Biharmonic Maps on f-Kenmotsu Manifolds with the Schouten-van Kampen Connection

Hichem El hendi

check for
updates
Citation: El hendi, H. Biharmonic Maps on f-Kenmotsu Manifolds with the Schouten-van Kampen
Connection. Mathematics 2023,11, 1905. https://doi.org/10.3390/ math11081905

Academic Editor: Adara M. Blaga
Received: 3 March 2023
Revised: 31 March 2023
Accepted: 4 April 2023
Published: 17 April 2023

Copyright: © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Department of Mathematics and Informatics, University of Bechar, B.P. 417, Bechar 08000, Algeria; elhendi.hichem@univ-bechar.dz

Abstract

The object of the present paper was to study biharmonic maps on f-Kenmotsu manifolds and f-Kenmotsu manifolds with the Schouten-van Kampen connection. With the help of this connection, our results provided important insights related to harmonic and biharmonic maps.

Keywords: harmonic maps; biharmonic maps; f-Kenmotsu manifolds; Schouten-van Kampen connection
MSC: 53C21; 53C25; 5350; 53E20

1. Introduction

Let $\phi:\left(M^{m}, g\right) \longrightarrow\left(N^{n}, h\right)$ be a smooth map between two Riemannian manifolds. The energy density of ϕ was the smooth function on M given by:

$$
e(\phi)_{p}=\sum_{i=1}^{m} h\left(d_{p} \phi\left(e_{i}\right), d_{p} \phi\left(e_{i}\right)\right)
$$

for any $p \in M$ and any orthonormal basis $\left\{e_{i}\right\}_{i=1}^{m}$ of $T_{p} M$. If M was a compact Riemannian manifold, the energy functional $E(\phi)$ was the integral of its energy density.

$$
\begin{equation*}
E(\phi)=\int_{M} e(\phi) d v^{g} \tag{1}
\end{equation*}
$$

For any smooth variation $\{\phi\}_{t \in I}$ of ϕ with $\phi_{0}=\phi$ and $V=\left.\frac{d \phi_{t}}{d t}\right|_{t=0}$, we had the following:

$$
\begin{equation*}
\left.\frac{d}{d t} E\left(\phi_{t}\right)\right|_{t=0}=-\int_{M} h(\tau(\phi), V) d v^{g} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau(\phi)=\operatorname{tr}_{g} \nabla d \phi \tag{3}
\end{equation*}
$$

is the tension field of ϕ. Then, we found that $\phi:\left(M^{m}, g\right) \longrightarrow\left(N^{n}, h\right)$ was harmonic if, and only if,

$$
\begin{equation*}
\tau(\phi)=0 \tag{4}
\end{equation*}
$$

If $\left(x^{i}\right)_{1 \leq i \leq m}$ and $\left(y^{\alpha}\right)_{1 \leq \alpha \leq n}$ denoted local coordinates on M and N, respectively, then Equation (4) took the following form:

$$
\begin{equation*}
\tau(\phi)^{\alpha}=\sum_{\substack{1 \leq \alpha, \beta, \gamma \leq n \\ 1 \leq i, j \leq m}}\left(\Delta \phi^{\alpha}+g^{i j} \Gamma_{\beta \gamma}^{N} \frac{\partial \phi^{\beta}}{\partial x^{i}} \frac{\partial \phi^{\gamma}}{\partial x^{j}}\right)=0, \tag{5}
\end{equation*}
$$

where $\Delta \phi^{\alpha}=\sum_{\substack{1 \leq \alpha \leq n \\ 1 \leq i, j \leq m}}\left(\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{i}}\left(\sqrt{|g|} g^{i j} \frac{\partial \phi^{\alpha}}{\partial x^{j}}\right)\right.$ is the Laplace operator on $\left(M^{m}, g\right)$, and $\stackrel{N}{\Gamma_{\beta \gamma}^{\alpha}}$ are the Christoffel symbols of the Levi-Civita connections of $\left(N^{n}, h\right)$. The biharmonic maps, which provide a natural generalization of harmonic maps, were defined as the critical points of the bi-energy function:

$$
\begin{equation*}
E_{2}(\phi)=\frac{1}{2} \int_{M}|\tau(\phi)|^{2} d v^{g} . \tag{6}
\end{equation*}
$$

For any smooth variation $\{\phi\}_{t \in I}$ of ϕ with $\phi_{0}=\phi$ and $V=\left.\frac{d \phi_{t}}{d t}\right|_{t=0}$, we had the following:

$$
\begin{equation*}
\left.\frac{d}{d t} E_{2}\left(\phi_{t}\right)\right|_{t=0}=-\int_{M} h\left(\tau_{2}(\phi), V\right) d v_{g} \tag{7}
\end{equation*}
$$

The Euler-Lagrange equation attached to the bi-energy was given by the vanishing of the bitension field, as follows:

$$
\begin{equation*}
\tau_{2}(\phi)=-\left(\triangle \tau(\phi)+\operatorname{tr}_{g} R^{N}(\tau(\phi), d \phi) d \phi\right) \tag{8}
\end{equation*}
$$

where $\triangle=$ trace $\left(\nabla^{\phi} \nabla^{\phi}-\nabla_{\nabla}^{\phi}\right)$ is the rough Laplacian on the sections of the pull-back bundle $\varphi^{-1} T N, \nabla^{\phi}$ is the pull-back connection, and R^{N} is the curvature tensor on N. Clearly, any harmonic map was always a biharmonic map, and a proper biharmonic map would not be harmonic. The harmonic and biharmonic maps have been studied by many authors [1-4]. Currently, the theories of harmonic and biharmonic maps have become a very important field of research in differential geometry. Najma in [5] studied the harmonic maps between the Kähler and Kenmotsu manifolds. After that, Zagane and Ouakkas in [6] studied the biharmonicity on Kenmotsu manifolds, and they calculated the stress bi-energy tensor from a Kähler manifold to a Kenmotsu manifold. Moreover, Mangione in [7] studied harmonic maps and their stability on f-Kenmotsu manifolds. In [8], Ichi Inoguchi and Eun Lee investigated the biharmonic curves on f-Kenmotsu 3D-manifolds.

Motivated by the above studies, in this paper, we obtained results concerning the harmonicity and biharmonicity of (J, φ)-holomorphic maps from a Kähler manifold ($N^{2 n}, J, h$) to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ and we provided the necessary and sufficient conditions for the biharmonicity of the identity map $I: M \longrightarrow \bar{M}$ from an f-Kenmotsu manifold ($\left.M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ to an f-Kenmotsu manifold with the Schouten-van Kampen connection.

The structure of this paper is as follows: After the introduction, we described some wellknown basic formulas and the properties of the f-Kenmotsu manifold and the f-Kenmotsu manifold with the Schouten-van Kampen connection.

In Section 2, we initiated a study of harmonic and biharmonic maps when the domain was a Kähler manifold $\left(N^{2 n}, J, h\right)$, and the target was an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. We proved that for $F: N \longrightarrow M$ being a (J, φ)-holomorphic map of constant energy density $e(F)$, then F would be biharmonic if, and only if:

$$
\begin{equation*}
-2 e(F)\left((f \circ F)\left(f^{\prime} \circ F\right)+2(f \circ F)^{3}\right) \xi+3(f \circ F) d F(\operatorname{grad}(f \circ F))+\triangle(f \circ F) \xi=0 \tag{9}
\end{equation*}
$$

On the other hand, we proved if the function $f \circ F$ was constant on N and $F: N \longrightarrow M$ was a (J, φ)-holomorphic map of constant energy density, then F would be biharmonic if, and only if:

$$
\begin{equation*}
(f \circ F)\left(f^{\prime} \circ F\right)+2(f \circ F)^{3}=0 \tag{10}
\end{equation*}
$$

Finally, we provided an example of a (J, φ)-holomorphic map from a Kähler manifold to an f-Kenmotsu manifold, which verified Theorem 3.

In Section 3, we proved that any (J, φ)-holomorphic map from a Kähler manifold $\left(N^{2 n}, J, h\right)$ to an f-Kenmotsu manifold ($\left.M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ with the Schouten-van Kampen connection was harmonic. In the same section, we also studied the biharmonicity of the identity map $I: M \longrightarrow \bar{M}$ from an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ to an
f-Kenmotsu manifold with the Schouten-van Kampen connection $\left(\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. We obtained the following results: Firstly, the identity map $I: M \longrightarrow \bar{M}$ would be biharmonic if, and only if, the function f was harmonic. Secondly, if f was a constant function, then the identity map $I: \bar{M} \longrightarrow M$ from an f-Kenmotsu manifold with the Schouten-van Kampen connection ($\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g$) to an f-Kenmotsu manifold ($M^{2 n+1}, f, \varphi, \xi, \eta, g$) would be biharmonic if, and only if, ξ was biharmonic vector field.

2. Preliminaries

A $(2 n+1)$ dimensional real differentiable manifold M was assumed to be an almost contact metric manifold if it had an almost contact metric structure (φ, ξ, η, g), where φ is a $(1,1)$ type tensor field, ξ a global vector field, η is a 1 -form, and g is a Riemannian metric compatible with (φ, ξ, η, g), satisfying the following [9-12]:

$$
\begin{gather*}
\varphi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \\
\varphi \xi=0, \quad \eta \circ \varphi=0, \quad \eta(X)=g(X, \xi), \tag{11}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y),
\end{gather*}
$$

for any vector fields $X, Y \in \Gamma(T M)$, where $\Gamma(T M)$ denotes the Lie algebra of all differentiable vector fields on $M^{2 n+1}$ and I is the identity transformation.

An almost contact metric manifold was a Kenmotsu manifold if

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g(\varphi X, Y) \xi-\eta(Y) \varphi X \tag{12}
\end{equation*}
$$

where ∇ denotes the Riemannian connection of g.
In a Kenmotsu manifold, we had the following relations [13-15]:

$$
\begin{gather*}
\left(\nabla_{X} \eta\right)(Y)=g(X, Y)-\eta(X) \eta(Y) \tag{13}\\
\nabla_{X} \xi=X-\eta(X) \xi \tag{14}\\
R(X, Y) \xi=\eta(X) Y-\eta(Y) X \tag{15}
\end{gather*}
$$

for any vector fields X, Y on M, and R denotes the Riemannian curvature tensor on M.
We assumed that M was an f-Kenmotsu manifold if the Levi-Civita ∇ of φ satisfied the following condition [16-22]:

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=f(g(\varphi X, Y) \xi-\eta(Y) \varphi X) \tag{16}
\end{equation*}
$$

where $f \in C^{\infty}(M)$, such that $d f \wedge \eta=0$. If the function f was equal to a constant $\alpha>0$, we obtained an α-Kenmotsu manifold, which were Kenmotsu manifolds for $\alpha=1$. If $f=0$, then the manifold would be cosymplectic [23,24]. An f-Kenmotsu manifold was assumed to be regular if $f^{2}+f^{\prime} \neq 0$, where $f^{\prime}=\xi(f)$. For an f-Kenmotsu manifold from (11) and (16), it followed that:

$$
\begin{equation*}
\nabla_{X} \xi=f(X-\eta(X) \xi) \tag{17}
\end{equation*}
$$

then using (17), we had

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=f(g(X, Y)-\eta(X) \eta(Y)) \tag{18}
\end{equation*}
$$

The condition $d f \wedge \eta=0$ held if $\operatorname{dim}(M) \geq 5$; however, this did not hold, in general, if we had $\operatorname{dim}(M)=3$ [25]. The characteristic vector field of an f-Kenmotsu manifold also satisfied:

$$
\begin{align*}
R(X, Y) \xi & =\left(f^{2}+f^{\prime}\right)(\eta(X) Y-\eta(Y) X) \tag{19}\\
R(\xi, Y) Z & =\left(f^{2}+f^{\prime}\right)(\eta(Z) Y-g(Y, Z) \xi) \tag{20}\\
\eta[R(\xi, Y) Z] & =\left(f^{2}+f^{\prime}\right)(g(Y, Z) \eta(Z) \eta(Y)) . \tag{21}
\end{align*}
$$

The Schouten-van Kampen connection $\stackrel{\star}{\nabla}$ associated with the Levi-Civita connection ∇ was given by [26-29]:

$$
\begin{equation*}
\stackrel{\star}{\nabla}_{X} Y=\nabla_{X} Y-\eta(Y) \nabla_{X} \xi+\left(\nabla_{X} \eta\right)(Y) \xi \tag{22}
\end{equation*}
$$

for any vector fields $X, Y \in \Gamma(T M)$. Using (13) and (14), the above equation yielded the following:

$$
\begin{equation*}
\stackrel{\star}{\nabla}_{X} Y=\nabla_{X} Y+g(X, Y) \xi-\eta(Y) X \tag{23}
\end{equation*}
$$

By taking $Y=\xi$ in (23) and using (14), we obtained

$$
\begin{equation*}
\stackrel{\star}{\nabla}_{X} \xi=0 . \tag{24}
\end{equation*}
$$

Let M be an f-Kenmotsu manifold with the Schouten-van Kampen connection. Then, using (17) and (18) in (22), we obtained the following [30,31]:

$$
\begin{equation*}
\stackrel{\star}{\nabla}_{X} Y=\nabla_{X} Y+f(g(X, Y) \xi-\eta(Y) X) \tag{25}
\end{equation*}
$$

Let R and $\stackrel{\star}{R}$ be the curvature tensors of the Levi-Civita connection ∇ and the Schoutenvan Kampen connection $\stackrel{\star}{\nabla}$, then

$$
R(X, Y)=\left(\nabla_{X}, \nabla_{Y}\right)-\nabla_{[X, Y]}, \quad \stackrel{\star}{R}(X, Y)=\left(\stackrel{\star}{\nabla}_{X}, \stackrel{\star}{\nabla}_{Y}\right)-\stackrel{\star}{\nabla}_{[X, Y]} .
$$

By direct calculations, we obtained the following formula connecting R and $\stackrel{\star}{R}$ on an f-Kenmotsu manifold M :

$$
\begin{align*}
\stackrel{\star}{R}(X, Y) Z= & R(X, Y) Z+f^{2}(g(Y, Z) X-g(X, Z) Y) \tag{26}\\
& +f^{\prime}(g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \tag{27}\\
& +\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y) . \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
\stackrel{\star}{R}(\xi, Y) Z=0 \tag{29}
\end{equation*}
$$

3. Harmonic and Biharmonic Maps on f-Kenmotsu Manifolds

Definition 1. A smooth map $F: N \longrightarrow M$ between a Kähler manifold $\left(N^{2 n}, J, h\right)$ and an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ was assumed to be a (J, φ)-holomorphic map if it satisfied the following:

$$
d F \circ J=\varphi \circ d F
$$

Lemma 1 ([6]). Let $F: N \longrightarrow M$ be a (J, φ)-holomorphic map from a Kähler manifold ($\left.N^{2 n}, J, h\right)$ to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. Then, we had, for any $X \in \Gamma(T N)$,

$$
(\eta \circ d F)(X)=0
$$

We could ask now if such a map would be harmonic when the domain was a Kähler manifold.

Lemma 2. Let $F: N \longrightarrow M$ be a (J, φ)-holomorphic map from a Kähler manifold $\left(N^{2 n}, J, h\right)$ to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$, then we had the following:

$$
g(\tau(F), \xi)=-2(f \circ F) e(F) .
$$

where $e(F)$ is the energy density of the map F.
Proof. Considering a local orthonormal basis $\left\{e_{i}\right\}_{i=1}^{2 n}$ on $T_{p} N$ for any $p \in N$, we obtained the following:

$$
\begin{aligned}
g(\tau(F), \xi) & =\sum_{i=1}^{2 n} g\left(\nabla_{e_{i}}^{F} d F\left(e_{i}\right)-d F\left(\nabla_{e_{i}}^{N} e_{i}\right), \xi\right) \\
& =\sum_{i=1}^{2 n} g\left(\nabla_{d F\left(e_{i}\right)}^{M} d F\left(e_{i}\right)-d F\left(\nabla_{e_{i}}^{N} e_{i}\right), \xi\right) \\
& =\sum_{i=1}^{2 n} g\left(\nabla_{d F\left(e_{i}\right)}^{M} d F\left(e_{i}\right), \xi\right)-\sum_{i=1}^{2 n} g\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right), \xi\right) \\
& =\sum_{i=1}^{2 n}\left(\nabla_{d F\left(e_{i}\right)}^{M} g\left(d F\left(e_{i}\right), \xi\right)-g\left(d F\left(e_{i}\right), \nabla_{d F\left(e_{i}\right)}^{M} \xi\right)\right)-\sum_{i=1}^{2 n} g\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right), \xi\right) \\
& =\sum_{i=1}^{2 n}\left(\nabla_{d F\left(e_{i}\right)}^{M} \eta\left(d F\left(e_{i}\right)\right)-g\left(d F\left(e_{i}\right), \nabla_{d F\left(e_{i}\right)}^{M} \xi\right)\right)-\sum_{i=1}^{2 n} \eta\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right)\right) .
\end{aligned}
$$

As F was a (J, φ)-holomorphic map, then by using Lemma 1, we obtained $\eta\left(d F\left(e_{i}\right)\right)=$ 0 and $\eta\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right)\right)=0$. Then, we had the following:

$$
g(\tau(F), \xi)=-\sum_{i=1}^{2 n} g\left(d F\left(e_{i}\right), \nabla_{d F\left(e_{i}\right)}^{M} \xi\right)
$$

Using the Equation (17), we obtained the following:

$$
\begin{aligned}
g(\tau(F), \xi) & =-\sum_{i=1}^{2 n}\left((f \circ F)\left(g\left(d F\left(e_{i}\right), d F\left(e_{i}\right)\right)-g\left(d F\left(e_{i}\right), \eta\left(d F\left(e_{i}\right)\right) \xi\right)\right)\right) \\
& =-\sum_{i=1}^{2 n}(f \circ F) g\left(d F\left(e_{i}\right), d F\left(e_{i}\right)\right) \\
& =-2(f \circ F) e(F)
\end{aligned}
$$

Theorem 1. Let $F: N \longrightarrow M$ be a (J, φ)-holomorphic map from a Kähler manifold $\left(N^{2 n}, J, h\right)$ to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. Then, the tension field of the map F was given by:

$$
\begin{equation*}
\tau(F)=-2(f \circ F) e(F) \xi, \tag{30}
\end{equation*}
$$

Proof. For any (J, φ)-holomorphic map $F: N \longrightarrow M$, we have the following formula for its tension field [32]

$$
\varphi(\tau(F))=d F(d i v J)-\operatorname{tr}_{h} B
$$

where B is defined by $B(X, Y)=\left(\nabla_{X}^{F} \varphi\right) d F Y$ for any vector fields $X, Y \in \Gamma(T N)$. Since N was a Kähler manifold, $\nabla J=0$, then we had

$$
\operatorname{div} J=\sum_{i=1}^{2 n}\left(\nabla_{e_{i}} J\right) e_{i}=0,
$$

where $\left\{e_{i}\right\}_{i=1}^{2 n}$ is an orthonormal local basis on $T N$. By using the relation (16) and doing a straightforward calculation, we obtained the following:

$$
\begin{aligned}
\operatorname{tr}_{h} B & =\sum_{i=1}^{2 n}\left(\nabla_{e_{i}}^{F} \varphi\right) d F\left(e_{i}\right)=\sum_{i=1}^{2 n}\left(\nabla_{d F\left(e_{i}\right)}^{M} \varphi\right) d F\left(e_{i}\right) \\
& =\sum_{i=1}^{2 n}(f \circ F)\left(g\left(\varphi\left(d F\left(e_{i}\right)\right), d F\left(e_{i}\right)\right) \xi-\eta\left(d F\left(e_{i}\right)\right) \varphi\left(d F\left(e_{i}\right)\right)\right) \\
& =\sum_{i=1}^{2 n}(f \circ F)\left(-\eta\left(d F\left(e_{i}\right)\right) \varphi\left(d F\left(e_{i}\right)\right)\right) .
\end{aligned}
$$

As F was a (J, φ)-holomorphic map, then by using Lemma 1, we found the following:

$$
\sum_{i=1}^{2 n}(f \circ F)\left(-\eta\left(d F\left(e_{i}\right)\right) \varphi\left(d F\left(e_{i}\right)\right)\right)=0
$$

As a result, $\varphi(\tau(F))=0 \Longrightarrow \varphi^{2}(\tau(F))=0$, that is,

$$
\tau(F)=\eta(\tau(F)) \xi=g(\tau(F), \xi) \xi=-2(f \circ F) e(F) \xi
$$

Theorem 2. Let $\left(N^{2 n}, J, h\right)$ be a Kähler manifold and $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ be an f-Kenmotsu manifold. Then, any (J, φ)-holomorphic map $F: N \longrightarrow M$ would be harmonic if, and only if, it was a constant map or $f \circ F=0$.

Proof. According to Theorem 1, if the map F was harmonic, then $(f \circ F) e(F)=0$. We assumed that $f \circ F \neq 0$. There existed an open subset U on M, such that $f \circ F \neq 0$ was everywhere on U. Therefore, $e(F)=0$ was on U. From the harmonicity of F, we concluded that $e(F)=0$ on M, that is, F was a constant map.

Biharmonic Maps on f-Kenmotsu Manifolds
Theorem 3. Let $F: N \longrightarrow M$ be a (J, φ)-holomorphic map from a Kähler manifold $\left(N^{2 n}, J, h\right)$ to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. Then, the bitension field of F was given by the following:

$$
\begin{aligned}
\tau_{2}(F)= & -2\left(-2(e(F))^{2}\left((f \circ F)\left(f^{\prime} \circ F\right)+2(f \circ F)^{3}\right) \xi\right. \\
& +3(f \circ F) e(F) d F(\operatorname{grad}(f \circ F))+(f \circ F) \triangle(e(F)) \xi \\
& +e(F) \triangle(f \circ F) \xi+2 g(\operatorname{grad}(f \circ F), \operatorname{grad}(e(F))) \xi^{3} \\
& \left.+2(f \circ F)^{2} d F(\operatorname{grad}(e(F)))\right) .
\end{aligned}
$$

Proof. By definition of the bitension field of the map F, we had:

$$
\begin{align*}
\tau_{2}(F)= & \operatorname{tr}_{h}\left(\nabla^{F}\right)^{2} \tau(F)+\operatorname{tr}_{h} R^{M}(\tau(F), d F) d F \\
= & -2\left(\operatorname{tr}_{h}\left(\nabla^{F}\right)^{2}(f \circ F) e(F) \xi+\operatorname{tr}_{h} R^{M}((f \circ F) e(F) \xi, d F) d F\right) \\
= & -2 \sum_{i=1}^{2 n}\left(\nabla_{e_{i}}^{F} \nabla_{e_{i}}^{F}(f \circ F) e(F) \xi-\nabla_{\nabla_{e_{i} e_{i}}^{N}}^{F}(f \circ F) e(F) \xi\right. \\
& \left.+R^{M}\left((f \circ F) e(F) \xi, d F\left(e_{i}\right)\right) d F\left(e_{i}\right)\right), \tag{31}
\end{align*}
$$

where $\left\{e_{i}\right\}_{i=1}^{2 n}$ is an orthonormal local basis on $T N$. A direct calculation provided the following:

$$
\begin{aligned}
\sum_{i=1}^{2 n}\left(\nabla_{e_{i}}^{F} \nabla_{e_{i}}^{F}(f \circ F) e(F) \xi\right)= & \sum_{i=1}^{2 n}\left(\nabla_{e_{i}}^{F}\left((f \circ F) e(F) \nabla_{e_{i}}^{F} \xi\right)+\nabla_{e_{i}}^{F}\left(e_{i}((f \circ F) e(F)) \xi\right)\right. \\
= & \sum_{i=1}^{2 n}\left((f \circ F) e(F) \nabla_{e_{i}}^{F} \nabla_{e_{i}}^{F} \xi+e_{i}((f \circ F) e(F)) \nabla_{e_{i}}^{F} \xi\right. \\
& \left.+e_{i}((f \circ F) e(F)) \nabla_{e_{i}}^{F} \xi+e_{i}\left(e_{i}((f \circ F) e(F))\right) \xi\right) \\
= & \sum_{i=1}^{2 n}\left((f \circ F) e(F) \nabla_{e_{i}}^{F} \nabla_{e_{i}}^{F} \xi+2 \nabla_{\operatorname{grad}((f \circ F) e(F))}^{F} \xi\right. \\
& \left.+e_{i}\left(e_{i}((f \circ F) e(F))\right) \xi\right),
\end{aligned}
$$

and

$$
\sum_{i=1}^{2 n}\left(\nabla_{\nabla_{e_{i}}^{N} e_{i}}^{F}(f \circ F) e(F) \xi\right)=\sum_{i=1}^{2 n}\left((f \circ F) e(F) \nabla_{\nabla_{e_{i}} e_{i}}^{F} \xi+\nabla_{e_{i}} e_{i}((f \circ F) e(F)) \xi\right)
$$

Based on the following:

$$
\triangle((f \circ F) e(F))=\sum_{i=1}^{2 n}\left(e_{i}\left(e_{i}((f \circ F) e(F))\right)-\nabla_{e_{i}} e_{i}((f \circ F) e(F)) \xi\right.
$$

and

$$
\operatorname{tr}_{h}\left(\nabla^{F}\right)^{2} \xi=\sum_{i=1}^{2 n}\left(\nabla_{e_{i}}^{F} \nabla_{e_{i}}^{F} \xi-\nabla_{\nabla_{e_{i}}^{N} e_{i}}^{F} \xi\right),
$$

we could deduce that

$$
\begin{align*}
\operatorname{tr}_{h}\left(\nabla^{F}\right)^{2}(f \circ F) e(F) \xi= & (f \circ F) e(F) \operatorname{tr}_{h}\left(\nabla^{F}\right)^{2} \xi+\triangle((f \circ F) e(F)) \xi+2 \nabla_{\operatorname{grad}((f \circ F) e(F))}^{F} \xi \\
= & (f \circ F) e(F) \operatorname{tr} r_{h}\left(\nabla^{F}\right)^{2} \xi+(f \circ F) \triangle(e(F)) \xi+e(F) \triangle(f \circ F) \xi \\
& +2 g\left(\operatorname{grad}(f \circ F), \operatorname{grad}(e(F)) \xi+2(f \circ F) \nabla_{\operatorname{grad}(e(F))}^{F} \xi^{\xi}\right. \\
& +2 e(F) \nabla_{\operatorname{grad}(f \circ F)}^{F} \xi . \tag{32}
\end{align*}
$$

After calculating the term $\operatorname{tr}_{h}\left(\nabla^{F}\right)^{2} \tilde{\xi}$, we obtained the following:

$$
\operatorname{tr}_{h}\left(\nabla^{F}\right)^{2} \xi=\sum_{i=1}^{2 n}\left(\nabla_{e_{i}}^{F} \nabla_{e_{i}}^{F} \xi-\nabla_{\nabla_{e_{i}}^{N} e_{i}}^{F} \xi\right)
$$

By using Equation (17), we obtained:

$$
\begin{aligned}
\sum_{i=1}^{2 n} \nabla_{e_{i}}^{F} \xi=\sum_{i=1}^{2 n} \nabla_{d F\left(e_{i}\right)} \xi= & \left.\sum_{i=1}^{2 n}(f \circ F)\left(d F\left(e_{i}\right)\right)-\eta\left(d F\left(e_{i}\right)\right) \xi\right) \\
& =(f \circ F) \sum_{i=1}^{2 n} d F\left(e_{i}\right)
\end{aligned}
$$

which gave us:

$$
\sum_{i=1}^{2 n} \nabla_{e_{i}}^{F} \nabla_{e_{i}}^{F} \xi=\sum_{i=1}^{2 n} \nabla_{e_{i}}^{F}(f \circ F) d F\left(e_{i}\right)
$$

and

$$
\begin{aligned}
\sum_{i=1}^{2 n} \nabla_{\nabla_{e_{i}}^{N} e_{i}}^{F} \xi & =\nabla_{d F\left(\nabla_{e_{i}}^{N} e_{i}\right)}^{M} \xi \\
& =\sum_{i=1}^{2 n}(f \circ F)\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right)-\eta\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right)\right) \xi\right) \\
& =\sum_{i=1}^{2 n}(f \circ F) d F\left(\nabla_{e_{i}}^{N} e_{i}\right)
\end{aligned}
$$

we conclude that

$$
\begin{align*}
\operatorname{tr}_{h}\left(\nabla^{F}\right)^{2} \xi & =\sum_{i=1}^{2 n}\left(\nabla_{e_{i}}^{F}(f \circ F) d F\left(e_{i}\right)-(f \circ F) d F\left(\nabla_{e_{i}}^{N} e_{i}\right)\right) \\
& =\sum_{i=1}^{2 n}\left(e_{i}((f \circ F)) d F\left(e_{i}\right)+(f \circ F) \nabla_{e_{i}}^{F} d F\left(e_{i}\right)-(f \circ F) d F\left(\nabla_{e_{i}}^{N} e_{i}\right)\right) \\
& =d F(\operatorname{grad} f)+(f \circ F) \tau(F) \\
& =d F(\operatorname{grad} f)-2(f \circ F)^{2} e(F) \xi \tag{33}
\end{align*}
$$

Now, by simplifying the terms $\nabla_{\operatorname{grad}(e(F))}^{F} \xi$, and $\nabla_{\operatorname{grad}(f \circ F)}^{F} \xi$, we had the following:

$$
\begin{aligned}
\nabla_{\operatorname{grad}(e(F))}^{F} \xi & =\nabla_{d F(\operatorname{grad}(e(F))}^{M} \xi^{\prime} \\
& =(f \circ F)(d F(\operatorname{grad}(e(F))-\eta d F(\operatorname{grad}(e(F)) \xi) \\
& =(f \circ F) d F(\operatorname{grad}(e(F))
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla_{\operatorname{grad}(f \circ F)}^{F} \xi^{\xi} & =\nabla_{d F(\operatorname{grad}(f \circ F))}^{M} \xi^{\prime} \\
& =(f \circ F)(d F(\operatorname{grad}(f \circ F))-\eta d F(\operatorname{grad}(f \circ F)) \xi) \\
& =(f \circ F) d F(\operatorname{grad}(f \circ F)),
\end{aligned}
$$

which finally gave us:

$$
\begin{align*}
\operatorname{tr}_{h}\left(\nabla^{F}\right)^{2}(f \circ F) e(F) \xi= & -2(f \circ F)^{3}(e(F))^{2} \xi+(f \circ F) e(F) d F(\operatorname{grad}(f \circ F)) \\
& +(f \circ F) \triangle(e(F)) \xi+e(F) \triangle(f \circ F) \xi \\
& +2 g(\operatorname{grad}(f \circ F), \operatorname{grad}(e(F))) \xi \\
& +2(f \circ F)^{2} d F(\operatorname{grad}(e(F))) \\
& +2(f \circ F) e(F) d F(\operatorname{grad}(f \circ F)) \tag{34}
\end{align*}
$$

By using Equation (19), we obtained the following:

$$
\begin{align*}
\operatorname{tr}_{h} R^{M}(f e(F) \xi, d F) d F & =(f \circ F) e(F) \sum_{i=1}^{2 n} R\left(\xi, d F\left(e_{i}\right)\right) d F\left(e_{i}\right) \\
& =(f \circ F) e(F)\left((f \circ F)^{2}+\left(f^{\prime} \circ F\right)\right) \sum_{i=1}^{2 n}\left(\eta\left(d F\left(e_{i}\right)\right) d F\left(e_{i}\right)-g\left(d F\left(e_{i}\right), d F\left(e_{i}\right)\right) \xi\right) \\
& =-2(f \circ F)^{3}(e(F))^{2} \xi-2(f \circ F)\left(f^{\prime} \circ F\right)(e(F))^{2} \xi . \tag{35}
\end{align*}
$$

If we replaced (34) and (35) in (31), we arrived at the following:

$$
\begin{aligned}
\tau_{2}(F)= & -2\left(-2(e(F))^{2}\left((f \circ F)\left(f^{\prime} \circ F\right)+2(f \circ F)^{3}\right) \xi\right. \\
& +3(f \circ F) e(F) d F(\operatorname{grad}(f \circ F))+(f \circ F) \triangle(e(F)) \xi \\
& +e(F) \triangle(f \circ F) \xi+2 g(\operatorname{grad}(f \circ F), \operatorname{grad}(e(F))) \xi \\
& \left.+2(f \circ F)^{2} d F(\operatorname{grad}(e(F)))\right) .
\end{aligned}
$$

Corollary 1. Let $\left(N^{2 n}, J, h\right)$ be a Kähler manifold and $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ be an f-Kenmotsu manifold. Then, any (J, φ)-holomorphic map $F: N \longrightarrow M$ would biharmonic if, and only if:

$$
\begin{aligned}
& -2(e(F))^{2}\left((f \circ F)\left(f^{\prime} \circ F\right)+2(f \circ F)^{3}\right) \xi \\
& +3(f \circ F) e(F) d F(\operatorname{grad}(f \circ F))+(f \circ F) \triangle(e(F)) \xi^{\xi} \\
& +e(F) \triangle(f \circ F) \xi+2 g(\operatorname{grad}(f \circ F), \operatorname{grad}(e(F))) \xi^{2} \\
& +2(f \circ F)^{2} d F(\operatorname{grad}(e(F)))=0 .
\end{aligned}
$$

Corollary 2. Let $\left(N^{2 n}, J, h\right)$ be a Kähler manifold and $\left(M^{2 n+1}, \varphi, \xi, \eta, g\right)$ be a Kenmotsu manifold; then, any (J, φ)-holomorphic map $F: N \longrightarrow M$ would be biharmonic if, and only if:

$$
-4 e(F)^{2} \xi+\triangle(e(F)) \xi+2 d F(\operatorname{grad}(e(F))=0
$$

Corollary 3. Let $\left(N^{2 n}, J, h\right)$ be a Kähler manifold and $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ be an f-Kenmotsu manifold. Then, any (J, φ)-holomorphic map $F: N \longrightarrow M$ of constant energy density would biharmonic if, and only if:

$$
-2 e(F)\left((f \circ F)\left(f^{\prime} \circ F\right)+2(f \circ F)^{3}\right) \xi+3(f \circ F) d F(\operatorname{grad}(f \circ F))+\triangle(f \circ F) \xi=0
$$

Corollary 4. Let $F: N \longrightarrow M$ be a (J, φ)-holomorphic map of constant energy density from a Kähler manifold (N, J, h) to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. If the function $f \circ F$ was constant on N, then F would biharmonic if, and only if, $f f^{\prime}+2 f^{3}=0$ was on $F(N)$.

Example 1. Let the five-dimensional manifold $M=\mathbb{R}^{4} \times(0, \infty)$ be equipped with the Riemannian metric $g=t^{-2 \alpha}\left(d y_{1}^{2}+d y_{2}^{2}+d y_{3}^{2}+d y_{4}^{2}\right)+d t^{2}$, for some constant $\alpha \in \mathbb{R}$. We considered the following orthonormal basis:

$$
e_{1}=t^{\alpha} \frac{\partial}{\partial y_{1}}, \quad e_{2}=t^{\alpha} \frac{\partial}{\partial y_{2}}, \quad e_{3}=t^{\alpha} \frac{\partial}{\partial y_{3}}, \quad e_{4}=t^{\alpha} \frac{\partial}{\partial y_{4}}, \quad e_{5}=\frac{\partial}{\partial t}
$$

We considered a 1-form η defined by:

$$
\eta(X)=g\left(X, e_{5}\right), \quad \forall X \in \Gamma(T M)
$$

That is, we chose $e_{5}=\xi$. We defined the tensor field φ by the following:

$$
\varphi\left(e_{1}\right)=-e_{2}, \quad \varphi\left(e_{2}\right)=e_{1}, \quad \varphi\left(e_{3}\right)=-e_{4}, \quad \varphi\left(e_{4}\right)=e_{3}, \quad \varphi\left(e_{5}\right)=0
$$

By the linearity properties of g and φ, we obtained the following:

$$
\begin{aligned}
& \eta\left(e_{5}\right)=1, \quad \varphi^{2} X=-X+\eta(X) e_{5} \\
& g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{aligned}
$$

for any vector fields X, Y on M. Therefore, $(M, \varphi, \xi, \eta, g)$ formed an almost contact metric manifold.
Otherwise, we had $\left[e_{i}, e_{5}\right]=-\alpha t^{-1} e_{i}$ for $i=1,2,3,4$ and $\left[e_{i}, e_{j}\right]=0$.Let ∇ be the Levi-Civita connection of (M, g). By using Koszul's formula, we obtained the following for $i, j=1,2,3,4$ with $i \neq j$:

$$
\nabla_{e_{i}} e_{i}=\frac{\alpha}{t} e_{5}, \quad \nabla_{e_{i}} e_{5}=-\frac{\alpha}{t} e_{i}, \quad \nabla_{e_{i}} e_{j}=\nabla_{e_{5}} e_{i}=\nabla_{e_{5}} e_{5}=0 .
$$

The above relations indicated that $\nabla_{X} \xi=f\{X-\eta(X) \xi\}$ for $\xi=e_{5}$ and $f=-\frac{\alpha}{t}$. Therefore, we could say that $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ was an f-Kenmotsu manifold. Moreover, $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ was a regular f-Kenmotsu manifold if, and only if, $\alpha \neq 0,-1$, because $f^{2}+f^{\prime}=\frac{\alpha(\alpha+1)}{t^{2}}$.

Let F be a (J, φ)-holomorphic map, defined by the following:

$$
\begin{aligned}
F:\left(\mathbb{R}^{2}, J, h\right) & \longrightarrow\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right) \\
\left(x_{1}, x_{2}\right) & \longmapsto\left(F_{1}\left(x_{1}, x_{2}\right), F_{2}\left(x_{1}, x_{2}\right), F_{3}\left(x_{1}, x_{2}\right), F_{4}\left(x_{1}, x_{2}\right), F_{5}\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

where $h=d x_{1}^{2}+d x_{2}^{2}, J\left(\frac{\partial}{\partial x_{1}}\right)=\frac{\partial}{\partial x_{2}}, J\left(\frac{\partial}{\partial x_{2}}\right)=-\frac{\partial}{\partial x_{1}}$ and $F_{i}\left(x_{1}, x_{2}\right)$ are defined by

$$
\begin{aligned}
& F_{1}\left(x_{1}, x_{2}\right)=a_{1} x_{1}+a_{2} x_{2}+c_{1} \\
& F_{2}\left(x_{1}, x_{2}\right)=a_{2} x_{1}-a_{1} x_{2}+c_{2} \\
& F_{3}\left(x_{1}, x_{2}\right)=a_{3} x_{1}+a_{4} x_{2}+c_{3} \\
& F_{4}\left(x_{1}, x_{2}\right)=a_{4} x_{1}-a_{3} x_{2}+c_{4} \\
& F_{5}\left(x_{1}, x_{2}\right)=c_{5}
\end{aligned}
$$

where $a_{j}, c_{i} \in \mathbb{R}$ are for all $j=1,2,3,4$ and $i=1,2,3,4,5$. Note that the density energy of F was a constant given by $e(F)=\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right) c_{5}^{-\alpha}$. According to Theorem 3, the tension field of F was given by the following:

$$
\tau(F)=\frac{\alpha\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)}{c_{5}^{\alpha+1}} e_{5}
$$

As $f \circ F$ was constant on N, and the density energy of F was constant, from Corollary 4, the map F would be biharmonic if, and only if:

$$
\left(f f^{\prime}+2 f^{3}\right) \circ F=-\frac{\alpha^{2}(1+2 \alpha)}{c_{5}^{3}}=0 .
$$

Therefore, F was biharmonic non-harmonic if, and only if, $\alpha=-\frac{1}{2}$.

4. Biharmonic Maps on f-Kenmotsu with the Schouten-van Kampen Connection

Theorem 4. Let $\left(N^{2 n}, J, h\right)$ be a Kähler manifold and ($M^{2 n+1}, f, \varphi, \xi, \eta, g$) be an f-Kenmotsu manifold with the Schouten-van Kampen connection. Then, any (J, φ)-holomorphic map $F: N \longrightarrow M$ would be harmonic.

Proof. Based on the (J, φ)-holomorphic map, we had the following:

$$
\varphi(\tau(F))=d F(d i v J)-t r_{h} B,
$$

where B is defined by $B(X, Y)=\left(\nabla_{X}^{F} \varphi\right) d F Y$ for any vector fields $X, Y \in \Gamma(T N)$. Considering a local orthonormal basis $\left\{e_{i}\right\}_{i=1}^{2 n}$ on $T_{p} N$ for any $p \in N$, we obtained the following:

$$
\operatorname{div} J=\sum_{i=1}^{2 n}\left(\nabla_{e_{i}} J\right) e_{i}=0
$$

and by using relation (16), we found the following, as well:

$$
\begin{aligned}
t r_{h} B & =\sum_{i=1}^{2 n}\left(\nabla_{e_{i}}^{F} \varphi\right) d F\left(e_{i}\right)=\sum_{i=1}^{2 n}\left(\nabla_{d F\left(e_{i}\right)}^{M} \varphi\right) d F\left(e_{i}\right) \\
& =\sum_{i=1}^{2 n}(f \circ F)\left(g\left(\varphi\left(d F\left(e_{i}\right)\right), d F\left(e_{i}\right)\right) \xi-\eta\left(d F\left(e_{i}\right)\right) \varphi\left(d F\left(e_{i}\right)\right)\right) \\
& =\sum_{i=1}^{2 n}(f \circ F)\left(-\eta\left(d F\left(e_{i}\right)\right) \varphi\left(d F\left(e_{i}\right)\right)\right) . \\
& =0 .
\end{aligned}
$$

From the above relation, we could obtain the following: $\varphi(\tau(F))=0 \Rightarrow \tau(F)=$ $g(\tau(F), \xi) \xi$. However,

$$
\begin{aligned}
g(\tau(F), \xi) & =\sum_{i=1}^{2 n} g\left(\nabla_{e_{i}}^{F} d F\left(e_{i}\right)-d F\left(\nabla_{e_{i}}^{N} e_{i}\right), \xi\right) \\
& =\sum_{i=1}^{2 n} g\left(\nabla_{d F\left(e_{i}\right)}^{M} d F\left(e_{i}\right)-d F\left(\nabla_{e_{i}}^{N} e_{i}\right), \xi\right) \\
& =\sum_{i=1}^{2 n} g\left(\nabla_{d F\left(e_{i}\right)}^{M} d F\left(e_{i}\right), \xi\right)-\sum_{i=1}^{2 n} g\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right), \xi\right) \\
& =\sum_{i=1}^{2 n}\left(\nabla_{d F\left(e_{i}\right)}^{M} g\left(d F\left(e_{i}\right), \xi\right)-g\left(d F\left(e_{i}\right), \nabla_{d F\left(e_{i}\right)}^{M} \xi\right)\right)-\sum_{i=1}^{2 n} g\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right), \xi\right) \\
& =\sum_{i=1}^{2 n}\left(\nabla_{d F\left(e_{i}\right)}^{M} \eta\left(d F\left(e_{i}\right)\right)-g\left(d F\left(e_{i}\right), \nabla_{d F\left(e_{i}\right)}^{M} \xi\right)\right)-\sum_{i=1}^{2 n} \eta\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right)\right) .
\end{aligned}
$$

As F was a (J, φ)-holomorphic map, then by using Lemma 1 , we found $\eta\left(d F\left(e_{i}\right)\right)=0$ and $\eta\left(d F\left(\nabla_{e_{i}}^{N} e_{i}\right)\right)=0$. Then, we had

$$
g(\tau(F), \xi)=\sum_{i=1}^{2 n}\left(-g\left(d F\left(e_{i}\right), \nabla_{d F\left(e_{i}\right)}^{M} \xi\right)\right)
$$

In addition, from relation (24), we had $\nabla_{d F\left(e_{i}\right)}^{M} \xi=0$, and then, $g(\tau(F), \xi)=0$.
Biharmonic Identity Map with the Schouten-van Kampen Connection
Theorem 5. Let $I: M \longrightarrow \bar{M}$ be the identity map from an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ to an f-Kenmotsu manifold with the Schouten-van Kampen connection $\left(\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. Then the tension field of map I was given by the following:

$$
\begin{equation*}
\tau(I)=2 n f \xi \tag{36}
\end{equation*}
$$

Proof. Let $\left\{e_{1}, \ldots, e_{n}, \varphi\left(e_{1}\right), \ldots, \varphi\left(e_{n}\right), \xi\right\}$ be an orthonormal local basis on TM. Then, by definition of the tension field of map I, we found the following:

$$
\begin{aligned}
\tau(I) & =\operatorname{tr}_{g} \nabla d I \\
& =\sum_{i=1}^{2 n+1}\left(\nabla_{d I\left(e_{i}\right)}^{\bar{M}} d I\left(e_{i}\right)-d I\left(\nabla_{e_{i}}^{M} e_{i}\right)\right) .
\end{aligned}
$$

Using relation (25), we had the following:

$$
\begin{aligned}
\tau(I) & =\sum_{i=1}^{2 n+1}\left(f\left(g\left(e_{i}, e_{i}\right) \xi-\eta\left(e_{i}\right) e_{i}\right)\right) \\
& =2 n f \xi .
\end{aligned}
$$

Theorem 6. Let $I: M \longrightarrow \bar{M}$ be the identity map from an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ to an f-Kenmotsu manifold with the Schouten-van Kampen connection $\left(\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. Then, map I would be harmonic if, and only if, M was a cosymplectic manifold.

Theorem 7. Let $I: M \longrightarrow \bar{M}$ be the identity map from an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ to an f-Kenmotsu manifold with the Schouten-van Kampen connection $\left(\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. Then, map I would be biharmonic if, and only if, f was a harmonic function.

Proof. Let $\left\{e_{1}, \ldots, e_{n}, \varphi\left(e_{1}\right), \ldots, \varphi\left(e_{n}\right), \xi\right\}$ be an orthonormal local basis on $T M$; then, by definition of the tension field of map I, we had the following:

$$
\begin{aligned}
\tau_{2}(I) & =\operatorname{tr}_{g}\left(\nabla^{I}\right)^{2} \tau(I)+\operatorname{tr}_{g} R^{\bar{M}}(\tau(I), d I) d I \\
& =2 n\left(\operatorname{trg}_{g}\left(\nabla^{I}\right)^{2} f \xi+\operatorname{tr}_{g} R^{\bar{M}}(f \xi, d I) d I\right) \\
& =\sum_{i=1}^{2 n+1}\left(\nabla_{e_{i}}^{I} \nabla_{e_{i}}^{I} 2 n f \xi-\nabla_{\nabla_{e_{i}}^{M} e_{i}}^{I} 2 n f \xi+R^{\bar{M}}\left(2 n f \xi, d I\left(e_{i}\right)\right) d I\left(e_{i}\right)\right)
\end{aligned}
$$

The combination of Equation (24) and direct calculations provided the following:

$$
\sum_{i=1}^{2 n+1}\left(\nabla_{e_{i}}^{I} \nabla_{e_{i}}^{I} 2 n f \tilde{\xi}\right)=2 n \sum_{i=1}^{2 n+1}\left(e_{i}\left(e_{i}(f)\right) \xi\right)
$$

and

$$
\sum_{i=1}^{2 n+1}\left(\nabla_{\nabla_{e_{i}} e_{i}}^{I} 2 n f \xi\right)=2 n \sum_{i=1}^{2 n+1}\left(\nabla_{e_{i}} e_{i}(f) \xi\right) .
$$

Based on the following:

$$
\triangle(f)=\sum_{i=1}^{2 n+1}\left(e_{i}\left(e_{i}(f)\right)-\nabla_{e_{i}} e_{i}(f)\right)
$$

we could conclude

$$
\sum_{i=1}^{2 n+1}\left(\nabla_{e_{i}}^{I} \nabla_{e_{i}}^{I} 2 n f \xi\right)=2 n \triangle(f) \xi
$$

Based on Equation (29), we found the following:

$$
\begin{aligned}
\operatorname{tr}_{g} R^{\bar{M}}(2 n f \xi, d I) d I & =2 n f \operatorname{tr}_{g}\left(R^{\bar{M}}(\xi, d I) d I\right) \\
& =2 n f \sum_{i=1}^{2 n+1}\left(R^{\bar{M}}\left(\xi, e_{i}\right) e_{i}\right) \\
& =0
\end{aligned}
$$

Finally, we obtained

$$
\begin{equation*}
\tau_{2}(I)=2 n \triangle(f) \xi \tag{37}
\end{equation*}
$$

Remark 1. If f was a constant or harmonic function, then I would be a proper biharmonic map.
Theorem 8. Let $I: \bar{M} \longrightarrow M$ be the identity map from an f-Kenmotsu manifold with the Schoutenvan Kampen connection $\left(\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. Then, the bitension field of map I was given by the following:

$$
\begin{equation*}
\tau_{2}(I)=-2 n\left(\bar{\Delta}(f) \xi+f \tau_{2}(\xi)+2 \nabla_{g r a d f}^{I} \xi\right) \tag{38}
\end{equation*}
$$

where $\bar{\Delta}$ is the Laplacian on $\left(\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g\right)$.
Proof. Let $\left\{e_{1}, \ldots, e_{n}, \varphi\left(e_{1}\right), \ldots, \varphi\left(e_{n}\right), \xi\right\}$ be an orthonormal local basis on $T M$; then, by definition of the tension field of map I, we had the following:

$$
\begin{aligned}
\tau(I) & =\operatorname{tr}_{g} \nabla d I \\
& =\sum_{i=1}^{2 n+1}\left(\nabla_{d I\left(e_{i}\right)}^{M} d I\left(e_{i}\right)-d I\left(\nabla_{e_{i}}^{\bar{M}} e_{i}\right)\right) \\
& =-\sum_{i=1}^{2 n+1}\left(f\left(g\left(e_{i}, e_{i}\right) \xi-\eta\left(e_{i}\right) e_{i}\right)\right) \\
& =-2 n f \xi .
\end{aligned}
$$

However, we had the following:

$$
\begin{align*}
\tau_{2}(I) & =\operatorname{tr}_{g}\left(\nabla^{I}\right)^{2} \tau(I)+\operatorname{tr}_{g} R^{M}(\tau(I), d I) d I \\
& =-2 n\left(\operatorname{tr}_{g}\left(\nabla^{I}\right)^{2} f \xi+\operatorname{tr}_{g} R^{\bar{M}}(f \xi, d I) d I\right) \\
& =-\sum_{i=1}^{2 n+1}\left(\nabla_{e_{i}}^{I} \nabla_{e_{i}}^{I} 2 n f \xi-\nabla_{\nabla_{e_{i}}^{M}}^{I} e_{i} n f \xi+R^{M}\left(2 n f \xi, d I\left(e_{i}\right)\right) d I\left(e_{i}\right)\right) . \tag{39}
\end{align*}
$$

A direct calculation of

$$
\begin{aligned}
\sum_{i=1}^{2 n+1}\left(\nabla_{e_{i}}^{I} \nabla_{e_{i}}^{I} 2 n f \xi\right) & =2 n \sum_{i=1}^{2 n+1} \nabla_{e_{i}}^{I}\left(e_{i}(f) \xi+f \nabla_{e_{i}}^{I} \xi\right) \\
& =2 n \sum_{i=1}^{2 n+1}\left(e_{i}\left(e_{i}(f)\right) \xi+e_{i}(f) \nabla_{e_{i}}^{I} \xi+e_{i}(f) \nabla_{e_{i}}^{I} \xi+f \nabla_{e_{i}}^{I} \nabla_{e_{i}}^{I} \xi\right) \\
& =2 n \sum_{i=1}^{2 n+1}\left(e_{i}\left(e_{i}(f)\right) \xi+2 \nabla_{\operatorname{grad} f}^{I} \xi+f \nabla_{e_{i}}^{I} \nabla_{e_{i}}^{I} \xi\right)
\end{aligned}
$$

and

$$
\sum_{i=1}^{2 n+1}\left(\nabla_{\nabla_{e_{i}}^{I} e_{i}}^{I} 2 n f \xi\right)=2 n \sum_{i=1}^{2 n+1}\left(\left(\nabla_{e_{i}}^{\bar{M}} e_{i}\right)(f) \xi+f \nabla_{\nabla_{e_{i}}^{M}}^{I} e_{i} \xi\right)
$$

finally yielded the following:

$$
\begin{equation*}
\operatorname{tr}_{g}\left(\nabla^{I}\right)^{2} n f \xi=2 n\left(\bar{\Delta}(f) \xi+f t r_{g}\left(\nabla^{I}\right)^{2} \xi+2 \nabla_{\mathrm{grad} f}^{I} \xi\right) \tag{40}
\end{equation*}
$$

If we replaced (40) in (39), we arrived at:

$$
\tau_{2}(I)=-2 n\left(\bar{\Delta}(f) \xi+f \tau_{2}(\xi)+2 \nabla_{\operatorname{grad} f}^{I} \xi\right)
$$

Corollary 5. Let $I: \bar{M} \longrightarrow M$ be the identity map from an f-Kenmotsu manifold with the Schoutenvan Kampen connection $\left(\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. Then, map I would be biharmonic if, and only if:

$$
\bar{\Delta}(f) \xi+f \tau_{2}(\xi)+2 \nabla_{g r a d f}^{I} \xi=0
$$

Corollary 6. Let $I: \bar{M} \longrightarrow M$ be the identity map from an f-Kenmotsu manifold with the Schoutenvan Kampen connection $\left(\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. If f was a constant function, then map I would be biharmonic if, and only if, ξ was a biharmonic vector field.

Corollary 7. Let $I: \bar{M} \longrightarrow M$ be the identity map from an f-Kenmotsu manifold with the Schoutenvan Kampen connection $\left(\bar{M}^{2 n+1}, f, \varphi, \xi, \eta, g\right)$ to an f-Kenmotsu manifold $\left(M^{2 n+1}, f, \varphi, \xi, \eta, g\right)$. If ξ was a parallel vector field (i.e., $\nabla \xi=0$), then map I would be biharmonic if, and only if, f was a harmonic function.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: No new data were created.
Acknowledgments: The author kindly thanks in advance the anonymous referee for providing their valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eells, J.; Sampson, J.H. Harmonic mappings of Riemannian manifolds. Am. J. Math. 1964, 86, 109-160. [CrossRef] Ishihara, T. Harmonic sections of tangent bundles. J. Math. Univ. Tokushima 1979, 13, $23-27$.
Oproiu, V. On Harmonic Maps Between Tangent Bundles. Rend. Sem. Mat. 1989, 47, 47-55.
Djaa, M.; El Hendi, H.; Ouakkas, S. Biharmonic vector field. Turkish J. Math. 2012, 36, 463-474. [CrossRef]
Najma, A. Harmonic maps on Kenmotsu manifolds. An. Ştiint. Univ. "Ovidius" Constanţa Ser. Mat. 2013, 21, 197-208.
Zagane, A.; Ouakkas, S. Biharmonic maps on kenmotsu manifolds. New Trans. Math. Sci. 2016, 4, 129-139. [CrossRef] Mangione, V. Harmonic Maps and Stability on f-Kenmotsu Manifolds. Int. J. Math. Math. Sci. 2008, 7, 798317. [CrossRef] Inoguchi, J.I.; Lee, J.E. Biharmonic curves in f-Kenmotsu 3-manifolds. J. Math. Ana. Appl. 2022, 509, 125941. [CrossRef] Abbes, M.E.; Ouakkas, S. On the τ-Homothetic BI-Warping and Biharmonic Maps. J. Dyn. Sys. Geo. Theo. 2020, 18, 281-309. [CrossRef]
2. Blair, D.E. Contact Manifolds in Riemannian Geometry; Lecture Note in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 509.
3. Khan, M.N.I. Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold. Chaos Solitons Fractals 2021, 146, 110872. [CrossRef]
4. Janssens, D.; Vanhecke, L. Almost contact structures and curvature tensors. Kodai Math. J. 1981, 4, 1-27. [CrossRef]
5. De, U.C.; Pathok, G. On 3-dimensional Kenmotsu manifolds. Indian J. Pure Appl. Math. 2004, 35, 159-165.
6. Kenmotsu, K. A class of almost contact Riemannian manifold. Tohoku Math. J. 1972, 24, 93-103. [CrossRef]
7. Zhang, P.; Li, Y.; Roy, S.; Dey, S.; Bhattacharyya, A. Geometrical Structure in a Perfect Fluid Spacetime with Conformal RicciYamabe Soliton. Symmetry 2022, 14, 594. [CrossRef]
8. Bejancu, A.; Duggal, K.L. Real hypersurfaces of indefinite Kaehler manifolds. Int. J. Math. Math. Sci. 1993, 16, 545-556. [CrossRef]
9. Calin, C.; Crasmareanu, M. From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds. Bull. Malaysian. Math. Soc. 2010, 33, 361-368.
10. De, U.C. On f-symmetric Kenmotsu manifolds. Int. Electron. J. Geom. 2008, 1, 33-38.
11. Demirli, T.; Ekici, C.; Gorgulu, A. Ricci solitons in f-Kenmotsu manifolds with the semi-symmetric non-metric connection. New Trans. Math. Sci. 2016, 4, 276-284. [CrossRef]
12. Yildiz, A.; De, U.C.; Turan, M. On 3-dimensional f-Kenmotsu manifolds and Ricci solitons. Ukr. Math. J. 2013, 65, 684-693. [CrossRef]
13. Yildiz, A. f-Kenmotsu manifolds with the Schouten-van Kampen connection. Publ. Inst. Math. 2017, 102, 93-105. [CrossRef]
14. De, U.C.; Yildiz, A.; Yaliniz, F. On f-recurrent Kenmotsu manifolds. Turkish J. Math. 2009, 22, 17-25.
15. Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed.; Progress in Mathematics; Birkhauser Boston, Inc.: Boston, MA, USA, 2010; Volume 203.
16. Olszak, Z. Locally conformal almost cosymplectic manifolds. Colloq. Math. 1989, 57, 73-87. [CrossRef]
17. Olszak, Z.; Rosca, R. Normal locally conformal almost cosymplectic manifolds. Publ. Math. 1991, 39, 315-323. [CrossRef]
18. Manev, H.; Manev, M. Almost Paracontact Almost Paracomplex Riemannian Manifolds with a Pair of Associated Schouten-van Kampen Connections. Mathematics 2021, 9, 736. [CrossRef]
19. Olszak, Z. The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure. Publ. Inst. Math. 2013, 94, 31-42. [CrossRef]
20. Bejancu, A.; Faran, H. Foliations and Geometric Structures; Math, appl; Springer: Dordrecht, The Netherlands, 2006; Volume 580.
21. Solov'ev, A.F. On the curvature of the connection induced on a hyperdistribution in a Riemannian space. Geom. Sb. 1978, 19, 12-23.
22. Ashis, M. Legendre curves on 3-dimensional f-Kenmotsu manifolds admitting Schouten-Van Kampen connection. Facta Univers Math Info. 2020, 35, 357-366.
23. Ashis, M. On f-Kenmotsu manifolds admitting Schouten-Van Kampen connection. Korean J. Math. 2021, 29, 333-344.
24. Gherghe, C.; Ianus, S.; Pastore, A.M. Harmonic maps, harmonic morphism and stability. Bull. Math. Soc. Sci. Math. Roum. 2000, 43, 247-254.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

