei(ei(( f ◦ F)e(F)))ξ
)

=
2n

∑
i=1

(
( f ◦ F)e(F)∇F

ei
∇F

ei
ξ + 2∇F

grad(( f ◦F)e(F))ξ

+ ei(ei(( f ◦ F)e(F)))ξ
)

,

and

2n

∑
i=1

(
∇F
∇N

ei ei
( f ◦ F)e(F)ξ

)
=

2n

∑
i=1

(
( f ◦ F)e(F)∇F

∇ei ei
ξ +∇ei ei(( f ◦ F)e(F))ξ

)
.

Based on the following:

4(( f ◦ F)e(F)) =
2n

∑
i=1

(
ei(ei(( f ◦ F)e(F)))−∇ei ei(( f ◦ F)e(F)

)
ξ,

and

trh(∇F)2ξ =
2n

∑
i=1

(
∇F

ei
∇F

ei
ξ −∇F

∇N
ei ei

ξ
)

,

we could deduce that

trh(∇F)2( f ◦ F)e(F)ξ =( f ◦ F)e(F)trh(∇F)2ξ +4(( f ◦ F)e(F))ξ + 2∇F
grad(( f ◦F)e(F))ξ

=( f ◦ F)e(F)trh(∇F)2ξ + ( f ◦ F)4(e(F))ξ + e(F)4( f ◦ F)ξ

+ 2g(grad( f ◦ F), grad(e(F))ξ + 2( f ◦ F)∇F
grad(e(F))ξ

+ 2e(F)∇F
grad( f ◦F)ξ. (32)

After calculating the term trh(∇F)2ξ, we obtained the following:

trh(∇F)2ξ =
2n

∑
i=1

(
∇F

ei
∇F

ei
ξ −∇F

∇N
ei ei

ξ
)

.
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By using Equation (17), we obtained:

2n

∑
i=1
∇F

ei
ξ =

2n

∑
i=1
∇dF(ei)

ξ =
2n

∑
i=1

( f ◦ F)
(

dF(ei))− η(dF(ei))ξ
)

,

= ( f ◦ F)
2n

∑
i=1

dF(ei),

which gave us:
2n

∑
i=1
∇F

ei
∇F

ei
ξ =

2n

∑
i=1
∇F

ei
( f ◦ F)dF(ei),

and
2n

∑
i=1
∇F
∇N

ei ei
ξ = ∇M

dF(∇N
ei ei)

ξ

=
2n

∑
i=1

( f ◦ F)
(

dF(∇N
ei

ei)− η(dF(∇N
ei

ei))ξ
)

=
2n

∑
i=1

( f ◦ F)dF(∇N
ei

ei),

we conclude that

trh(∇F)2ξ =
2n

∑
i=1

(
∇F

ei
( f ◦ F)dF(ei)− ( f ◦ F)dF(∇N

ei
ei)
)

=
2n

∑
i=1

(
ei(( f ◦ F))dF(ei) + ( f ◦ F)∇F

ei
dF(ei)− ( f ◦ F)dF(∇N

ei
ei)
)

=dF(grad f ) + ( f ◦ F)τ(F)

=dF(grad f )− 2( f ◦ F)2e(F)ξ, (33)

Now, by simplifying the terms ∇F
grad(e(F))ξ, and ∇F

grad( f ◦F)ξ, we had the following:

∇F
grad(e(F))ξ =∇M

dF(grad(e(F))ξ

= ( f ◦ F)
(

dF(grad(e(F))− ηdF(grad(e(F))ξ
)

= ( f ◦ F)dF(grad(e(F)),

and

∇F
grad( f ◦F)ξ =∇M

dF(grad( f ◦F))ξ

= ( f ◦ F)
(

dF(grad( f ◦ F))− ηdF(grad( f ◦ F))ξ
)

= ( f ◦ F)dF(grad( f ◦ F)),

which finally gave us:

trh(∇F)2( f ◦ F)e(F)ξ =− 2( f ◦ F)3(e(F))2ξ + ( f ◦ F)e(F)dF(grad( f ◦ F))

+ ( f ◦ F)4(e(F))ξ + e(F)4( f ◦ F)ξ

+ 2g(grad( f ◦ F), grad(e(F)))ξ

+ 2( f ◦ F)2dF(grad(e(F)))

+ 2( f ◦ F)e(F)dF(grad( f ◦ F))

(34)
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By using Equation (19), we obtained the following:

trhRM( f e(F)ξ, dF)dF =( f ◦ F)e(F)
2n

∑
i=1

R(ξ, dF(ei))dF(ei)

=( f ◦ F)e(F)(( f ◦ F)2 + ( f ′ ◦ F))
2n

∑
i=1

(
η(dF(ei))dF(ei)− g(dF(ei), dF(ei))ξ

)
=− 2( f ◦ F)3(e(F))2ξ − 2( f ◦ F)( f ′ ◦ F)(e(F))2ξ. (35)

If we replaced (34) and (35) in (31), we arrived at the following:

τ2(F) =− 2
(
− 2(e(F))2(( f ◦ F)( f ′ ◦ F) + 2( f ◦ F)3)ξ

+ 3( f ◦ F)e(F)dF(grad( f ◦ F)) + ( f ◦ F)4(e(F))ξ

+ e(F)4( f ◦ F)ξ + 2g(grad( f ◦ F), grad(e(F)))ξ

+ 2( f ◦ F)2dF(grad(e(F)))
)

.

Corollary 1. Let (N2n, J, h) be a Kähler manifold and (M2n+1, f , ϕ, ξ, η, g) be an f -Kenmotsu
manifold. Then, any (J, ϕ)-holomorphic map F : N −→ M would biharmonic if, and only if:

− 2(e(F))2(( f ◦ F)( f ′ ◦ F) + 2( f ◦ F)3)ξ

+ 3( f ◦ F)e(F)dF(grad( f ◦ F)) + ( f ◦ F)4(e(F))ξ

+ e(F)4( f ◦ F)ξ + 2g(grad( f ◦ F), grad(e(F)))ξ

+ 2( f ◦ F)2dF(grad(e(F))) = 0.

Corollary 2. Let (N2n, J, h) be a Kähler manifold and (M2n+1, ϕ, ξ, η, g) be a Kenmotsu manifold;
then, any (J, ϕ)-holomorphic map F : N −→ M would be biharmonic if, and only if:

−4e(F)2ξ +4(e(F))ξ + 2dF(grad(e(F)) =0.

Corollary 3. Let (N2n, J, h) be a Kähler manifold and (M2n+1, f , ϕ, ξ, η, g) be an f -Kenmotsu
manifold. Then, any (J, ϕ)-holomorphic map F : N −→ M of constant energy density would
biharmonic if, and only if:

−2e(F)(( f ◦ F)( f ′ ◦ F) + 2( f ◦ F)3)ξ + 3( f ◦ F)dF(grad( f ◦ F)) +4( f ◦ F)ξ =0.

Corollary 4. Let F : N −→ M be a (J, ϕ)-holomorphic map of constant energy density from a
Kähler manifold (N, J, h) to an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g). If the function f ◦ F
was constant on N, then F would biharmonic if, and only if, f f ′ + 2 f 3 = 0 was on F(N).

Example 1. Let the five-dimensional manifold M = R4× (0, ∞) be equipped with the Riemannian
metric g = t−2α(dy2

1 + dy2
2 + dy2

3 + dy2
4) + dt2, for some constant α ∈ R. We considered the

following orthonormal basis:

e1 = tα ∂

∂y1
, e2 = tα ∂

∂y2
, e3 = tα ∂

∂y3
, e4 = tα ∂

∂y4
, e5 =

∂

∂t
.

We considered a 1-form η defined by:

η(X) = g(X, e5), ∀X ∈ Γ(TM).
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That is, we chose e5 = ξ. We defined the tensor field ϕ by the following:

ϕ(e1) = −e2, ϕ(e2) = e1, ϕ(e3) = −e4, ϕ(e4) = e3, ϕ(e5) = 0.

By the linearity properties of g and ϕ, we obtained the following:

η(e5) = 1, ϕ2X = −X + η(X)e5,

g(ϕX, ϕY) = g(X, Y)− η(X)η(Y),

for any vector fields X, Y on M. Therefore, (M, ϕ, ξ, η, g) formed an almost contact metric manifold.
Otherwise, we had [ei, e5] = −αt−1ei for i = 1, 2, 3, 4 and [ei, ej] = 0.Let∇ be the Levi-Civita

connection of (M, g). By using Koszul’s formula, we obtained the following for i, j = 1, 2, 3, 4 with
i 6= j:

∇ei ei =
α

t
e5, ∇ei e5 = −α

t
ei, ∇ei ej = ∇e5 ei = ∇e5 e5 = 0.

The above relations indicated that ∇Xξ = f {X − η(X)ξ} for ξ = e5 and f = − α
t .

Therefore, we could say that (M2n+1, f , ϕ, ξ, η, g) was an f -Kenmotsu manifold. Moreover,
(M2n+1, f , ϕ, ξ, η, g) was a regular f -Kenmotsu manifold if, and only if, α 6= 0,−1, because
f 2 + f ′ = α(α+1)

t2 .
Let F be a (J, ϕ)-holomorphic map, defined by the following:

F : (R2, J, h) −→ (M2n+1, f , ϕ, ξ, η, g),

(x1, x2) 7−→ (F1(x1, x2), F2(x1, x2), F3(x1, x2), F4(x1, x2), F5(x1, x2))

where h = dx2
1 + dx2

2, J( ∂
∂x1

) = ∂
∂x2

, J( ∂
∂x2

) = − ∂
∂x1

and Fi(x1, x2) are defined by

F1(x1, x2) = a1x1 + a2x2 + c1

F2(x1, x2) = a2x1 − a1x2 + c2

F3(x1, x2) = a3x1 + a4x2 + c3

F4(x1, x2) = a4x1 − a3x2 + c4

F5(x1, x2) = c5

where aj, ci ∈ R are for all j = 1, 2, 3, 4 and i = 1, 2, 3, 4, 5. Note that the density energy of F was a
constant given by e(F) = (a2

1 + a2
2 + a2

3 + a2
4)c
−α
5 . According to Theorem 3, the tension field of F

was given by the following:

τ(F) =
α(a2

1 + a2
2 + a2

3 + a2
4)

cα+1
5

e5.

As f ◦ F was constant on N, and the density energy of F was constant, from Corollary 4, the
map F would be biharmonic if, and only if:

( f f ′ + 2 f 3) ◦ F = −α2(1 + 2α)

c3
5

= 0.

Therefore, F was biharmonic non-harmonic if, and only if, α = − 1
2 .

4. Biharmonic Maps on f -Kenmotsu with the Schouten–van Kampen Connection

Theorem 4. Let (N2n, J, h) be a Kähler manifold and (M2n+1, f , ϕ, ξ, η, g) be an f -Kenmotsu
manifold with the Schouten–van Kampen connection. Then, any (J, ϕ)-holomorphic map

F : N −→ M would be harmonic.
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Proof. Based on the (J, ϕ)-holomorphic map, we had the following:

ϕ(τ(F)) = dF(divJ)− trhB,

where B is defined by B(X, Y) = (∇F
X ϕ)dFY for any vector fields X, Y ∈ Γ(TN). Consider-

ing a local orthonormal basis
{

ei

}2n

i=1
on TpN for any p ∈ N, we obtained the following:

divJ =
2n

∑
i=1

(∇ei J)ei = 0,

and by using relation (16), we found the following, as well:

trhB =
2n

∑
i=1

(∇F
ei

ϕ)dF(ei) =
2n

∑
i=1

(∇M
dF(ei)

ϕ)dF(ei)

=
2n

∑
i=1

( f ◦ F)
(

g(ϕ(dF(ei)), dF(ei))ξ − η(dF(ei))ϕ(dF(ei))
)

=
2n

∑
i=1

( f ◦ F)
(
− η(dF(ei))ϕ(dF(ei))

)
.

= 0.

From the above relation, we could obtain the following: ϕ(τ(F)) = 0 ⇒ τ(F) =
g(τ(F), ξ)ξ. However,

g(τ(F), ξ) =
2n

∑
i=1

g
(
∇F

ei
dF(ei)− dF(∇N

ei
ei), ξ

)
=

2n

∑
i=1

g
(
∇M

dF(ei)
dF(ei)− dF(∇N

ei
ei), ξ

)
=

2n

∑
i=1

g
(
∇M

dF(ei)
dF(ei), ξ

)
−

2n

∑
i=1

g
(

dF(∇N
ei

ei), ξ
)

=
2n

∑
i=1

(
∇M

dF(ei)
g
(

dF(ei), ξ
)
− g
(

dF(ei),∇M
dF(ei)

ξ
))
−

2n

∑
i=1

g
(

dF(∇N
ei

ei), ξ
)

=
2n

∑
i=1

(
∇M

dF(ei)
η(dF(ei))− g

(
dF(ei),∇M

dF(ei)
ξ
))
−

2n

∑
i=1

η(dF(∇N
ei

ei)).

As F was a (J, ϕ)-holomorphic map, then by using Lemma 1, we found η(dF(ei)) = 0
and η(dF(∇N

ei
ei)) = 0. Then, we had

g(τ(F), ξ) =
2n

∑
i=1

(
− g
(

dF(ei),∇M
dF(ei)

ξ
))

.

In addition, from relation (24), we had ∇M
dF(ei)

ξ = 0, and then, g(τ(F), ξ) = 0.

Biharmonic Identity Map with the Schouten–van Kampen Connection

Theorem 5. Let I : M −→ M be the identity map from an f -Kenmotsu manifold
(M2n+1, f , ϕ, ξ, η, g) to an f -Kenmotsu manifold with the Schouten–van Kampen connection
(M2n+1, f , ϕ, ξ, η, g). Then the tension field of map I was given by the following:

τ(I) = 2n f ξ (36)

Proof. Let
{

e1, ..., en, ϕ(e1), ..., ϕ(en), ξ
}

be an orthonormal local basis on TM. Then, by
definition of the tension field of map I, we found the following:
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τ(I) =trg∇dI

=
2n+1

∑
i=1

(
∇M

dI(ei)
dI(ei)− dI(∇M

ei
ei)
)

.

Using relation (25), we had the following:

τ(I) =
2n+1

∑
i=1

(
f (g(ei, ei)ξ − η(ei)ei)

)
=2n f ξ.

Theorem 6. Let I : M −→ M be the identity map from an f -Kenmotsu manifold
(M2n+1, f , ϕ, ξ, η, g) to an f -Kenmotsu manifold with the Schouten–van Kampen connection
(M2n+1, f , ϕ, ξ, η, g). Then, map I would be harmonic if, and only if, M was a cosymplectic manifold.

Theorem 7. Let I : M −→ M be the identity map from an f -Kenmotsu manifold
(M2n+1, f , ϕ, ξ, η, g) to an f -Kenmotsu manifold with the Schouten–van Kampen connection
(M2n+1, f , ϕ, ξ, η, g). Then, map I would be biharmonic if, and only if, f was a harmonic function.

Proof. Let
{

e1, ..., en, ϕ(e1), ..., ϕ(en), ξ
}

be an orthonormal local basis on TM; then, by
definition of the tension field of map I, we had the following:

τ2(I) = trg(∇I)2τ(I) + trgRM(τ(I), dI)dI

= 2n
(

trg(∇I)2 f ξ + trgRM( f ξ, dI)dI
)

=
2n+1

∑
i=1

(
∇I

ei
∇I

ei
2n f ξ −∇I

∇M
ei ei

2n f ξ + RM(2n f ξ, dI(ei))dI(ei)
)

.

The combination of Equation (24) and direct calculations provided the following:

2n+1

∑
i=1

(
∇I

ei
∇I

ei
2n f ξ

)
=2n

2n+1

∑
i=1

(
ei(ei( f ))ξ

)
,

and
2n+1

∑
i=1

(
∇I
∇ei ei

2n f ξ
)
= 2n

2n+1

∑
i=1

(
∇ei ei( f )ξ

)
.

Based on the following:

4( f ) =
2n+1

∑
i=1

(
ei(ei( f ))−∇ei ei( f )

)
,

we could conclude
2n+1

∑
i=1

(
∇I

ei
∇I

ei
2n f ξ

)
=2n4( f )ξ.
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Based on Equation (29), we found the following:

trgRM(2n f ξ, dI)dI = 2n f trg

(
RM(ξ, dI)dI

)
= 2n f

2n+1

∑
i=1

(
RM(ξ, ei)ei

)
=0.

Finally, we obtained

τ2(I) = 2n4( f )ξ. (37)

Remark 1. If f was a constant or harmonic function, then I would be a proper biharmonic map.

Theorem 8. Let I : M −→ M be the identity map from an f -Kenmotsu manifold with the Schouten–
van Kampen connection (M2n+1, f , ϕ, ξ, η, g) to an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g).
Then, the bitension field of map I was given by the following:

τ2(I) =− 2n
(

∆( f )ξ + f τ2(ξ) + 2∇I
grad f ξ

)
, (38)

where ∆ is the Laplacian on (M2n+1, f , ϕ, ξ, η, g).

Proof. Let
{

e1, ..., en, ϕ(e1), ..., ϕ(en), ξ
}

be an orthonormal local basis on TM; then, by
definition of the tension field of map I, we had the following:

τ(I) =trg∇dI

=
2n+1

∑
i=1

(
∇M

dI(ei)
dI(ei)− dI(∇M

ei
ei)
)

=−
2n+1

∑
i=1

(
f (g(ei, ei)ξ − η(ei)ei)

)
=− 2n f ξ.

However, we had the following:

τ2(I) = trg(∇I)2τ(I) + trgRM(τ(I), dI)dI

= −2n
(

trg(∇I)2 f ξ + trgRM( f ξ, dI)dI
)

= −
2n+1

∑
i=1

(
∇I

ei
∇I

ei
2n f ξ −∇I

∇M
ei ei

2n f ξ + RM(2n f ξ, dI(ei))dI(ei)
)

. (39)

A direct calculation of
2n+1

∑
i=1

(
∇I

ei
∇I

ei
2n f ξ

)
=2n

2n+1

∑
i=1
∇I

ei

(
ei( f )ξ + f∇I

ei
ξ
)

=2n
2n+1

∑
i=1

(
ei(ei( f ))ξ + ei( f )∇I

ei
ξ + ei( f )∇I

ei
ξ + f∇I

ei
∇I

ei
ξ
)

=2n
2n+1

∑
i=1

(
ei(ei( f ))ξ + 2∇I

grad f ξ + f∇I
ei
∇I

ei
ξ
)

,

and
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2n+1

∑
i=1

(
∇I
∇M

ei ei
2n f ξ

)
=2n

2n+1

∑
i=1

(
(∇M

ei
ei)( f )ξ + f∇I

∇M
ei ei

ξ
)

finally yielded the following:

trg(∇I)2n f ξ = 2n
(

∆( f )ξ + f trg(∇I)2ξ + 2∇I
grad f ξ

)
. (40)

If we replaced (40) in (39), we arrived at:

τ2(I) =− 2n
(

∆( f )ξ + f τ2(ξ) + 2∇I
grad f ξ

)
.

Corollary 5. Let I : M −→ M be the identity map from an f -Kenmotsu manifold with the Schouten–
van Kampen connection (M2n+1, f , ϕ, ξ, η, g) to an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g).
Then, map I would be biharmonic if, and only if:

∆( f )ξ + f τ2(ξ) + 2∇I
grad f ξ = 0,

Corollary 6. Let I : M −→ M be the identity map from an f -Kenmotsu manifold with the Schouten–
van Kampen connection (M2n+1, f , ϕ, ξ, η, g) to an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g). If f
was a constant function, then map I would be biharmonic if, and only if, ξ was a biharmonic vector field.

Corollary 7. Let I : M −→ M be the identity map from an f -Kenmotsu manifold with the Schouten–
van Kampen connection (M2n+1, f , ϕ, ξ, η, g) to an f -Kenmotsu manifold (M2n+1, f , ϕ, ξ, η, g). If
ξ was a parallel vector field (i.e., ∇ξ = 0), then map I would be biharmonic if, and only if, f was a
harmonic function.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created.

Acknowledgments: The author kindly thanks in advance the anonymous referee for providing their
valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eells, J.; Sampson, J.H. Harmonic mappings of Riemannian manifolds. Am. J. Math. 1964, 86, 109–160. [CrossRef]
2. Ishihara, T. Harmonic sections of tangent bundles. J. Math. Univ. Tokushima 1979, 13, 23–27.
3. Oproiu, V. On Harmonic Maps Between Tangent Bundles. Rend. Sem. Mat. 1989, 47, 47–55.
4. Djaa, M.; El Hendi, H.; Ouakkas, S. Biharmonic vector field. Turkish J. Math. 2012, 36, 463–474. [CrossRef]
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