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Abstract: In this paper, we propose a model averaging estimation for the varying-coefficient partially
linear models with missing responses. Within this context, we construct a HRCp weight choice
criterion that exhibits asymptotic optimality under certain assumptions. Our model averaging
procedure can simultaneously address the uncertainty on which covariates to include and the
uncertainty on whether a covariate should enter the linear or nonlinear component of the model. The
simulation results in comparison with some related strategies strongly favor our proposal. A real
dataset is analyzed to illustrate the practical application as well.
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1. Introduction

Model averaging, an alternative to model selection, addresses both model uncertainty
and estimation uncertainty by appropriately compromising over the set of candidate
models, instead of picking only one of them, and this generally leads to much smaller risk
than that encountered in model selection. Over the past decade, various model averaging
approaches, with optimal large sample properties have been actively proposed for complete
data setting, such as the following: Mallows model averaging [1,2], optimal mean squared
error averaging [3], jackknife model averaging [4–6], heteroscedasticity-robust Cp (HRCp)
model averaging [7], model averaging based on Kullback–Leibler distance [8], model
averaging in a kernel regression setup [9], and model averaging based on K-fold cross-
validation [10], among others.

In practice, many datasets in clinical trials, opinion polls and market research surveys
often contain missing values. As far as we know, compared with the large body of research
regarding model averaging for fully observed data, much less attention has been paid
to performing optimal model averaging in the presence of missing data. Reference [11]
studied a model averaging method applicable to situations in which covariates are missing
completely at random, by adapting a Mallows criterion based on the data from complete
cases. Reference [12] broadened the analysis in [11] to a fragmentary data and heteroscedas-
ticity setup. By applying the HRCp approach in [7], Reference [13] developed an optimal
model averaging method in the presence of responses missing at random (MAR). In the
context of missing response data, Reference [14] constructed a model averaging method
based on a delete-one cross-validation criterion. Reference [15] proposed a two-step model
averaging procedure for high-dimensional regression with missing responses at random.

The aforementioned model averaging methods in a missing data setting are asymp-
totically optimal in the sense of minimizing the squared error loss in a large sample case,
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but they all concentrate mainly on the simple linear regression model. In the context of
missing data, it would be interesting to study model averaging in the varying-coefficient
partially linear model (VCPLM) introduced by [16], which allows interactions between a
covariate and an unknown function through effect modifiers. Due to its flexible specifi-
cation and explanatory power, this model has received extensive attention over the past
decades. Different kinds of approaches have been raised to estimate the VCPLM, such as
the following: estimation process based on the local polynomial fitting method [17], the gen-
eral series method [18], and profile least squares estimation [19]. References [20–23] have
developed various variable selection procedures in the VCPLM. As for model averaging
in the VCPLM, only the following works have been conducted. In the measurement error
model and the missing data model, References [24,25], respectively, established the limiting
distribution of the resulting model averaging estimators of the unknown parameters of
interest under the local misspecification framework. As pointed out by [26], this framework,
which was suggested by [27], is a useful tool for asymptotic analysis, but its realism is
subject to considerable criticism. Additionally, these two works studied existing model
averaging strategies, based on the focused information criterion, but did not consider any
new model averaging method with asymptotic optimality. When all data are available,
References [26,28] developed two asymptotically optimal model averaging approaches for
the VCPLM, based on a Mallows-type criterion and a jackknife criterion, respectively.

As far as we know, there remains no optimal model averaging approach developed for
the VCPLM with missing responses. The main goal of the current paper was to fill this gap.
To the best of our knowledge, this paper is the first to study the asymptotically optimal
model averaging approach for the VCPLM in the presence of responses MAR without
the local misspecification assumption. However, existing results are difficult to directly
extend to our setup for the following two reasons. Firstly, existing optimal model averaging
approaches in the VCPLM with complete data, such as the Mallows model averaging
method proposed by [26], and the jackknife model averaging method advocated by [28],
cannot be directly applied to our problem. Secondly, in contrast with the case in linear
missing data models, studied by [13,14], our analysis is significantly complicated by two
kinds of uncertainty in the VCPLM: the uncertainty on the selection of variables, and the
uncertainty on whether a covariate should be allocated to the linear or nonlinear component
of the model. These uncertainties have not been investigated much by the VCPLM literature.
Motivated by these two challenges, we suggest a new model averaging approach for the
VCPLM with responses MAR via the HRCp criterion. This new approach was developed by
introducing a synthetic response based on an inverse probability weighted (IPW) technique.
Then, HRCp model averaging could be conducted easily. Under certain assumptions, the
weights selected by minimizing the HRCp criterion are demonstrated to be asymptotically
optimal. Furthermore, we numerically illustrate that our method is always superior to its
rivals in several designs with different kinds of model uncertainty. The detailed research
procedures and methods can be found in Figure 1.

The remainder of this article is organized as follows. We construct the model averaging
estimator and establish its asymptotic optimality in Section 2. A simulation study is
conducted in Section 3 to illustrate the finite sample performance of our strategy and a
real data example is provided in Section 4. Section 5 contains some conclusions. Detailed
proofs of the main results are relegated to the Appendix A.
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Figure 1. The flow chart of our research.

2. Model Averaging Estimation
2.1. Model and Estimators

We considered the following VCPLM:

yi = µi + εi = X′i β + Z′i α(ui) + εi =
∞

∑
p=1

xipβp +
∞

∑
q=1

ziqαq(ui) + εi, i = 1, . . . , n, (1)

where yi is a scalar response variable, (Xi, Zi, ui) are covariates with Xi and Zi being
countably infinite, β is an unknown coefficient vector associated with Xi, α(·) is an un-
known coefficient function vector associated with Zi, εi is a random statistical error with
E(εi|Xi, Zi, ui) = 0 and E(ε2

i |Xi, Zi, ui) = σ2. As in [26,29], we assume that the dimension
of ui is one. Model (1) is flexible enough to cover a variety of other existing models, such as
the following: the linear model that was studied by [1,4], the partially linear model that
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was studied by [30] and the varying-coefficient model that was studied by [29]. For this
model, we focus on the case where all covariates are always fully observed while some
observations of the response variable may be missing. Specifically, we assume that yi is
MAR in the sense that:

P(δi = 1|yi, Xi, Zi, ui) = P(δi = 1|Xi, Zi, ui) ≡ π(Xi, Zi, ui), (2)

where δi = 1 if yi is completely observed, otherwise δi = 0, and the selection probability
function π(Xi, Zi, ui) is bounded away from 0.

As in most literature on model averaging, we aimed to estimate the conditional mean
of the response data Y = (y1, . . . , yn)′, i.e., µ = (µ1, . . . , µn)′, which is especially useful in
prediction. However, owing to the presence of the missing data, none of the existing optimal
model averaging estimations for complete data could be directly utilized in our setting. We
addressed this problem by introducing a synthetic response Hπ,i = δiyi/π(Xi, Zi, ui). By
the aforementioned MAR assumption and some simple calculations, it is easy to observe
that E(Hπ,i|Xi, Zi, ui) = E(yi|Xi, Zi, ui) = µi and Var(Hπ,i|Xi, Zi, ui) = σ2

π,i, where σ2
π,i =[

{π(Xi, Zi, ui)}−1 − 1
]
µ2

i + {π(Xi, Zi, ui)}−1σ2. Therefore, under Model (1) and the MAR
assumption, we have:

Hπ,i = µi + επ,i, i = 1, . . . , n, (3)

where επ,i = Hπ,i−E(yi|Xi, Zi, ui) satisfying E(επ,i|Xi, Zi, ui) = 0 and Var(επ,i|Xi, Zi, ui) =
σ2

π,i. As is apparent, in Model (3) the completely observed cases are weighted by their
corresponding inverse selection probabilities, while the missing cases are weighted by zeros.
Then, the analysis is conducted on the basis of the weighted data. By introducing the fully
observed synthetic response Hπ,i, we obtain a new Model (3) the conditional expectation
of which is equivalent to that of Model (1). Thus, the HRCp model averaging estimation
for µi, the conditional mean of Model (1), can be alternatively derived by studying the
HRCp model averaging estimation for Model (3) with the synthetic data when π(Xi, Zi, ui)
is known.

Supposing that there are M candidate VCPLMs to approximate the true data gener-
ating process of yi, which is given in (1), and the mth candidate VCPLM comprises pm
covariates in Xi and qm covariates in Zi. Accordingly, there are M candidate models to
approximate Model (3), and the mth candidate model contains the same covariates as that
of the mth candidate VCPLM for (1). Specifically, the mth candidate model is:

Hπ,i = X′(m),iβ(m) + Z′(m),iα(m)(ui) + e(m),i + επ,i, i = 1, . . . , n, (4)

where X(m),i is the pm-dimensional sub-vector of Xi and β(m) is the corresponding unknown
coefficient vector, Z(m),i = (z(m),i1, . . . , z(m),iqm)

′ is the qm-dimensional sub-vector of Zi
and α(m)(ui) = (α(m),1(ui), . . . , α(m),qm(ui))

′ is the corresponding unknown coefficient
function, e(m),i = µi − X′(m),iβ(m) − Z′(m),iα(m)(ui) denotes the approximation error of the
mth candidate model. Details of the model averaging estimation procedure in our setup
are provided below.

We employed the polynomial spline-based smoothing strategy to estimate each coeffi-
cient function first. Without loss of generality, suppose that the covariate u is distributed
on a compact interval [0, 1]. Denote the polynomial spline space of degree $ on interval
[0, 1] by Ψ. We introduce a sequence of knots on the interval [0, 1]: k−$ = · · · = k−1 = k0 =
0 < k1 < · · · < k Jn < 1 = k Jn+1 = · · · = k Jn+$+1, where the number of interior knots Jn
increases with sample size n. The spline basis functions are polynomials of degree $ on
all sub-intervals [k j, k j+1), j = 0, . . . , Jn − 1 and [k Jn , 1], and are ($− 1)-times continuously
differentiable on [0, 1]. Let B(·) = (B−$(·), . . . , BJn(·))′ be a vector of the B-spline basis
function in space Ψ. According to B-spline theory, there exists a B′(u)θ(m),q in Ψ for some
(Jn + $ + 1)-dimensional spline coefficient vector θ(m),q = (θ(m),q,−$, . . . , θ(m),q,Jn)

′ such that
maxm,q supu∈[0,1] |α(m),q(u)− B′(u)θ(m),q| = O((Jn + $ + 1)−d), where α(m),q(u) is the qth
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element of α(m)(u). We would like to estimate β(m) and θ(m) = (θ′(m),1, . . . , θ′(m),qm
)′ by the

least squares method based on the criterion:

min
β(m),θ(m)

n

∑
i=1

{
Hπ,i − X′(m),iβ(m) −

qm

∑
q=1

z(m),iqB′(ui)θ(m),q

}2

. (5)

Let G(m),i = (z(m),i1B′(ui), . . . , z(m),iqm B′(ui))
′ be an {qm(Jn + $ + 1)}-dimensional vec-

tor. Denote Hπ = (Hπ,1, . . . , Hπ,n)′, X(m) = (X(m),1, . . . , X(m),n)
′ and G(m) = (G(m),1, . . . ,

G(m),n)
′. Here, we assume that the regressor matrix X̃(m) = (X(m), G(m)) has full column

rank lm = pm + {qm(Jn + $ + 1)}. The solution to the minimization problem provided in
(5) can be expressed as:

β̂(m,π) = {X′(m)(I −Q(m))X(m)}−1X′(m)(I −Q(m))Hπ , (6)

θ̂(m,π) = (G′(m)G(m))
−1G′(m)(Hπ − X(m) β̂(m,π)), (7)

where Q(m) = G(m)(G′(m)G(m))
−1G′(m). Let Φ(m) = (I −Q(m))X(m), then the estimator of µ

under the mth candidate model follows:

µ̂(m,π) = X(m) β̂(m,π) + G(m) θ̂(m,π) = {Q(m) + Φ(m)(Φ
′
(m)Φ(m))

−1Φ′(m)}Hπ . (8)

Denoting P(m) = Q(m) + Φ(m)(Φ′(m)Φ(m))
−1Φ′(m), we obtain µ̂(m,π) = P(m)Hπ .

To smooth estimators across all candidate models, we may define the model averaging
estimator of µ as:

µ̂π(w) =
M

∑
m=1

wmµ̂(m,π) =
M

∑
m=1

wmP(m)Hπ ≡ P(w)Hπ , (9)

where w = (w1, . . . , wM)′ is a weight vector in the setW = {w ∈ [0, 1]M : ∑M
m=1 wm = 1}.

2.2. Weight Choice Criterion and Asymptotically Optimal Property

Obviously, the weight vector w, which represents the contribution of each candidate
model in the final estimation, plays a central role in (9). Our weight choice criterion was
motivated by applying the HRCp method of [7], which is designed for the complete data
setting, and is defined as follows:

Cπ(w) = ‖Hπ − µ̂π(w)‖2 + 2
n

∑
i=1

ε̂2
π,iPii(w), (10)

where ε̂π,i is the residual from a preliminary estimation, Pii(w) is the ith diagonal element
of the matrix P(w). As suggested by [7], ε̂π,i can be obtained by a model, indexed by M∗,
which includes all the regressors in the candidate models. That is:

ε̂π =
√

n/(n− lM∗)(I − PM∗)Hπ , (11)

where lM∗ is the rank of the regressor matrix in model M∗, ε̂π = (ε̂π,1, . . . , ε̂π,n)′.
So far, we have assumed that the selection probability function is known. This is,

of course, not the case in real-world data analysis, and the proposed criterion (10) is,
hence, computationally infeasible. To obtain a feasible criterion in practice, we needed to
estimate π(Xi, Zi, ui) first. Following much of the missing data literature, and under the
MAR assumption defined above, we assume that for an unknown parameter vector η and
Ti = (X′i , Z′i , ui)

′ we have:
π(Xi, Zi, ui) = π(Ti, η), (12)
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for some function π(·, η), the form which is known to be a finite-dimensional parameter
η. Let η̂ be the maximum likelihood estimator (MLE) of η. Then the selection probability
function can be estimated by π(Ti, η̂). In what follows, the Greek letter indexed by π̂
denotes that it is obtained by replacing π(Xi, Zi, ui) in its equation with the estimator
π(Ti, η̂). A feasible form of the weight choice criterion based on HRCp method is, thus,
given by:

Cπ̂(w) = ‖Hπ̂ − µ̂π̂(w)‖2 + 2
n

∑
i=1

ε̂2
π̂,iPii(w), (13)

and the weight vector can be obtained by:

ŵ = arg min
w∈W

Cπ̂(w). (14)

Then, the corresponding model averaging estimator of µ can be expressed as µ̂π̂(ŵ), and
its asymptotic optimality can be developed under some regularity conditions.

Some notations and definitions are required before we list these conditions. Write
l(η) = E[δ log π(T, η) + (1− δ) log{1− π(T, η)}], X = (X1, . . . , Xn)′, Z = (Z1, . . . , Zn)′,
U = (u1, . . . , un)′. Define the squared error loss of µ̂π(w) and the corresponding risk
as Lπ(w) = ‖µ̂π(w) − µ‖2 and Rπ(w) = E(Lπ(w)|X, Z, U). Let ξπ = infw∈W Rπ(w),
w0

m be a M × 1 vector with the mth element being 1 and the others being 0, and let Θη

be the parameter space of η. Define r as a positive integer and τ ∈ (0, 1], such that
d = (r + τ) > 0.5. Let S be a collection of functions s on [0, 1] whose rth derivative s(r)

exists and satisfies the Lipschitz condition of order τ, i.e.,

|s(r)(t∗)− s(r)(t)| ≤ Cs|t∗ − t|τ , for 0 ≤ t∗, t ≤ 1,

where Cs is a positive constant. All limiting processes discussed throughout the paper are
under n→ ∞. The conditions needed to derive asymptotic optimality are as follows:

• (Condition (C.1)) l(η) has a unique maximum at η0 in Θη , where η0 is an inner point
of Θη and Θη is compact. π(Ti, η) ≥ Cπ > 0, and π(Ti, η) is twice continuously

differentiable with respect to η, where Cπ is a constant. max1≤i≤n

∥∥∥ ∂π(Ti ,η)
∂η

∥∥∥ = Op(1)
for all η’s in a neighborhood of η0.

• (Condition (C.2)) max1≤i≤n E(ε4K
i |Xi, Zi, ui) ≤ Cε < ∞ for some integer 1 ≤ K < ∞

and for some constant Cε. There exists a constant Cµ, such that max1≤i≤n |µi| ≤ Cµ.
• (Condition (C.3)) Mξ−2K

π ∑M
m=1{Rπ(w0

m)}K → 0, where K is given in Condition (C.2).
• (Condition (C.4)) Each coefficient function αq(·) ∈ S .
• (Condition (C.5)) The density function of u, say f , is bounded away from 0 and infinity

on [0, 1].
• (Condition (C.6)) max1≤m≤M max1≤i≤n P(m),ii = O(n−1/2), where P(m),ii denotes the

ith diagonal element of P(m).
• (Condition (C.7)) n1/2/ξπ → 0.
• (Condition (C.8)) lM∗ = O(n1/2).

Condition (C.1) is from [31] and is similar to Condition (C1) of [13], which ensures the
consistency and asymptotic normality of the MLE η̂. The first part of Condition (C.2) is a
commonly used assumption of the conditional moment of the random error term in model
averaging literature; see, for example, [2,4,26]. The second part of Condition (C.2) is the same
as the assumption (C.2) of [32] that bounds the conditional expectation µi. Condition (C.3)
not only requires ξπ → ∞, but also requires that M and max1≤m≤M Rπ(w0

m) tend to infinity
slowly enough. Such a condition can be viewed as an analogous version of Assumption 2.3
in [7], in which the authors proposed the HRCp model averaging method in a complete
data setting. Conditions (C.4) and (C.5) are two general requirements that are necessary
for studies of the B-spline basis, see [29,33]. Condition (C.6), an assumption that excludes
peculiar models, is from [7]. A similar condition, which is frequently used in studies of
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optimal model averaging based on cross-validation, can be found in assumption (5.2) of [34]
and (24) of [5]. Condition (C.7) states that ξπ approaches infinity at a rate faster than n1/2,
and is the same as Condition (C.3) of [35] and implied by (A3) of [36]. Condition (C.8) limits
the increasing rate of the number of covariates. A similar condition is used in other model
averaging studies, such as (22) in [5]. In fact, (22) in [5] can be obtained by combining our
Conditions (C.7) and (C.8).

The following theorem states the asymptotic optimality of the corresponding model
averaging estimator based on the feasible HRCp criterion.

Theorem 1. Suppose that Conditions (C.1)–(C.8) hold. Then, we have

Lπ̂(ŵ)

infw∈W Lπ̂(w)
→ 1 (15)

in probability as n→ ∞.

Theorem 1 reveals that when the selection probability function is estimated by π(Ti, η̂)
and the conditions listed are satisfied, ŵ, the weight vector selected by the feasible HRCp
criterion leads to a squared error loss that is asymptotically identical to that of the infeasible
best possible weight vector. This indicates the asymptotic optimality of the resulting model
averaging estimator µ̂π̂(ŵ). The detailed proof of Theorem 1 is in Appendix A.

3. A Simulation Study

In this section, we conduct a simulation study with five designs to evaluate the
performance of the proposed method, including selection of the interior knot number and
a comparison of several model selection and model averaging procedures.

3.1. Data Generation Process

Our setup was based on the setting of [26], except that the response variable is subject
to missingness. Specifically, we generated data from the following model:

yi = µi + εi =
200

∑
p=1

xipβp +
200

∑
q=1

ziqαq(ui) + εi, (16)

where Xi = (xi1, . . . , xi200)
′ and Zi = (zi1, . . . , zi200)

′ are drawn from a multivariate
normal distribution with mean 0 and covariance matrix Λ = (λij) with λij = 0.5|i−j|,
ui ∼ Uniform(0, 1), εi ∼ N(0, ζ2(x2

i2 + 0.01)). We changed the value of ζ, so that the popu-
lation R2 = var(µi)/var(yi) varied from 0.1 to 0.9, where var(·) was the sample variance.
The coefficients of the linear part were set as βp = 1/p2, and the coefficient functions were
determined by αq(ui) = sin(2πqui)/q. Under the MAR assumption, we generated the
missingness indicator δi from the following two logistic regression models, respectively:

Case 1: logit{P(δi = 1|Xi, Zi, ui)} = 1.2 + 0.5ui + 0.5xi1;
Case 2: logit{P(δi = 1|Xi, Zi, ui)} = 0.1 + 0.7ui + 0.7xi1.

For the preceding two cases, the average missing rates (MR) were about 20% and 40%,
respectively. In this simulation, we assumed the parametric function π(Ti, η) applied in
our proposed method was correctly specified in both cases.

To investigate the performance of the methods as comprehensively as possible, the
sample sizes were taken to be n = 100 and n = 200, and five simulation designs, with
different M and covariate settings, were considered. These five designs are displayed
in Table 1, in which INT(·) returns the nearest integer from the corresponding element.
So, in Design 1 and Design 3, M = 14 and 18 for the two sample sizes. We required
every candidate model to contain at least one covariate in the linear part, leading to 25 − 1
candidate models in Designs 2 and 4. In Design 5, each candidate model included at least
one covariate of {xi1, xi2, xi3, zi1} in the linear part and one covariate of {xi1, xi2, xi3, zi1}
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in the nonparametric part, and each covariate could not exist in both parts. This led to
C1

4(2
3 − 1) + C2

4(2
2 − 1) + C3

4 = 50 candidate models. In summary, in the first four designs,
Designs 1 and 3 for the nested case and Designs 2 and 4 for the non-nested case, there was,
a priori knowledge of which covariates should enter the nonparametric part of the model,
but the specification of the linear part was uncertain. The last design incorporated two
types of uncertainty: uncertainty on the choice of variables and uncertainty on whether the
variable should be in the linear or nonparametric part given that it is already included in
the model.

Table 1. Summary of designs in simulation study.

Design M Covariate Setting

1 INT(3n1/3)

All candidate models shared a common nonparametric struc-
ture of zi1α1(ui), and their parametric parts were a set of
{xi1, xi2, · · · , xiM}, with the mth candidate model including
the first m covariates. In other words, all of the candidate
models were nested.

2 25 − 1
Identical to Design 1 except that all candidate models were
non-nested, and their linear parts were constructed by vary-
ing combinations of {xi1, xi2, · · · , xi5}.

3 INT(3n1/3) Identical to Design 1 except that all candidate models shared
a common nonparametric structure of zi1α1(ui) + zi2α2(ui).

4 25 − 1 Identical to Design 2 except that all candidate models shared
a common nonparametric structure of zi1α1(ui) + zi2α2(ui).

5 50

The covariate set included {xi1, xi2, xi3, zi1}. Each candidate
model included at least one covariate in the linear part and
one covariate in the nonparametric part, and each covariate
could not exist in both parts.

3.2. Estimation and Comparison
3.2.1. Selection of the Knot Number

We used the cubic B-splines to approximate each nonparametric function, and the
spline basis matrix was produced by the function “bs(·, df)” in the“splines” package of the
R project, where the degree of freedom df = 4 + number of knots. We assessed the effect of
the knot number on the performance of our proposal based on the following risk:

Lµ =
1

1000

1000

∑
r=1
‖µ̂π̂(ŵ)(r) − µ‖2, (17)

where 1000 was the number of simulation trials and µ̂π̂(ŵ)(r) was the model averaging
estimator of µ in the rth run.

We set ζ = 1 and n = 200 to show the impact of the number of interior knots on the
risk of our proposed procedure in the five designs. Since the simulated results produced
were similar for Designs 1 and 2, and for Designs 3 and 4, we only report the results from
Designs 1, 3 and 5, which are presented in Figure 2. This figure demonstrates the risk
against df for a variety of combinations of designs and missing rates considered. From
Figure 2, we note that, for almost all situations considered, generally the risk tended to
increase with the number of knots. In other words, the larger number of knots yielded a
more serious oversmoothing effect, and, hence, lower estimation accuracy. As suggested
by this figure, for our proposed model averaging method, we specified df = 4, which
corresponded to the smallest risk. Therefore, in this simulation, we adopted the suggestion
of applying df = 4 for all five designs. In other words, the number of knots was set to be 0
in our analysis, which resulted in a basis for ordinary polynomial regression. The number
of knots of the B-spline basis function was also set to be 0 in [29], which examined the
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influence of the knot number on the model averaging method for the varying-coefficient
model when all data were available.
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Figure 2. The curves of the risk with the number of knots over 1000 replications.

3.2.2. Alternative Methods

We conducted some simulation experiments to assess the finite sample performance
of our proposed model averaging approach, called the HRCp approach, in VCPLM with
missing data. We compared it with four alternatives, the missing data problems of which
were addressed by the IPW method discussed in Section 2. The alternatives included two
well-known model selection methods (AIC and BIC) and two widely-used model averaging
methods (SAIC and SBIC). Along the lines of [32], we defined the AIC and BIC scores
under the varying-coefficient partially linear missing data framework as:

AICm = log(σ̂2
(m,π̂)) + 2n−1tr(P(m)), (18)

and
BICm = log(σ̂2

(m,π̂)) + n−1tr(P(m)) log(n), (19)

where σ̂2
(m,π̂) = n−1‖Hπ̂ − µ̂(m,π̂)‖2. These two model selection methods select the model

corresponding to the smallest score of the information criterion. The two model averaging
methods, SAIC and SBIC, respectively, assign weights:

wAICm = exp(−AICm/2)
/ M

∑
m′=1

exp(−AICm′/2) (20)

and

wBICm = exp(−BICm/2)
/ M

∑
m′=1

exp(−BICm′/2) (21)

to the mth candidate model. As suggested by a referee, we also compared our proposal
with the Mallows model averaging approach of [29] with a complete-case analysis, which
just excluded the individuals with missingness (denoted as CC-MMA). We evaluated the
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performance of these six methods by computing their risks, and the corresponding results
for Designs 1–5 are respectively displayed in Figures 3–7. For better comparison, all risks
were normalized by the risk of the AIC model selection method.
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Figure 5. Risk comparisons for Design 3.
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Figure 7. Risk comparisons for Design 5.

Besides, following an anonymous referee’s suggestion, we make a comparison of
computation time between different model selection and averaging methods. To be more
specific, we examined the resulting computation time in seconds by, respectively, employing
six methods for five designs when n = 100, R2 = 0.1 and MR = 20%. The corresponding
results are listed in Table 2.

Table 2. Averaged computation time in seconds over 3 runs, when n = 100, R2 = 0.1 and MR = 20%.

Method Design 1 Design 2 Design 3 Design 4 Design 5

AIC 0.213 0.223 0.220 0.223 0.248
BIC 0.220 0.229 0.219 0.218 0.247

SAIC 0.222 0.232 0.224 0.225 0.254
SBIC 0.224 0.229 0.222 0.222 0.249

CC-MMA 0.239 0.233 0.232 0.242 0.261
HRCp 0.251 0.242 0.246 0.254 0.284

3.3. Simulation Results
3.3.1. Risk Comparison

From these five figures, we observe that, in general, model averaging approaches
worked better than model selection approaches. As shown in most figures, the risk differ-
ence in favor of model averaging over model selection was more pronounced when R2 was
small or moderate than when R2 was large. This is hardly surprising as it is hard to identify
only one best model in the presence of much noise corresponding to a small R2, while the
model averaging method shields against selecting a very poor model by compromising
across all possible models. On the other hand, when R2 was large, model selection could
sometimes be a better strategy than model averaging. A possible reason for this is that the
small noise in the data allows the model selection strategy to select the right model with
very high frequencies.

As for the comparison of HRCp method with its rivals, we found that no matter
whether the candidate models were nested or not, our proposed model averaging method
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yielded the smallest risk in almost all combinations of simulation designs, sample sizes
and missing rates considered, although when R2 was very high, the information criterion-
based model averaging methods could sometimes be marginally preferable to ours. The
superiority of our method was more marked in Design 5, which was subject to two kinds
of uncertainty simultaneously, uncertainty in covariate inclusion and uncertainty in struc-
ture, than in Designs 1–4, which were only associated with uncertainty in the linear part
specification. This finding provided evidence that our model averaging method was most
effective when both the linear and nonlinear components of the model are uncertain, as
in most real-world applications. The good performance of our method in finite samples
can be partially explained by noting that the optimality of the HRCp estimator does not
depend on the correct specification of candidate models. As expected, it was observed that
information criterion-based model averaging methods invariably produced more accurate
estimators than their model selection counterparts. The advantage of our approach became
more noticeable as the missing rate increased.

To sum up, within the context of the VCPLM with missing responses, and when the
missing data is handled by an IPW method, our proposed HRCp model averaging method
performs better than information criterion-based model selection and averaging methods in
terms of risk, especially when the model is characterized by much noise. By and large, our
results are parallel to those of [26], which investigated model averaging in the VCPLM with
complete data. Additionally, we found evidence of our proposed IPW technique-based
model averaging method, HRCp, enjoying significantly smaller risk than a model averaging
method with complete-case analysis, CC-MMA.

3.3.2. Computation Time Comparison

According to Table 2, it was hardly surprising that model selection methods always
needed less computation time than model averaging methods in all designs. Among all
model averaging methods, two data-driven methods (CC-MMA and HRCp) spent slightly
more time than the two information criterion-based methods (SAIC and SBIC). As for the
comparison between CC-MMA and HRCp, it was expected that our method would perform
slightly more slowly than CC-MMA because of the need to approximate the unknown
propensity score function. In general, from the perspective of computation time, our
method was slightly inferior to other methods, but it greatly dominated its competitors in
terms of estimation accuracy. Thus, it is worthwhile to carry out the HRCp model averaging
method to obtain a comparatively accurate estimator, even if a little computation time has
to be sacrificed.

4. Real Data Analysis

In this section, we applied our model averaging method to analyze data including
information about aged patients from 36 for-profit nursing homes in San Diego, California,
provided in [37] and studied by [26,38]. The response variable, y, was the natural logarithm
of the days in the nursing home. The five covariates were x1, a binary variable indicat-
ing whether the patient was treated at a nursing home; x2, a binary variable indicating
whether the patient was male; x3, a binary variable indicating whether the patient was
married; x4, a health status variable, with a smaller value indicating better health condition;
u = (age− 64)/(102− 64), the normalized age of the patients was the effect modifier, with
age ranging from 65 to 102.

We considered fitting the data by the VCPLM, but we were not sure which of x1, x2,
x3 and x4 to include, and we were uncertain whether to assign a variable in the linear or
nonparametric part. Therefore, we considered all possibilities, namely, a variable in the
linear part or in the nonparametric part or not in the model. Similar to the simulation study,
we required all candidate models to include no fewer than one linear and one nonparametric
variable. This resulted in 50 possible models. In our analysis, we ignored 332 censored
observations from the original data, and only focused on the remaining 1269 uncensored
sample points. Further, we randomly selected n0 observations from the 1269 uncensored
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observations as the training set and the remaining n1 = n− n0 observations were taken as
test set, where n0 = 700, 800, 900, 1000 and 1100. Since the data points we used could be
fully observed, to illustrate the application of our method, we artificially created missing
responses in the training data, according to the following missing data mechanism:

logit{P(δi = 1|Xi, Zi, ui)} = 1 + 0.4ui + 0.4xi1. (22)

Hence, the corresponding mean missing rate was about 20%.
We employed observations in the training set to obtain estimators of model parameters

in each candidate model, and then performed four model averaging (HRCp, CC-MMA,
SAIC and SBIC) and two model selection (AIC and BIC) procedures. We fitted each
candidate model by applying the estimation method introduced in Section 2. The cubic B-
splines were adopted to approximate each coefficient function. Following the suggestion in
the simulation study, we set the number of knots to be 0. We then evaluated the predictive
performance of these six approaches by computing their mean squared prediction error
(MSPE). As suggested by [4,26], the observations in the test set were utilized to compute
the MSPE as follows:

MSPE =
1
n1

n

∑
i=n0+1

(yi − µ̂i)
2, (23)

where µ̂i is the predicted value for the ith patient based on each approach. We repeated
the above process 500 times and calculated the mean, median and standard deviation (SD)
of the MSPEs of the six strategies across the replications. For comparison convenience,
all MSPEs were normalized by dividing the MSPE of AIC, which was referred to as the
relative MSPE (RMSPE). The results are summarized in Table 3.

Table 3. The mean, median and SD of RMSPE across 500 repetitions.

n0 Method BIC SAIC SBIC CC-MMA HRCp

700 mean 0.991 0.984 0.981 0.989 0.980
median 0.997 0.989 0.988 0.993 0.985

SD 0.624 0.660 0.573 0.622 0.619

800 mean 0.993 0.987 0.985 0.990 0.982
median 0.997 0.990 0.988 0.994 0.985

SD 0.882 0.909 0.866 0.881 0.884

900 mean 0.994 0.988 0.987 0.991 0.984
median 0.995 0.989 0.988 0.992 0.986

SD 0.827 0.861 0.792 0.847 0.836

1000 mean 0.995 0.989 0.988 0.991 0.985
median 0.997 0.989 0.989 0.992 0.986

SD 0.890 0.885 0.883 0.888 0.876

1100 mean 0.995 0.990 0.990 0.991 0.986
median 0.998 0.993 0.991 0.992 0.990

SD 0.968 0.968 0.957 0.966 0.939

The results in Table 3 show that in almost all situations, our proposed HRCp method
had the best predictive efficiency among the six approaches considered. The superiority of
our method was particularly obvious in terms of the mean and median, since the smallest
mean and median were invariably produced by our method for all training sample sizes.
The SBIC always yielded a mean and median that were second to the HRCp but the best
among the remaining five methods. As for the comparison of SD, we found evidence
that our method had an edge over other methods when n0 was not less than 1000, while
the SBIC frequently yielded the smallest SD when n0 was less than 1000. This implied
that our HRCp method outperformed the SBIC method when the size of the training set
was large. We further noted that all numbers in this table were smaller than 1, which
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implied that the AIC was the worst method among those considered, irrespective of the
performance yardstick.

We also provide the Diebold and Mariano test results for the differences in MSPE,
which are displayed in Table 4. A positive/negative test statistic in this table denotes that
the estimator in the numerator leads to a bigger/smaller MSPE than the estimator in the
denominator. The test statistics and p-values listed in columns 3, 6, 7 and 9 provide evidence
that the MSPE differences between our proposed HRCp estimator and the BIC, SAIC, AIC
and CC-MMA estimators were statistically significant for all training set sizes. Considering
the HRCp and SBIC estimators, column 8 demonstrates that the advantage of HRCp over
SBIC was statistically significant in the case with n0 = 1000 and 1100. However, the same
cannot be reported about the differences in performance between the HRCp and SBIC
estimators when n0 was less than 1000, as presented in column 8. This result reinforced
the intuition that the HRCp estimator was more reliable than the SBIC estimator when the
training set size was large. The test results shown in columns 3–7 indicate that the MSPE
differences between AIC estimator and the remaining five estimators were statistically
significant in all situations. The test results given in columns 3, 8, 9 and 10 imply the same
about the differences between the BIC and the other five estimators.

Table 4. Diebold–Mariano test results for the differences in MSPE.

n0 Method
AIC
BIC

AIC
SAIC

AIC
SBIC

AIC
CC-MMA

AIC
HRCp

BIC
SAIC

BIC
SBIC

BIC
CC-MMA

700 DM 3.622 9.693 7.738 4.147 10.528 6.196 15.908 2.165
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030

800 DM 5.345 15.916 11.589 9.472 15.832 6.216 18.979 10.863
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

900 DM 3.353 10.127 8.009 4.725 11.867 5.502 14.992 5.128
p-value 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1000 DM 2.930 9.012 7.165 4.192 12.665 7.697 17.102 3.214
p-value 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.001

1100 DM 3.550 12.475 8.565 7.291 13.101 5.299 12.739 4.395
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n0 Method
BIC

HRCp
SAIC
SBIC

SAIC
CC-MMA

SAIC
HRCp

SBIC
CC-MMA

SBIC
HRCp

CC-MMA
HRCp

700 DM 9.173 3.452 −4.682 6.001 −7.245 0.942 11.426
p-value 0.000 0.001 0.000 0.000 0.000 0.346 0.000

800 DM 12.102 3.276 −4.274 8.501 −6.835 1.827 12.183
p-value 0.000 0.001 0.000 0.000 0.000 0.068 0.000

900 DM 8.740 2.935 −1.231 7.078 −5.352 1.301 10.278
p-value 0.000 0.000 0.218 0.000 0.000 0.193 0.000

1000 DM 10.586 1.404 −2.053 8.353 −2.975 3.537 9.486
p-value 0.000 0.160 0.040 0.000 0.003 0.000 0.000

1100 DM 9.937 1.154 −0.892 7.721 −1.626 4.149 11.254
p-value 0.006 0.249 0.372 0.000 0.104 0.000 0.000

5. Conclusions

Considering model averaging estimation in the VCPLM with missing responses, we
propose a HRCp weight choice criterion and its feasible form. Our model averaging process
can jointly incorporate two layers of model uncertainty: the first concerns which covariates
to include and the second further concerns whether a covariate should be in the linear
or nonparametric component. The resultant model averaging estimator is shown to be
asymptotically optimal in the sense of achieving the lowest possible squared error loss
under certain regularity conditions. The simulation results demonstrated that, in several
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designs with different types of model uncertainty, our model averaging method always
performed much better in comparison with existing methods. The real data analysis also
reveals the superiority of the proposed strategy.

There are still many issues deserving future research. Firstly, we only considered
model averaging for the VCPLM in the context of missing response data, so it would be
worthwhile considering cases where some covariates are also subject to missingness, or
missing data arise in a more general framework, such as the generalized VCPLM which
permits a discrete response variable. Secondly, in our analysis the missing data mechanism
was MAR. The development of a model averaging procedure in a more natural, but more
complex, non-ignorable missing data case and the establishment of its asymptotic property
is still challenging and warrants future studies. Thirdly, our procedure is applicable
only when the dimension parameters pm and qm are less than the sample size n. The
consideration of an asymptotically optimal model averaging method for high dimensional
VCPLM with missing data is meaningful and, thus, merits future research.
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Appendix A

Lemma A1. If Conditions (C.1) and (C.2) hold, then there exists a positive constant Cεπ , such that:

max
1≤i≤n

E(ε4K
π,i|Xi, Zi, ui) ≤ Cεπ ,

where K is given in Condition (C.2).

Proof of Lemma A1. Note that:

|επ,i| = |Hπ,i − µi| =
∣∣∣∣ δi
π(Xi, Zi, ui)

yi − µi

∣∣∣∣ ≤ |µi|+ |εi|
π(Xi, Zi, ui)

+ |µi|

≤ |µi|+ |εi|
Cπ

+ |µi| ≤
Cµ

Cπ
+ Cµ +

|εi|
Cπ

,

where the second inequality is from Condition (C.1) and the third inequality from Condition
(C.2). Let C1 =

Cµ

Cπ
+ Cµ. By means of Cp inequality, we have:

|επ,i|4K ≤ 24K−1

(
C4K

1 +

∣∣∣∣ 1
Cπ

∣∣∣∣4K
|εi|4K

)
.

According to Condition (C.2), we obtain:

max
1≤i≤n

E(ε4K
π,i|Xi, Zi, ui) ≤ Cεπ ,

https://www.stats.ox.ac.uk/pub/datasets/csb/
https://www.stats.ox.ac.uk/pub/datasets/csb/
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where Cεπ = 24K−1
(

C4K
1 +

∣∣∣ 1
Cπ

∣∣∣4K
Cε

)
.

Lemma A2. Under Conditions (C.1) and (C.2), one has ‖Hπ − Hπ̂‖2 = Op(1).

Proof of Lemma A2. By Cauchy–Schwarz inequality and Taylor expansion, this lemma
could be proved, based on some arguments used in the proof of Lemma 1 of [13]. So we
omitted it here.

Proof of Theorem 1. Let λ̄(·) be the largest singular value of a matrix, P̃(w) be an n× n
diagonal matrix whose ith diagonal element is Pii(w), Ωπ be an n × n diagonal matrix
whose ith diagonal element is σ2

π,i, A(w) = I− P(w), επ = (επ,1, . . . , επ,n)′. From Lemma 1,
we obtain λ̄(Ωπ) = O(1). After some simple calculations, we know P(m) is an idempotent
matrix with λ̄(P(m)) ≤ 1, and, hence, λ̄(P(w)) ≤ ∑M

m=1 wmλ̄(P(m)) ≤ 1 for any w ∈ W .
Observe that:

Cπ̂(w) = ‖Hπ̂ − µ̂π̂(w)‖2 + 2ε̂′π̂ P̃(w)ε̂π̂

= ‖Hπ̂ − µ‖2 + Lπ̂(w) + 2bn(w) + 2dn(w),

where bn(w) = (Hπ̂ − Hπ)′{µ − µ̂π̂(w)}, dn(w) = ε′π{µ − µ̂π̂(w)} + ε̂′π̂ P̃(w)ε̂π̂ . Since
‖Hπ̂ − µ‖2 is unrelated to w, minimizing Cπ̂(w) is equivalent to minimizing Cπ̂(w) −
‖Hπ̂ − µ‖2. Therefore, to prove Theorem 1, we only need to verify that:

sup
ω∈W

∣∣∣∣ Lπ̂(w)

Rπ(w)
− 1
∣∣∣∣ = op(1), (A1)

sup
ω∈W

∣∣∣∣ bn(w)

Rπ(w)

∣∣∣∣ = op(1), (A2)

sup
ω∈W

∣∣∣∣ dn(w)

Rπ(w)

∣∣∣∣ = op(1). (A3)

By the fact that∣∣∣∣ Lπ̂(w)

Rπ(w)
− 1
∣∣∣∣ = ∣∣∣∣‖µ− µ̂π(w) + µ̂π(w)− µ̂π̂(w)‖2

Rπ(w)
− 1
∣∣∣∣

≤
∣∣∣∣ Lπ(w)

Rπ(w)
− 1
∣∣∣∣+ 2

{
Lπ(w)

Rπ(w)

}1/2 ‖µ̂π(w)− µ̂π̂(w)‖
{Rπ(w)}1/2 +

‖µ̂π(w)− µ̂π̂(w)‖2

Rπ(w)
,

and
‖µ̂π(w)− µ̂π̂(w)‖2 = ‖P(w)Hπ − P(w)Hπ̂‖2

≤ {λ̄(P(w))}2‖Hπ − Hπ̂‖2 ≤ ‖Hπ − Hπ̂‖2,

it is readily seen that the result of (A1) is valid if

sup
ω∈W

∣∣∣∣ Lπ(w)

Rπ(w)
− 1
∣∣∣∣ = op(1), (A4)

and

sup
ω∈W

‖Hπ − Hπ̂‖2

Rπ(w)
= op(1). (A5)

Note that: Lπ(w)− Rπ(w) = ‖P(w)επ‖2 − 2ε′π P′(w)A(w)µ− trace{P′(w)P(w)Ωπ},
so to prove (A4), it is sufficient to show that

sup
ω∈W

∣∣∣∣‖P(w)επ‖2 − trace{P′(w)P(w)Ωπ}
Rπ(w)

∣∣∣∣ = op(1), (A6)
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and

sup
ω∈W

∣∣∣∣ ε′π P′(w)A(w)µ

Rπ(w)

∣∣∣∣ = op(1). (A7)

We observe, for any ν > 0, that:

Pr

{
sup
w∈W

∣∣∣∣‖P(w)επ‖2 − trace{P′(w)P(w)Ωπ}
Rπ(w)

∣∣∣∣ > ν

∣∣∣∣∣X, Z, U

}

≤
M

∑
m=1

M

∑
m∗=1

Pr
{∣∣∣ε′π P′(w0

m)P(w0
m∗)επ − trace{P′(w0

m)P(w0
m∗)Ωπ}

∣∣∣ > νξπ

∣∣∣X, Z, U
}

≤ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1

E
[∣∣∣ε′π P′(w0

m)P(w0
m∗)επ − trace{P′(w0

m)P(w0
m∗)Ωπ}

∣∣∣2K
∣∣∣∣X, Z, U

]

≤C2ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1

∣∣∣trace
{

P(w0
m)P(w0

m∗)Ωπ P(w0
m∗)P(w0

m)Ωπ

}∣∣∣K
≤C2ν−2Kξ−2K

π {λ̄(Ωπ)}K{λ̄(P(w0
m∗))}2K M

M

∑
m=1

∣∣∣trace
{

P(w0
m)P(w0

m)Ωπ

}∣∣∣K
≤C2ν−2Kξ−2K

π {λ̄(Ωπ)}K M
M

∑
m=1
{Rπ(w0

m)}K = op(1),

where C2 is a constant, the second inequality is from Chebyshev’s inequality, the third
inequality is from Theorem 2 of [39], and the last inequality is because λ̄(P(w0

m∗)) ≤ 1 and
trace{P(w0

m)P(w0
m)Ωπ} ≤ Rπ(w0

m), and the equality is ensured by Condition (C.3). Then
(A6) holds because of the following fact:

Pr

{
sup
w∈W

∣∣∣∣‖P(w)επ‖2 − trace{P′(w)P(w)Ωπ}
Rπ(w)

∣∣∣∣ > ν

}

= E

[
Pr

{
sup
w∈W

∣∣∣∣‖P(w)επ‖2 − trace{P′(w)P(w)Ωπ}
Rπ(w)

∣∣∣∣ > ν

∣∣∣∣∣X, Z, U

}]
= op(1).

By means of similar steps, we obtain

Pr

{
sup
w∈W

∣∣∣∣ ε′π P′(w)A(w)µ

Rπ(w)

∣∣∣∣ > ν

∣∣∣∣∣X, Z, U

}

≤
M

∑
m=1

M

∑
m∗=1

Pr

{∣∣∣ε′π P′(w0
m)A(w0

m∗)µ
∣∣∣ > νξπ

∣∣∣∣∣X, Z, U

}

≤ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1

E

{∣∣∣ε′π P′(w0
m)A(w0

m∗)µ
∣∣∣2K
∣∣∣∣∣X, Z, U

}

≤C3ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1

∥∥∥Ω1/2
π P′(w0

m)A(w0
m∗)µ

∥∥∥2K

≤C3ν−2Kξ−2K
π

M

∑
m=1

M

∑
m∗=1
{λ̄(P(w0

m))}2K{λ̄(Ωπ)}K
∥∥∥A(w0

m∗)µ
∥∥∥2K

≤C3ν−2Kξ−2K
π {λ̄(Ωπ)}K M

M

∑
m∗=1

{
Rπ(w0

m∗)
}K

= op(1),

where C3 is a constant, and the last inequality is due to λ̄(P(w0
m)) ≤ 1 and ‖A(w0

m∗)µ‖2 ≤
Rπ(w0

m∗). Therefore, (A7) is satisfied by previous argument, which along with (A6), implies
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(A4). On the other hand, (A5) can be easily obtained by Lemma A2 and Condition (C.7). So
(A1) is correct.

From Cauchy–Schwarz inequality, (A1), Lemma A2 and Condition (C.7), one has:

sup
ω∈W

∣∣∣∣ bn(w)

Rπ(w)

∣∣∣∣ ≤ sup
ω∈W

∣∣∣∣∣
{
‖Hπ̂ − Hπ‖2‖µ− µ̂π̂(w)‖2}1/2

Rπ(w)

∣∣∣∣∣
≤ ‖Hπ̂ − Hπ‖2 sup

ω∈W

{
Lπ̂(w)

Rπ(w)

}1/2

sup
ω∈W

{
1

Rπ(w)

}1/2
= op(1).

So, (A2) is true. In what follows, we provide the proof of (A3), which yields the desired
result of Theorem 1.

By Cauchy–Schwarz inequality and some algebraic manipulations, we obtain:

|dn(w)| =
∣∣∣ε′π{µ− µ̂π̂(w)}+ ε̂′π̂ P̃(w)ε̂π̂

∣∣∣
≤ |ε′π A(w)µ|+

∣∣ε′π P(w)επ − trace{Ωπ P(w)}
∣∣+ ‖P(w)επ‖ · ‖Hπ − Hπ̂‖

+
n

n− lM∗
λ̄(P̃(w))‖Hπ − Hπ̂‖2 +

2n
n− lM∗

λ̄(P̃(w))‖Hπ − Hπ̂‖ · ‖Hπ‖

+
∣∣∣ε̂′π P̃(w)ε̂π − trace{Ωπ P(w)}

∣∣∣.
Therefore, (A3) is implied by:

sup
ω∈W

∣∣∣∣ ε′π A(w)µ

Rπ(w)

∣∣∣∣ = op(1), (A8)

sup
ω∈W

∣∣∣∣ ε′π P(w)επ − trace{Ωπ P(w)}
Rπ(w)

∣∣∣∣ = op(1), (A9)

sup
ω∈W

∣∣∣∣∣ ε̂′π P̃(w)ε̂π − trace{Ωπ P(w)}
Rπ(w)

∣∣∣∣∣ = op(1), (A10)

sup
ω∈W

‖P(w)επ‖
Rπ(w)

= op(1), (A11)

sup
ω∈W

∣∣∣∣ n
n− lM∗

λ̄(P̃(w))
‖Hπ − Hπ̂‖2

Rπ(w)

∣∣∣∣ = op(1), (A12)

and

sup
ω∈W

∣∣∣∣ n
n− lM∗

λ̄(P̃(w))
‖Hπ‖
Rπ(w)

∣∣∣∣ = op(1). (A13)

Similar to the proof steps in (A7) and (A6), respectively, it is not difficult to obtain (A8)
and (A9). As for (A10), it is readily seen that:

sup
ω∈W

∣∣∣∣∣ ε̂′π P̃(w)ε̂π − trace{Ωπ P(w)}
Rπ(w)

∣∣∣∣∣ ≤ sup
ω∈W

∣∣∣ε̂′π P̃(w)ε̂π − trace{Ωπ P̃(w)}
∣∣∣/ξπ

≤ sup
ω∈W

∣∣∣ε̂′π P̃(w)ε̂π − ε′π P̃(w)επ

∣∣∣/ξπ + sup
ω∈W

∣∣∣ε′π P̃(w)επ − trace{Ωπ P̃(w)}
∣∣∣/ξπ .

(A14)

Following an argument similar to that used in [7], we know that both two terms in
the second line of (A14) are equal to op(1). So, (A10) is valid. We now prove (A11) and
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(A12). From Lemma A1, we find that E(ε4
π,i) = E{E(ε4

π,i|Xi, Zi, ui)} ≤ Cεπ , and, thus,
‖επ‖ = (∑n

i=1 ε2
π,i)

1/2 = Op(n1/2). Consequently, based on Condition (C.7), we have:

sup
ω∈W

‖P(w)επ‖
Rπ(w)

≤ λ̄(P(w))‖επ‖
/

ξπ ≤ Op(n1/2)
/

ξπ = op(1).

So, we establish (A11). By Condition (C.6), it is easy to show that supω∈W λ̄(P̃(w)) =

Op(n−1/2). This, together with Conditions (C.7) and (C.8), and Lemma A2, yields:

sup
ω∈W

∣∣∣∣ n
n− lM∗

λ̄(P̃(w))
‖Hπ − Hπ̂‖2

Rπ(w)

∣∣∣∣ ≤ n
n− lM∗

sup
ω∈W

λ̄(P̃(w))‖Hπ − Hπ̂‖2ξ−1
π

= O(1)Op(n−1/2)Op(1)op(n−1/2) = op(1).

So, (A12) is valid. From triangle inequality, Condition (C.2) and Lemma A1, we see
that ‖Hπ‖ ≤ ‖µ‖+ ‖επ‖ = Op(n1/2). Hence, following the step of proving (A12), (A13) is
valid. The proof of Theorem 1 is, thus, completed.
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