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Abstract: In recent years, various network attacks have emerged. These attacks are often recorded in
the form of Pcap data, which contains many attack details and characteristics that cannot be analyzed
through traditional methods alone. Therefore, restoring the network attack scenario through scene
reconstruction to achieve data regeneration has become an important entry point for detecting and
defending against network attacks. However, current network attack scenarios mainly reproduce
the attacker’s attack steps by building a sequence collection of attack scenarios, constructing an
attack behavior diagram, or simply replaying the captured network traffic. These methods still have
shortcomings in terms of traffic regeneration. To address this limitation, this paper proposes an SDN-
based network attack scenario recovery method. By parsing Pcap data and utilizing network topology
reconstruction, probability, and packet sequence models, network traffic data can be regenerated.
The experimental results show that the proposed method is closer to the real network, with a higher
similarity between the reconstructed and actual attack scenarios. Additionally, this method allows
for adjusting the intensity of the network attack and the generated topology nodes, which helps
network defenders better understand the attackers’ posture and analyze and formulate corresponding
security strategies.

Keywords: SDN; network attack; scenario reconfiguration; probabilistic model; topology
reconfiguration model

MSC: 68M25

1. Introduction

With the rapid development of computer networks and internet technologies, net-
works have permeated into various fields, facing increasingly complex security challenges.
Network attacks are often recorded in the form of Pcap data, which contains numerous
attack details and features. Traditional data processing methods often overlook many
attack behavior features, leading to resource waste. Therefore, this paper proposes an
SDN-based UDP flood network attack scene reconstruction method. By reconstructing
network attack scenarios, the original data can be restored, and new mixed data can be
generated by adjusting the intensity of network attacks, topology nodes, and other types of
network attacks. This enables network defenders to better understand the attacker’s pos-
ture, analyze the monitored data and information, and formulate corresponding security
strategies to enhance their ability to respond to network attacks.

Due to the openness of the internet, the inherent imperfections of network protocols,
and various application software, devices on the network are vulnerable to potential
danger. Nowadays, the UDP protocol is widely used in networks and various applications.
However, a network utilizing the UDP protocol is easily targeted in attacks since the
sender does not need to establish a connection via three handshakes, while the receiver
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has to receive and process the packet. Therefore, it is crucial to protect the network from
attacks exploiting the vulnerabilities of the UDP protocol. UDP flood is one of the most
common attacks targeting the UDP protocol, which typically targets DNS servers, RADIUS
authentication servers, or streaming video servers by flooding them with a large number
of small UDP packets [1–3]. Such attacks are often directed towards a random port on
the target, and the victim system must analyze the incoming data to determine which
application service has requested it. This makes it difficult for defenders to protect the
network from such attacks. In fact, a dynamic game process occurs between attackers
and defenders, where defenders develop corresponding security strategies in response to
changes in attackers’ techniques, while attackers constantly research new techniques to
evade network security protection and achieve their attack objectives. Timely detection
of potential security threats to the network is crucial for defenders. Therefore, this article
proposes a network attack scene reconstruction method, which lays a solid foundation
for defending against network attacks from the attacker’s perspective. To achieve better
results in network attack scene reconstruction, this article suggests using software-defined
networking (SDN) for scene reconstruction.

SDN offers dynamic programmable network configuration, which improves network
performance and management efficiency, and enables network services to provide flexible
customization capabilities similar to those of cloud computing. In addition, SDN decouples
the forwarding plane of network devices from the control plane, enabling the controller
to manage network devices, orchestrate network services, and schedule service traffic [4].
SDN overcomes the limitations of traditional networks and offers benefits such as low
cost, centralized management, and flexible scheduling [5]. In SDN testing, Mininet is
commonly used as a testbed as it enables easy creation of an SDN-enabled network, with
each host working like a real computer. Programs can launch applications and send packets
to the Ethernet ports, which are received and processed by switches and routers. SDN also
supports complex network topologies, allowing the addition of new features to the network,
testing, and easy deployment into real hardware environments [6]. Therefore, SDN-based
attack recovery can provide a realistic scenario for a network that is under attack.

In response to the challenge of lacking the reconstruction of traffic rebirth and elasticity
in existing network attack scene reconstruction, this paper proposes an SDN-based UDP
flood network attack scene reconstruction method. This method can automatically create
network topology and regenerate network traffic using sample Pcap packets. Additionally,
this solution allows users to modify any component in the virtual network and adjust the
network attack-related parameters and intensity to meet the needs of different scenarios.
The main contributions of this paper are threefold:

• Existing approaches to network attack scenario recovery lack the ability to regenerate
real network attack traffic, and the research in this paper is one of the first articles to
fill this gap.

• The method proposed in this paper can automate the network attack scenario recovery,
it is studied for packet delivery probability events, and it can simulate network attack
scenarios more realistically.

• This paper can change the network topology nodes and network attack intensity based
on the network attack scenario recovery, which can bring convenience to the network
attack defenders to better detect and defend against malicious attacks.

The remainder of this paper is structured as follows. Section 2 provides an introduction
to the definition of SDN and related research. Section 3 presents the SDN-based topology
reconfiguration model for network attack scenarios and the reconfiguration probability
model. Section 4 analyzes the constructed models, while Section 5 offers a comparative
analysis of the experiments from both qualitative and quantitative perspectives. Finally,
Section 6 concludes our work.
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2. Related Work

Regarding the problem of network attack scene recovery, we have reviewed the
relevant literature from the past 5 years and broadly divided network attack scene recovery
methods into four main types. The first type is network attack scene recovery based on
traffic replay. The second type involves using graph networks for network attack scene
recovery. The third type uses correlation analysis for network attack scene recovery. The
fourth type encompasses other methods for network attack scene recovery. Details on each
category are provided below:

(1) Network attack scene recovery method based on traffic replay.

A multi-node traffic replay method was proposed by [7]. This method designs a
self-selected IP mapping algorithm to construct an IP mapping between the target network
and the existing network in order to reproduce the interaction between the existing network
nodes. The method is effective in aggregating large flows and achieving high similarity
in playback timing sequences and bandwidth and can be used to reproduce real network
scenarios for network device testing and network security experiments.

A deterministic TCP replay method for performance diagnosis was proposed by [8].
This method can faithfully replay packet traces using a low-overhead timer and an efficient
file access method, capturing all interactive traffic in TCP connections for all hosts and
replaying selected packets to reproduce performance issues at low overhead. However,
these methods can only fully reproduce the last attack and do not account for weak points,
reinforcement points, or chain events. In contrast, the network attack scenario reproduction
method presented in this paper can automatically create the network topology and execute
the attack based on the Pcap packets, allowing for manual addition of devices such as hosts
and attack relationships between devices as needed.

A virtual network traffic replay method built on a network simulation platform was
proposed by [9]. This method is capable of performing IP mapping-based virtual node
replay of any traffic captured or generated by one or more interfaces. However, it is unable
to simulate changes in attack strength based on the original data.

A precise traffic replay method based on interaction sequences and timestamps was
proposed by [10]. The method achieves high consistency in playback time, but does not
regenerate the data, rather it simply replays the network traffic at the recorded time.

(2) Network attack scene recovery based on graph networks.

The graph-based fusion module (GM) to fuse all captured attack information to
reconstruct a multi-step attack scenario approach was proposed by [11]. The approach uses
a weighted directed graph to model the network communication and a fusion algorithm
to update it. The weighted directed graph with attributes is then used to fuse the attack
information and reconstruct the attack scenario. However, some manual processing is still
required to reconstruct the attack scenario when dealing with fake IP addresses.

The use of graph theory to construct a system connection matrix and network path
function for forming a network topology model was proposed by [12]. The method
analyzed its practicality in optimal routing design and verified the feasibility of the model
step by step based on its structural characteristics, laying the foundation for modeling and
simulating tactical communication systems. However, further verification is needed to
ensure its conformity with the characteristics of the network topology.

A reconstruction method for a big data-based attack scenario was proposed by [13],
which utilizes temporal concept maps and neural networks. This method allows the
reconstruction of complex attack scenarios based on large amounts of data. In addition to
tracing the entire attack scenario, a temporal concept graph is used to represent the big data
and the dependencies between them. The model is able to classify possible attack scenarios
in real time using RBF networks and converge to the most potential attack scenarios with
the support of Elman networks. However, the processing of the proposed model is initiated
based on the collection of event sets generated by traditional intrusion detection systems.
These systems may not be suitable to represent alerts in big data environments.



Mathematics 2023, 11, 1897 4 of 22

A real-time mining method for reconstructing multi-step attack scenarios was pro-
posed by [14]. This method constructs a directed graph through association analysis by
analyzing the alarm logs from intrusion detection systems to achieve the construction
of attack trees. This method can combine attack patterns between different hosts and
reduce false alarms. However, this method only provides an abstract description of the
attack process to achieve scenario reconstruction, and does not build network topology
structures and regenerate traffic. In contrast, this paper analyzes Pcap data packets and
reconstructs attack scenarios by creating network topology and regenerating traffic based
on the analysis results. Moreover, this method can transform the original scenario based on
the reproduction.

(3) Network attack scene recovery based on correlation analysis.

A attack scenario reconstruction method based on causal knowledge and spatio-
temporal correlation has been proposed by [15]. This method utilizes a causal knowledge
network to conduct correlation analysis on alerts from multiple dimensions including
causality, time and space, in order to restore the complete attack penetration process of
the attacker and reconstruct the attack scene. This method can discover potential hidden
relationships to a certain extent, but it does not regenerate network attack traffic.

A method of reconstructing attack scenarios based on association analysis was pro-
posed by [16]. It emphasizes the temporal relationship between alerts from a holistic
perspective of the network and associates aggregated alerts to build the attack scenario.
This method can restore attack relationships to a certain extent but does not reproduce
network attack traffic.

(4) Other methods for network attack scene recovery.

An efficient reconstruction method for advanced persistent threat (APT) attacks based
on the hidden Markov model was proposed by [17]. This method describes the action
sequence based on the temporal order or the conditions reached by the attack, uses data
association and advanced probabilistic methods to mine the hidden APT attack phases, and
finally reconstructs the attack path. However, it only provides the network attack paths
and does not create any network topology.

A RouteNet model was proposed by [18]. This is a novel network model based on
SDN’s graph neural network (GNN). This model can accurately estimate the delay distri-
bution and packet loss per source/destination by understanding the complex relationships
between topology, routing, and incoming traffic.

A network attack probability analysis method was proposed by [19]. The model
takes into account the severity of vulnerabilities, attack scenarios, and various potential
participants and their motives. Based on the results obtained from the model, the most
likely attack scenarios are further inferred.

SDN has been applied to combat DDoS attacks since it has logically centralized
control, network programmability, and separation of control and forwarding. Reference [20]
proposes a real-time DDoS detection attack method for SDN controllers. Reference [21]
analyzes simulated DDoS attacks in an SDN environment. Reference [22] present a flexible
SDN-based architecture, which identifies and mitigates low-rate DDoS attacks via machine
learning. Although the aforementioned works show that SDN is available for the analysis
of network attacks, SDN has not been fully applied to defend networks against UDP flood.
Therefore, we will reconstruct UDP flood scenario with the aid of SDN in this paper.

In conclusion, the network attack scenario recovery method based on traffic replay
can replay existing traffic, but it cannot generate new traffic or change network topology
configuration, structure, or enhance/reduce network attack intensity. The graph-based
network attack scenario recovery method can display the attack relationship of the network
in a graph to some extent and restore the attack relationship, but it does not reproduce traffic.
The correlation-based network attack scenario recovery method can discover potential
hidden relationships to some extent but also does not reproduce traffic. Other methods for
recovering network attack scenarios focus only on recovering some scenarios in the attack



Mathematics 2023, 11, 1897 5 of 22

path, relationship, or steps without reproducing traffic. Therefore, this article proposes an
SDN-based UDP flood network attack scenario recovery method, which can reconstruct
the topology, reproduce traffic, scale network attack intensity, and change experimental
topology in the recovered scenario.

3. Models

In this section, a topology reconstruction model, a probabilistic model, and an attack
sequence model are established regarding the process of reconstructing a network attack
scenario. The network attack scenario topology reconstruction model enables the creation
of a topology that accurately and meaningfully reflects the true network topology as far
as possible based on the available information. The probabilistic model and the attack
sequence model are used to generate network attack commands for all events (including
small sample events) to the greatest extent possible. The end result is that the regenerated
data are highly similar to the sample data.

3.1. Network Attack Scenario Topology Reconfiguration

Due to the flexibility and programmability of SDN networks, this paper uses SDN
networks for topology creation. The SDN network topology is created mainly through the
Mininet platform, and the network devices are mainly selected from remote controllers,
OpenFlow switches, hosts, etc. The network topology reconstruction model integrates
SDN connection line attributes into the Waxman model and uses information such as IP
addresses and MAC addresses from Pcap packets to configure the network. The goal is to
create a topology structure that is as accurate and meaningful as possible in order to reflect
the real network topology. According to the rules of network topology building, this paper
abstracts the process of building network topology and forms a reconfiguration model of
network attack scenarios. To better illustrate this, the following definitions are provided.

Definition 1. The connection line attribute between nodes. A connection line attribute is an
n-tuple (b1, b2, b3, . . . , bn), where bj (1 ≤ j ≤ n) denotes the jth attribute of the connection
line between nodes and the connection line attribute q = (b1, b2, b3, . . . , bn) between nodes of
the network.

In this paper, the connection line property between nodes is defined as a 5-tuple,
qj = (bandwidth, delay, loss, max queue size, jitter). Where bandwidth refers to the trans-
mission speed of the link that connects two nodes in the network topology, expressed in
Mbps (megabits per second), with a default value of 10. The “delay” parameter represents
the delay of a link in the network topology, which is the time it takes for a packet to travel
from one host to another. This delay includes not only physical delay but also other factors
such as buffering, queuing, and transmission delays, and is measured in milliseconds
(ms). The default value is 0. The “loss” parameter represents the packet loss rate of the
network link, which refers to the proportion of lost packets during data transmission. This
parameter is often used to simulate noise, interference, and other situations in the network
to more realistically simulate the network environment. The value range is from 0 to 1, with
a default of 0. The “max queue size” parameter refers to the maximum length of the queue
on a network link, which is used to control the number of packets on the link and prevent
network congestion. When a packet arrives at a link, if the queue is already full, packet
loss may occur. Therefore, setting an appropriate queue length is crucial for controlling
network congestion and reducing packet loss. The unit is in packets and the default value
is infinite. “Jitter” refers to the variation in delay between adjacent data packets. Normally,
data packets arrive at the receiving end at regular intervals, but congestion and packet loss
in the network can cause fluctuations in packet delay. Generally speaking, the smaller the
jitter, the more stable the network transmission, and the larger the jitter, the less stable the
network transmission. The unit is milliseconds and the default value is 0.
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The construction of the network topology in this paper is based on the Waxman
model, which has a core idea: all nodes are randomly (or according to the heavy-tailed
distribution) placed in a plane; considering each pair of nodes, an edge is added between
the node pairs (u, v) with a certain probability P(u, v) (also called edge probability). The
Waxman model is a static model that can only simulate the number of nodes, edges, and
distances between nodes in network topology. However, since network topology models
are merely simulations of real network topology structures, a simplistic and fixed model
cannot effectively simulate a real network as the network evolves and QoS requirements
arise. Therefore, the Waxman model serves only as a reference for topology research
and needs to add connection attributes, such as bandwidth, latency, cost, and packet loss
rate (QoS parameters), on existing connections to better simulate a real network. Thus,
improvements need to be made to the Waxman model.

According to the improved Waxman model proposed in this paper, the attribute of
connecting lines between nodes of 5-tuples will be added, and the distance between any
two node functions will be taken as the independent variable to calculate the probability of
direct connection between two nodes. The probability function of the model is given by

P(u, v) = αe−
d

Lβ , (1)

where α ≥ 0, β ≤ 1; d is the European distance from u to v; L is the longest distance
between two points. When increasing α, the model will have more short edges, longer hop
diameter and shorter length diameter. Increasing β will increase the proportion of long
edges in the model.

3.2. Reconstructing Probabilistic Models for Network Attack Scenarios

During the process of traffic regeneration, there are many uncertain and complex fac-
tors in the network. Introducing probability models can reduce the difficulty of traffic regen-
eration to some extent, decrease errors, and improve the effectiveness of
traffic regeneration.

In the network attack scenario reconstruction probability model, this paper divides
the behavior of each host sending packets into three categories: not sending packets,
sending packets in the form of forged IPs, and sending packets with the real IPs of hosts.
If there are n hosts, the probability of not sending packets from host i to host j (where i
denotes the number of the host sending packets, j denotes the number of the host receiving
packets, and all host numbers are unique) is P1

ij, the probability of sending packets in

the form of forged IP is P2
ij, and the probability of sending packets with the real IP of

the host probability is P3
ij, where Pij

1 + Pij
2 + Pij

3 = 1, but in a network attack, P3
ij is

almost 0. In particular, for small sample events, 0 < Pij
2 � Pij

1 < 1. According to the
network scenario reconstruction probability rules proposed in this paper, the network
attack sequence scenario reconstruction probability model is shown in Figure 1, where the
. . . in the figure indicates the label of the host.

Figure 1. Host Probability Distribution Chart.
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Additionally, for P2
ij , there is a different case for host i. That is, when host i sends

packets by forging a different IP address or forging a different port, etc., it is considered to
be a different action. This paper gives the different actions statistics of their probability of
occurrence. These different actions constitute probabilities satisfying Pij

2 = Pij
21 + Pij

22 +

. . . + Pij
2n, where Pij

2k(1 ≤ k ≤ n) is a certain action of this host, n means that there are
n actions in this host, but the value of n may be different for different hosts. The action
probability distribution diagram of a host sending packets is shown in Figure 2.

Figure 2. Probability diagram of contracting action event.

3.3. Network Attack Relationship Sequence Generation

A key point of network attack scene reconstruction is to build a set of action event
attack relationship sequences, that is, from the set of action events (set if action events, SAE)
to find all the highly relevant attack relationship sequences, constituting a set of attack
scene sequence (set of attack scene sequence, SASS).

From the characteristics of network attacks, it is known that there are different network
attack actions in network attacks. Each action has a purpose to reach the destination address
of that attack, and these different action behaviors can be reflected by the preprocessing
of Pcap packets. In order to get the attack corresponding attack commands from the
preprocessing of Pcap packets, this paper first preprocesses the original Pcap packets,
standardizes the format of the packets, and classifies and converts the data into a collection
of data containing the network attack relationships. To better illustrate the content of this
paper, the following definitions are given.

Definition 2. Action events. An action event is an n-tuple (c1, c2, c3, . . . , cn), where ci(1 ≤ i ≤ n)
denotes the ith attribute of the action event, and note that the action event P = (c1, c2, c3, . . . , cn).

Definition 3. Network attack relationship sequence. A set of strongly consistent action events in
chronological order is called a network attack relationship sequence, denoted as NARS. NARS =<
e1, e2, e3, . . . , en >, satisfies ei.timestamp < ej.timestamp(1 ≤ i < j ≤ n) &&ei.srcMAC ==
ej.srcMAC&&ei.dstMAC == ej.dstMAC.
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In this paper, the action event is designed as an 8-tuple, Pi = (timeline, srcIP, dstIP,
srcMAC, dstMAC, dType, srcPort, dstPort). where timeline denotes the timestamp of the
action event; srcIP and dstIP denote the source and destination IP addresses of the ac-
tion event, respectively; srcMAC and dstMAC denote the source and destination MAC
addresses of the action event, respectively; dType denotes the type of the attack; srcPort
and dstPort denote the source and destination ports of the action, respectively.

The network attack relationship sequence is crucial for the reproduction of network
attacks through which the attack relationship between hosts can be known and form cyber
attack orders. The core of the algorithm: First, the MAC address pairs of action events are
extracted through the algorithm. Then, according to the association relationship between
address pairs, it iteratively judges whether the current action event belongs to a certain type
of existing action event collection. If it exists, it will be directly placed in the appropriate
location of the current action event collection. If it does not exist, it will create a new action
event collection to place it. After all the action events are placed in the appropriate positions
of the action event sets of different categories, all the action event sets have been orderly,
all the action event sets are attack relationship sequences at the same time, thus finally
completing the construction of network attack relationship sequence sets. The network
attack relationship sequence construction algorithm is presented as Algorithm 1.

Algorithm 1: Constructing Network Attack Relationship Sequence Sets
(CNARS) based on Action Event Sets (SAE)

Input: Collection of action events SAE = {e1, e2, . . . , en}
Output: A collection of cyber attack relationship sequences

CNARS = {NARS1, NARS2, . . . , NARSn}
1 Create CNARS = null;
2 while SAE is not ∅ do
3 temp = SAE. f irst and delete SAE. f irst;
4 for NARSi in CNRAS do
5 if (temp.srcMAC, temp.dstMAC couple is in NARSi.MACSet) then
6 index = f (temp, NARSi); /*This function is used to find the index of

the last action event in NARSi with a MAC pair equal to temp.*/
7 if (index == NARSi.size− 1) then
8 add temp to NARSi;
9 add temp.MACnew couple to NARSi.MACSet;/*NARSi.MACSet

can be automatically de-duplicated*/
10 GoTo 2;
11 else
12 Create NARSinew;/*Take the NARSi 0-index items and create a new

attack relation sequence NARSinew derived from NARSi*/
13 Create NARSinew.MACSet;
14 add temp to NARSinew;
15 add temp.MAC couple to NARSinew.MACSet;
16 CNARS = CNARS∪NARSinew;
17 GoTo 2;

18 Create NARSnew;
19 add temp to NARSnew and create NARSnew.MACSet;
20 add temp.MAC couple to NARSnew.MACSet;
21 CNARS = CNARS ∪ NARSnew;

22 Return CNARS

The main body of the algorithm is run by double layer iteration. Using induction, it
can be concluded that when the size of the set of action events is n, the number of times the
subject is executed in its worst case of operation is approximately n(n− 1)/2, so the time
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complexity of the algorithm is O(n2). The body of the algorithm is temporarily the space
complexity of the algorithm, which is O(n) when the size of the set of action events is n.

Using the SDN-based network attack scenario topology model, nodes can be connected
together in an orderly way, and with the attributes of network topology connecting lines,
the network attack scenario topology reconstruction model is completed.

4. Model Analysis
4.1. Relevance

This paper uses Pearson’s correlation coefficient to evaluate the quality of regenerative
flows, which reflects the degree of correlation between the variables. Pearson’s correlation
coefficient is calculated by the product-difference method, which reflects the correlation
between two variables based on the deviation of their mean values from their respective
values. The higher the value of the correlation coefficient is, the higher is the correlation
between the two sets of data and the higher the fidelity of the regenerative flows.

In this paper, the experimental results from Section 5.5 were subjected to similarity
calculation using Pearson correlation coefficient. The results showed that the similarity
score was above 90% for various experimental data such as IP frequency distribution,
protocol information, and changes in attack flow over time. This indicates a high degree
of similarity in the experimental data analyzed. The specific correlation coefficients are
calculated in the experimental section of Section 5.

4.2. Authenticity

The network topology reconfiguration model proposed by this paper is not a simple,
fixed network topology model. It adds the properties of connection lines based on the
Waxman model, such as adding parameters such as connection bandwidth, connection
delay, connection maximum queue size, and connection packet loss rate. The network
topology with these connection parameters can meet the QoS requirements proposed in
the network. Mininet can easily simulate the operation and architecture of networks in
real environments, mainly by using the namespace mechanism of the Linux kernel. In
layman’s terms, the namespace mechanism is to be able to simulate a space for each virtual
device in the network. The experiments conducted on Mininet can be seamlessly moved
to the real environment. This satisfies the first step in reconfiguring the network attack
scenario: topology reconstruction. The probabilistic model is then added, and the attack
made by this model is not simply a completion of the attack event but is able to simulate
a small sample of events at the time of the attack with a small sample of packet sending
behavior. In this way, the network attack scenario recovery performed is no longer just a
network traffic replay but a high degree of reduction in the attack scenario. The generated
packets can achieve a high degree of match with the sample packets, as demonstrated in
the experiments of Section 5.

4.3. Efficiency

Network attack scene recovery includes three steps: data preprocessing, network
topology creation, attack command generation and attack implementation. Assume that
the data preprocessing time is T1, the network topology creation time is T2, and the attack
command generation and implementation time is T3. Then the total time t of network
attack scene recovery is given by

T = T1 + T2 + T3. (2)

In the whole process of network attack scene recovery, the consumption of time and
space is mainly reflected in data preprocessing. Before the network topology is generated,
the preprocessing part has already prepared the configuration information such as the IP
address when the network topology is created, and the connection line attributes that meet
the QoS requirements. Because Mininet itself has the characteristics of rapid reconfiguration
and restart, it takes very little time to create the network topology. A lot of experiments
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show that the process is at a constant, that is, T2 ≈ 1.5 s. Before the attack command is
generated and implemented, the data preprocessing stage will also compare the data packet
information with the rule base to obtain the corresponding attack command parameters,
which need to be spliced and the attack started. Once the attack is started, it only takes
about 40 s, and the CPU and other occupancy rates of the network will reach 100%. So
overall, the speed of network attack scene reconstruction is still very fast. The experiments
in Section 5.5 show that processing 500 pieces of data takes less than 8 s, and even with
100,000 pieces of data, it only takes less than 1 min. The specific time statistics in the
experiments are detailed in Section 5.

4.4. Scalability

The experimental approach in this paper not only enables the replication of a network
attack scenario but also allows for the addition or reduction of network attack intensity,
changes to network topology nodes, etc. on the basis of this experiment. Through the
replication and extension of the attack scenario, it is possible to gain insight into the
network attack posture view, analyze the data and information monitored during the
attack, and formulate corresponding security strategies. It can bring convenience to network
attack defenders to better detect and defend against malicious attack phenomena. Specific
experiments are described in Section 5.

The model is implemented with the idea of high cohesion and low coupling. The
necessary interfaces are reserved in the process of model implementation, which greatly
improves the scalability of the model and facilitates subsequent expansion. Based on the
scalability of the model, the model can be replicated for more types of network attack
scenarios, thus further enhancing the compatibility of the model in the future. The model
analyzes and splits the data in the process of implementation and constructs pluggable tool
libraries such as custom function libraries and attack relationship libraries. They are highly
reusable and lay the foundation for the subsequent expansion of the model.

5. Experimental Analysis
5.1. Development Environment

The experimental environment in this paper uses Ubuntu operating system, version
21.04; the network topology is created based on the SDN network topology of the Mininet
platform; the controller used is the Ryu controller. The specific environment configuration
for the intelligent reconfiguration of the SDN-based network attack scenario is shown
in Table 1.

Table 1. Environment Configuration Details.

Environment Matching Usage Details

CPU Intel(R) Core(TM) i5-10400F
CPU @ 2.90 GHz 2.90 GHz

GPU NVIDIA GeForce GTX 1660 SUPER
Operating system Ubuntu 21.04 64-bit operating system

Memory 16.0 GB
Debugging environment Mininet 2.3.0, Ryu 4.34
Development language Python language

Packet capture tool Wireshark

5.2. Introduction to the Simulation Environment

The environment for this experiment is the SDN network simulation environment tool
Mininet with Ryu.

Mininet is a process virtualisation network simulation tool developed by Stanford
University based on the Linux Container architecture [23]. It can be used to create a virtual
network containing hosts, switches, controllers and links with OpenFlow support for
switches and highly flexible custom software-defined networks [24]. With this platform,
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we can easily simulate the network operation and architecture in a real environment. In
addition, Mininet combines many of the advantages of emulators, hardware test beds and
simulators [25]:

• Comparison with emulators: fast startup; large scalability; more bandwidth provision;
easy installation and easy to use.

• Comparison with emulators: can run real code; easy to connect to real networks.
• Comparison with hardware testbeds: cheap; fast reconfiguration and restart.

There are three ways to create a network topology through Mininet. First, create a
basic network topology with a quick command and then add the required nodes and node
information through the command line if needed. Second, open the visualization tool
MiniEdit; after opening the tool, you can select the controller, OpenFlow switch, host, and
other tools as needed. The controller is usually configured as a remote controller, i.e., Ryu
controller; after drawing the topology, you can export it as a .py file via File -> Export
Level2 Script. Next time, you can continue to open and edit it next time. Third, write a
Python script file directly through a compiler or editor to create a network topology.

Ryu is an open-source SDN controller led by Nippon Telegraph and Telephone Corpo-
ration. It provides users with a flexible and programmable network control interface while
enabling simple and logical centralised control of thousands of OpenFlow switches [26].
As a platform for building SDN applications, Ryu is based on the Python language for
development, so it is simple and easy to use for novices. Ryu, a rising star among SDN
controllers, is now widely used in the industry [27].

The method used to create the network topology in this article is the third one, written
directly by writing a Python script file. The controller used is the Ryu controller.

5.3. Datasets

The data used for the experiments in this paper is the 2019 Canadian Institute for Cyber
Security Dataset (CIC-DDoS2019). The data contains benign and up-to-date common dis-
tributed denial-of-service (DDoS) attacks in the CICDDoS2019 dataset, which is extremely
similar to real-world data (Pcap) [28]. It also includes the results of CICFlowMeter-V3
network traffic analysis using tagged flows based on timestamps, source and destination
IPs, source and destination ports, protocols, and attacks (CSV files). Using their proposed
B-Profile system, Sharafaldin et al. (2016) characterized the abstract behavior of human
interactions and generated natural benign background traffic in the proposed testbed.
The dataset is collated once a day, and the raw data, including network traffic and event
logs (Windows and Ubuntu event logs) for each machine, are recorded daily. For the
feature extraction process of the raw data, 80+ dimensional features were extracted using
CICFlowMeter-V3 and saved as CSV files for each machine. For this dataset, abstract behav-
iors of 25 users were constructed based on HTTP, HTTPS, FTP, SSH, and email protocols,
and the dataset is used by universities, private companies and independent researchers
around the world [29].

5.4. Experimental Results

In this paper, recovery of UDP flood network attack scenario is based on SDN. The Ryu
controller is first started and the program is run to process the Pcap packets through data
preprocessing. The network attack scenario topology reconstruction model is then used to
automatically compose the corresponding network topology, while information such as the
type of attack and the attack relationship is derived from the inter-node information. Based
on this information and the network attack scenario reconstruction probability model,
corresponding attack commands are automatically generated. Finally, the automated
replication of the corresponding attack scenarios is completed and a large amount of attack
data is regenerated.

In this paper, we take the CICDDoS2019 dataset from the Canadian Institute for
Cybersecurity Research as an example. First, a Pcap packet is selected from this dataset, the
Ryu controller is opened, and the corresponding program is run, which automatically parses
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and preprocesses the sample Pcap packet by running it to generate the corresponding four
intermediate files. These four intermediate files have a corresponding role in the subsequent
creation of the network topology and the generation of the attack script. The information
of the corresponding intermediate files is shown in Table 2.

Table 2. Description of Intermediate Documents.

File Name File Content Document Description

Sum.txt srcMAC,dstMAC,srcIP,dstIP This file is used to store the source MAC address, destination Mac address, source
IP address, destination IP address of the packet

SrcIP.txt srcIP This file is used to save the source IP address after de-duplication
DstIP.txt dstIP This file is used to save the destination IP address after de-duplication
Mac.txt Mac This file is used to save all Mac address information after de-duplication

MacRelation.txt (srcMAC,dstMAC)
This file is used to save the source Mac address and destination Mac address as a

whole after de-duplication

IpRelation.txt (srcIP,dstIP)
This file is used to save the source IP address and destination IP address as a

whole after de-duplication

Based on the information files of the three intermediate files, SrcIP.txt, DstIP.txt, and
Mac.txt, the number of hosts, switches, etc., are calculated. The network attack scenario
topology reconstruction model is then used to automatically compose the corresponding
network topology. The network topology for this sample is shown in Figure 3, where
the topmost person represents the attacker, the small blue circles represent the attacker,
and each dotted circle represents a different identity of the attacker. The different hosts in
this experiment represent multiple IP addresses, and the small ovals represent all but one
identity shared by that host.

Figure 3. Network Topology.

After the network topology is generated, in this paper, we run the generated network
attack script on the network topology to execute the attack and count the network attack
traffic during the network attack. In this case, this paper counts the network attack for
60 s, and the number of sFlow bytes over time is shown in Figure 4. In the first 5 s, the
attack script is executed, the attack starts to proceed, and the rate at which packets are sent
begins to grow rapidly. After the attack lasts for 5 s, almost every attacker is in working
condition and the rate of packets sent by the attacker increases slowly. Until 25 s, the attack
rate almost reaches the set peak, and after 25 s, the packet rate is in a stable fluctuation.
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Figure 4. Change Diagram of sFlow Bytes in Network Attack Process.

During the attack, there is a direct correlation between sFlow bytes and network
throughput rate. As the sFlow bytes increase, the network throughput rate also keeps
increasing. That is, it increases rapidly from 0 to 5 s and slowly from 5 to 25 s until 25 s,
when the attack rate almost reaches the set peak. After 25 s, the sFlow packets are also
basically at a stable value because the packet rate is in a stable state. In this paper, we
counted 60 s of network attacks, and the sFlow packet variation over time is shown in
Figure 5.
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Figure 5. Change Diagram of SFlow Packets in Network Attack Process.

During the network attack, the rapid increase of sFlow bytes and sFlow packets make
the transmission traffic grow rapidly, and the CPU occupancy and memory occupancy
also increase significantly from 0 to 30 s. After that, with sFlow bytes and sFlow packets
at a stable value, the attack is also at a critical moment, and the CPU occupancy reaches
100%. After 20 s, the packets are continuously sent. After 50 s, the CPU occupancy and
memory occupancy reach the maximum value, and the CPU and memory change during
the network attack, as in Figure 6.
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Figure 6. Graph of Changes in CPU, Memory, etc. During Network Attacks.

5.5. Experimental Comparison

When reconstructing the network attack scenario, the sample packets are first pre-
processed, and the results returned from the preprocessing are some basic information
for reconstructing the network topology and the attack parameters needed in the network
attack. such as the packet type, the port information, the IP information of the attacker and
the attacked, the length of the attacked packets, etc. Then the network topology is recon-
structed and the network attack is implemented based on the preprocessed information.
This reproduces the network attack scenario to achieve a high degree of matching with
the sample.

To demonstrate the similarity between our proposed method and the original data,
we will compare and analyze the five following aspects: IP address distribution and usage
frequency, similarity calculated by Pearson algorithm, protocol proportions, packet length,
and port binding services. By comparing these aspects, we can illustrate the degree of
similarity between the original data and the regenerated data for attack scenarios. The
specific comparisons are as follows:

(1) IP address distribution and usage frequency.

With the SDN-based network attack scenario recovery method proposed in this paper,
the similarity of attack scenario recovery can be improved as much as possible. The model
can fully represent the original data by adding probabilistic events, including the small
sample of events present in the original data. In the raw data of this paper, each host has
multiple different spoofed IP identities, and according to the statistics all attackers used a
total of 28 IP addresses, but the number of packets sent by the attackers using different IPs
varies. The IPs, 192.168.50.1, 192.168.50.6, 192.168.50.7, 172.217.11.2, and 172.217.9.226, are
used with the highest frequency, and the remaining IPs are used with very low frequency.
The statistics were also calculated in this paper, and the frequency graph of forged IPs is
shown in Figure 7. The content in brackets after the IP address represents the number of
times the IP appears. In the attack scenario recovery, to more clearly illustrate, the small
sample events have been added. First, the main attack event IP is 172.16.0.5 for the statistics,
accounting for 99.1818% of the sample and 99.2407% of the regenerated data. After that,
the IP frequencies of the regenerated packets and the sample packets are compared, and
the comparison graph is shown in Figure 8.



Mathematics 2023, 11, 1897 15 of 22

Figure 7. Frequency Diagram of Pseudo IP Addresses.
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Figure 8. Probability Comparison Chart of Attack Packets and Sample Packets.

We can clearly see from the comparison graph in Figure 8 that there is a high degree
of consistency between the original and regenerated data in terms of IP address usage
frequency. Even for small sample events with very low IP usage, they can be accurately
simulated due to the added probability model. Using the Pearson correlation coefficient
calculation, the similarity can reach up to 99%.

(2) Similarity calculated by Pearson algorithm.

According to the network attack scenario recovery method proposed in this paper, the
number of packets sent by the regenerated data and the original data in time are counted
and the similarity of the attacks is compared. In this paper, we choose the time period
from 0 to 5.5 s and count the total number of packets sent by the original data and the
regenerated data every 0.5 s, respectively. From 0 to 2 s, the number of packets increases at
a fast rate and there is a certain gap between the number of packets sent by the regenerated
data and the original data. After that, as the number of sent packets slowly increases, the
graph of the number of packets sent by the regenerated data floats around the graph of
the number of packets sent by the original data, but the two rates are basically the same
and the graphs of the changes of the two curves basically overlap together. The statistical
results of the total number of packets sent during the time period from 0 to 5.5 s are shown
in Figure 9.
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Figure 9. Comparison Chart of The Total Sum of Packets Sent on The Time Series.

According to the similarity calculation method mentioned in Section 4.1 using Pearson
correlation coefficient: this paper has done three sets of experiments on three different
Pcap packets, the first of which is the experimental result in Figure 9. The correlation
coefficients were calculated for the original data and the regenerated data from the three
sets of experimental results, where X is the original data, Y is the regenerated data, µX is
the mean of X, µY is the mean of Y, σX is the standard deviation of the original data X, σY is
the standard deviation of the regenerated data Y, and ρX,Y is the correlation coefficient. In
this paper, three different groups of experiments were performed. The statistics are shown
in Table 3.

Table 3. Statistical Table of Correlation Coefficients.

Group Group 1 Group 2 Group 3

µX 172,198.0833 182,011.3 141,554.8
µY 173,701.0833 200,759.3 145,845.8
σX 113,199.1511 100,338.73414 78,006.45636
σY 117,431.6822 117,964.93129 77,420.57464

ρX,Y 0.9998 0.9978 0.99

Based on the comparison described above, the Pearson correlation was calculated for
the regenerated and original data for all three experiments. The three experiments showed
high consistency and achieved a very high degree of similarity. As can be seen from Table 3,
the method is stable, and the regenerated data traffic is essentially the same as the original
traffic in terms of sending time attributes.

(3) Protocol proportions.

To demonstrate the similarity in the recovery of the network attack scenarios, the
experiments were also compared statistically in terms of packet protocols, packet lengths,
port binding services for sending packets, and port binding services for receiving packets.
In this experiment, the protocols in the sample are mainly UDP protocols, and a few are
ICMP protocols and TCP protocols, along with some other protocols, but the other protocols
are almost a very small part. The results of the statistical comparison are shown in Table 4.
By comparing the difference between both is not more than 0.2%. Based on the protocol
distribution in Table 4 and comparison using Pearson correlation, the similarity of protocols
can reach up to 98%.



Mathematics 2023, 11, 1897 17 of 22

Table 4. Network Packet Protocol Proportion Information.

Protocol Raw Data Regeneration Data

UDP 99.2815% 99.0780%
TCP 0.7028% 0.8908%

ICMP 0.0155% 0.0269%
Others 0.0002% 0.0043%

(4) Packet length.

In the sample data protocols are mainly UDP protocols, a small number of TCP
protocols and ICMP protocols, and some other protocols because different protocols send
packets of different lengths. The length of packets used to send in the UDP protocol is
mainly 524, and there are a few other lengths of UDP protocol packets. The TCP and ICMP
protocols themselves account for a smaller proportion, and the packet length distribution is
more dispersed, so the proportion of the total number of packets is even smaller. The results
of comparing the regenerated data with the native data are shown in Table 5. Using the
Pearson correlation to compare the distribution of packet lengths in Table 5, the similarity
can reach up to 98%.

Table 5. Packet Length Proportion Information Table.

Packet Length Raw Data Regeneration Data

UDP.length == 524 99.1404% 99.0768%
UDP.length! = 524 0.1411% 0.0012%

TCP.length > 45 0.3423% 0.5344%
TCP.length ≤ 45 0.3605% 0.3564%

Others 0.0157% 0.0312%

(5) Port-binding services.

Due to the presence of several different protocols in this sample packet, there are
different services bound to the same port. For example, on port 1483 both packets of the
TCP protocol and packets of the UDP protocol are sent. As the source and destination ports
are spread out, the number of different services bound to the port is counted in the statistics.
The statistics show that the number of different services bound to different ports is 51,350
for the original data and 52,245 for the regenerated data. In conclusion, the difference
between the two is negligible.

Through the comparison from five different perspectives above, it can be concluded
that the regenerated network traffic for attack scenarios shows high similarity with the
original data traffic.

According to the content mentioned in Section 4.4, the experiment can not only
reproduce the UDP flood attack but also control the strength of the attack on the network.
For network defenders, it would be significant to be able to identify other problems in
the network by modulating the intensity of the attack on top of reproducing it. Therefore,
based on this experiment, this paper regenerates traffic that increases and decreases the
intensity of the network attack under the same network topology. The data generated by
increasing and decreasing intensity were also compared with the sample data, and the
results of the comparison are shown in Figure 10.

At the same time, network topology nodes can be added to the experiment, and the
addition of network topology nodes allows the experimenter to perform some other types
of attacks or experiments on these nodes. In this paper, we address the addition of network
topology nodes and still perform attacks on the attacking hosts in the experiment without
changing the original attack parameters. The initial state of the experiment is six hosts,
and the number of packets is observed from 0 to 5.5 s by gradually increasing the number
of hosts. The number of packets sent by the attacker in the experiment increases with the
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number of hosts. The number of packets sent by the attacker varies with the number of
hosts versus time, as shown in Figure 11.
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Figure 10. Frequency Diagram of Pseudo-IP Addresses.
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Figure 11. Packet change graph after increasing the number of hosts.

The network attack scenario recovery method proposed in this paper not only has a
high reproduction rate and scalability, but also the attack scenario recovery is particularly
fast. According to the relevant calculation methods mentioned in Section 4.3, The total time
T spent in network attack scenario recovery is mainly concentrated in three aspects: data
preprocessing T1, network topology creation T2, and attack command generation and attack
execution T3. For different numbers of datasets, time statistics are performed separately
from these three aspects. As the number of packets increases, the time increases but is still
fast. The statistical results are shown in Table 6.
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Table 6. Timetable Required for Network Attack Recovery.

Time (s) 500 1000 5000 10,000 100,000

T1 3.57 8.86 19.68 27.83 51.96
T2 1.46 1.61 1.55 1.50 1.53
T3 2.23 2.44 2.68 2.98 3.23
T 7.26 12.91 23.91 32.31 56.72

There exist many network topology reconstruction models with network attack sce-
nario reconstruction models. However, with the proposed QoS requirements in the network,
the simple, fixed network topology model is not a good simulation of the real network, and
it is necessary to add connection properties to the existing connections. For example, QoS
parameters such as bandwidth, latency, cost, and packet loss rate are added to the network
model to better simulate the real network. Currently, the network topology scenario recon-
struction mainstream is expressed in the form of language and diagram and does not really
create the topology. The network topology model proposed in this paper not only adds
QoS parameters but also creates the real network topology.

In the process of network attack recovery, the proposed network attack scenario
recovery method in this paper is qualitatively evaluated against existing network attack
scenario recovery methods. Four main aspects are compared: whether the network topology
is created in the network attack scenario recovery; whether the real network traffic is
regenerated; whether the intensity of the attack is controllable during the network attack;
and the recovery emphasis of the network attack scenario. The comparison results are
shown in Table 7.

Table 7. Qualitative Analysis Table.

Methods Create
Topology

Regenerate Real
Traffic

Control the
Intensity of the

Attack

Restore
Capability

H. Liu [7] Yes No No Strong
Y. Djemaiel [13] No No No Medium

Y. Zhang [14] No No No Strong
H. Wu [10] Yes No No Strong

W. Wang [15] No No No Weak
T. Guo [16] No No No Weak

Our method Yes Yes Yes Strong

5.6. Extra Costs and Limitations Discussion

In this section, we will mainly discuss the possible extra costs and limitations that may
be involved in our research plan. We will analyze the potential limitations of our study and
the associated extra expenses and propose corresponding solutions to these issues.

5.6.1. Extra Costs

In this experiment, we utilized a publicly available dataset that had already been
labeled for network attack scene recovery, so there were no significant additional costs
incurred. However, in real-world network attack scenarios, the time span for packet
collection can be quite long. If we obtain a raw dataset, additional costs will be incurred.
We would need to spend considerable time or technical resources to calibrate the attack
process and extract the proper data. The accuracy of our network attack scene recovery is
dependent on the accuracy of data calibration. Only with more accurate calibration data
can we recover scenes closer to reality.

5.6.2. Limitations

In this work, although the SDN-based network attack scene restoration method pro-
posed in this paper has achieved some results, due to the complexity and diversity of
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network attacks, if data packets containing unknown network protocols are mixed in dur-
ing scene reconstruction, these unknown network protocol packets still cannot be revived.

6. Conclusions

This paper proposes an SDN-based network attack scene recovery method. This
method is able to regenerate the original data and integrate other network attacks into the
reconstructed scene, generating new blended data. The first step of this method is to parse
Pcap data of network attacks obtained from public sources. The second step is to generate
the network topology by utilizing the network attack scenario topology reconfiguration
model and generate corresponding attack scripts using the network attack scenario recovery
probability model and attack sequence algorithm and finally, to regenerate traffic on the
network topology. The experimental results show that the proposed method is closer to the
actual network attack scenario, with a higher similarity of the attack scenario. Additionally,
the proposed method not only enables the recovery of network attack scenarios but can
also be extended to other experiments. For example, based on the restored network attack
scenarios, the network topology nodes can be modified and the strength of the attack can
be intensified or weakened and combined with other types of attacks.

Regarding the limitations mentioned in Section 5.6.2, for future work, we aim to
investigate how to construct unknown protocol data packets and revive them, in hopes of
automating adaptation and resurrection of various types of data packets. Additionally, we
will enhance the accuracy and reliability of our model by introducing more data sources,
optimizing algorithm design, and exploring new data analysis and modeling methods,
among other approaches.
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