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Abstract: A reaction-diffusion predator-prey model with the dormancy of predators is considered
in this paper. We are concerned with the long-time behaviors of the solutions of this system. We
divided our investigations into two cases: for the ODEs system, we study the existence and stability
of the equilibrium solutions and derive precise conditions on system parameters so that the system
can undergo Hopf bifurcations around the positive equilibrium solution. Moreover, the properties
of Hopf bifurcation are studied in detail. For the reaction-diffusion system, we are able to derive
conditions on the diffusion coefficients so that the spatially homogeneous Hopf bifurcating periodic
solutions can undergo diffusion-triggered instability. To support our theoretical analysis, we also
include several numerical results.

Keywords: predator-prey interactions; dormancy of predators; stability; hopf bifurcations; diffusion-
induced instability

MSC: 34C23; 35B32; 37G10; 37L110; 37M20; 35K57

1. Introduction

Interactions between predator and prey can generate rich dynamics and have engaged
numerous investigators’ attention. In the existing literature, the following homogeneous
diffusive predator-prey model has been extensively considered:

∂U
∂s

= D1∆U + AU
Å

1− U
N

ã
− BUV

C + U
, x ∈ Ω, s > 0,

∂V
∂s

= D2∆V +
EUV

C + U
− FV, x ∈ Ω, s > 0,

∂U
∂ν

=
∂V
∂ν

= 0, x ∈ ∂Ω, s ≥ 0,

U(x, 0) = U(x0), V(x, 0) = V(x0), x ∈ Ω,

(1)

where Ω is an open bounded domain in RN with N ≥ 1; ν is the outer unit normal to
the boundary ∂Ω, which is assumed to be sufficiently smooth; U(s, t) and V(s, t) are the
population densities of the prey and the predator at time s and position x ∈ Ω, respectively;
D1 and D2 are the diffusion coefficients of U and V, respectively; A, B, C, E, F are all of the
positive constants; A is the intrinsic growth rate; N is the carrying capacity; B and E are
the strength of the relative effect on the two species in the interaction; U/(C + U) is the
functional response of the predator to the prey density; C is the “saturation” effect; and F is
the death rate of V.

Then, by a non-dimensionalized change of variables (see also [1]):

t = As, u =
U
C

, v =
BV
EC

, d1 =
D1

A
, d2 =

D2

A
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N
C

, m =
E
A

, θ =
F
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,
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we can reduce the system (1) to the simplified dimensionless form as follows:

∂u
∂t

= d1∆u + u
Å

1− u
k

ã
− muv

1 + u
, x ∈ Ω, t > 0,

∂v
∂t

= d2∆v +
muv
1 + u

− θv, x ∈ Ω, t > 0,
∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u(x0), v(x, 0) = v(x0), x ∈ Ω,

(2)

where u and v are the scaled densities of the prey and predator, respectively; u(1− u/k)
is the growth rate of u in the absence of the predator; θ is the death rate of the predator;
mu/(1+ u) is the functional response determining the predator’s consumption of the prey’s
abundance; k is the fraction of the prey’s biomass, which can be transformed into the
predator’s biomass; and d1 and d2 are the diffusion coefficients of u and v, respectively.

System (2) and the like have been studied extensively in the existing literature. For
example, for the corresponding ODE system of (2), Hsu [2] showed that the local stability
of the positive equilibrium solution can also indicate its global asymptotic stability. In [3],
Hsu and Shi studied the relaxation oscillations of (2), while in [4], Cheng observed that the
periodic solution of the ODEs in system (2) is unique and stable. For the reaction-diffusion
system of system (2), in [5], Ko and Ryu not only studied the existence of non-constant
positive equilibrium solutions but also investigated the local existence of periodic solutions.
In [1], Yi, Wei, and Shi performed steady-state bifurcation and Hopf bifurcation analysis of
the system. In [6], Peng and Shi considered global steady-state bifurcations of the system,
and their results proved that the global bifurcation of steady-state solutions comprises
bounded loops .

In this paper, we mainly consider the following reaction-diffusion predator-prey
system with dormancy:

∂u
∂t

= d1∆u + u
Å

1− u
k

ã
− muv

1 + u
, x ∈ Ω, t > 0,

∂v
∂t

= d2∆v +
µmuv
1 + u

+ αw− θv, x ∈ Ω, t > 0,
∂w
∂t

= d3∆w +
(1− µ)muv

1 + u
− αw, x ∈ Ω, t > 0,

∂u
∂ν

=
∂v
∂ν

=
∂w
∂ν

= 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u(x0), v(x, 0) = v(x0), w(x, 0) = w(x0), x ∈ Ω,

(3)

where µ ∈ (0, 1), α > 0, m > 0, θ > 0, d1 > 0, d2 > 0, and d3 ≥ 0; w is the predator’ density
with a dormant state or resting eggs; µ and 1− µ denote the proportion of reproduction
effects on predators between active and dormant states, respectively; and α stands for the
hatching of dormant predators or the average dormancy period.

In [7], Kuwamura showed that the hatching of resting eggs can keep the popula-
tion dynamics stable when the switching between non-resting and resting eggs is sharp.
In [8], Kuwamura, Nakazawa, and Ogawa studied the stationary and oscillatory diffusion-
induced instabilities of the constant equilibrium solutions.

For system (3), we are mainly interested in the influence of the dormancy of the
predators on the dynamics of the system. In particular, we focus on the diffusion-induced
instability of the Hopf bifurcating periodic solutions of the system, which is less understood
for this particular model in the existing literature [9–18]. We shall prove that from suitable
conditions on the diffusion rates d1, d2, d3, the spatially homogeneous periodic solution
can undergo diffusion-induced instability and can induce the new spatiotemporal patterns
emerging consequently. We would like to remark that for the system without the dormancy
of predators (e.g., system (2)), Yi, Wei, and Shi proposed that under suitable conditions,
once the periodic solution is stable with respect to the ODEs, it is still stable with respect to
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the PDEs; thus, there is no diffusion-induced instability of the periodic solutions. Based on
this, we shall present a quite interesting difference between the system with the dormancy
of predators and the system without the dormancy of predators.

The rest of this paper is organized in the following way. In Section 2, we consider the
dynamics of the ODEs system; in Section 3, we consider the diffusion-induced instability of
the periodic solutions bifurcating from Hopf bifurcations; in Section 4, we present some
numerical simulations to illustrate our theoretical analysis; and in Section 5, we draw
some conclusions.

2. The Dynamical Behaviors of the Kinetic System

In this section, we consider the following kinetic system:

du
dt

= u
Å

1− u
k

ã
− muv

1 + u
,

dv
dt

=
µmuv
1 + u

+ αw− θv,
dw
dt

=
(1− µ)muv

1 + u
− αw.

(4)

2.1. The Auxiliary System: The Predator-Prey System without Dormancy of Predators

To begin with, we consider the following kinetic system of system (2):

du
dt

= u
Å

1− u
k

ã
− muv

1 + u
,

dv
dt

=
muv
1 + u

− θv. (5)

System (5) has a trivial solution (0, 0), a semi-trivial solution (k, 0), and a unique
positive equilibrium solution under certain conditions stated below.

We now state the following results on system (5) due to Hsu [2] (see also [1]):

Lemma 1 ([1,2]). The following conclusions hold true:

1. Suppose that either m ≤ θ or
mk

1 + k
≤ θ < m holds. Then, system (5) has no positive

equilibrium solutions; in this case, (0, 0) is unstable, while (k, 0) is globally asymptotically stable;

2. Suppose that
mk

1 + k
> θ holds. Then, system (5) has a unique positive equilibrium solution

(τ, vτ), where

τ :=
θ

m− θ
, vτ :=

τ(k− τ)
kθ

. (6)

In this case, both (0, 0) and (k, 0) are unstable, (τ, vτ) is globally asymptotically stable if either

0 < k ≤ 1 and τ ∈ (0, k) or k > 1 and τ ∈
Å

k− 1
2

, k
ã

holds, while (τ, vτ) is unstable if

k > 1 and λ ∈
Å

0,
k− 1

2

ã
. In particular, the loss of the stability of (τ, vτ) leads to a Hopf

bifurcation at τ =
k− 1

2
.

2.2. The Predator-Prey Model with Dormancy of Predators

In this subsection, we study the predator-prey system with dormancy, which is sys-
tem (4). Clearly, system (4) has (0, 0, 0) and (k, 0, 0) as its equilibrium solutions. We have the
following results:

Theorem 1. The following conclusions hold true:

1. (0, 0, 0) is always unstable in (4).

2. (k, 0, 0) is locally asymptotically stable in (4) when θ >
mk

1 + k
, while it is unstable when

θ <
mk

1 + k
.
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Proof. The Jacobian matrix of system (4) evaluated at (0, 0, 0) is given by

J(0, 0, 0) :=

1 0 0
0 −θ α
0 0 −α

,

which has three eigenvalues: β1 = 1 > 0, β2 = −θ < 0, β3 = −α < 0. Thus, (0, 0, 0) is
unstable with respect to (4).

The Jacobian matrix of system (4) evaluated at (k, 0, 0) is given by

J(k, 0, 0) :=


−1 − mk

1 + k
0

0
µmk
1 + k

− θ α

0
mk(1− µ)

1 + k
−α

.

The characteristic equation of J2(k, 0, 0) is given by

(β + 1)
ï

β2 +
(
α− µmk

1 + k
+ θ
)
β + α

Å
θ − mk

1 + k

ãò
= 0. (7)

If θ >
mk

1 + k
, for (k, 0, 0), all of the eigenvalues of (7) have negative real parts. Thus,

(k, 0, 0) is stable.

If θ <
mk

1 + k
< m, then (7) has a positive eigenvalue. Thus, (k, 0, 0) is unstable.

Clearly, if (τ, vτ) is a positive equilibrium solution of (5), then (τ, vτ , wτ) is a positive
equilibrium solution of (4), where

τ :=
θ

m− θ
, vτ :=

τ(k− τ)
kθ

, wτ :=
τ(1− µ)(k− τ)

kα
. (8)

Then, by Lemma 1, we have the following results on the existence of positive equilib-
rium solution of system (4).

Theorem 2. Suppose that
mk

1 + k
> θ holds. Then, system (4) has a unique positive equilibrium

solution (τ, vτ , wτ), which is defined by (8).

Next, we study the stability of (τ, vτ , wτ) in system (4).
We choose α as the bifurcation parameter. Linearizing system (4) at (τ, vτ , wτ), we

obtain its Jacobian matrix:

J(α) :=

 −A −θ 0
µB (µ− 1)θ α

(1− µ)B (1− µ)θ −α

, (9)

where
A :=

τ(2τ + 1− k)
k(1 + τ)

, B :=
k− τ

k(1 + τ)
. (10)

The characteristic equation of J(α) is

β3 + M2(α)β2 + M1(α)β + M0(α) = 0, (11)

where

M0(α) := αθB, M1(α) : = A
(
α + (1− µ)θ

)
+ µθB, M2(α) := α + (1− µ)θ + A. (12)
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To study the stability of (τ, vτ , wτ), by Appendix of [19] (see also Lemma 2 below), we
need to know the signs of M0(α), M1(α), M2(α) and M2(α)M1(α)−M0(α).

We make the following assumptions:

(H) Suppose that either (1): 0 < k ≤ 1 and τ ∈ (0, k) or (2): k > 1 and τ ∈
Å

k− 1
2

, k
ã

holds

so that (τ, vτ) is stable in system (5).

Under assumption (H), we have A > 0 and B > 0. Thus, M0(α) > 0, M1(α) > 0, and
M2(α) > 0 for all α > 0 and µ ∈ (0, 1).

Thus, to study the stability of (τ, vτ , wτ), it remains to study the sign of M2(α)M1(α)−
M0(α), which takes the following form:

M2(α)M1(α)−M0(α) = Aα2 + ρ1α + ρ0, (13)

where

ρ1 := A2 + θ(1− µ)
[
2A− B

]
, ρ0 := θ

[
(1− µ)θ + A

][
(1− µ)A + µB

]
. (14)

Clearly, under assumption (H), we have ρ0 > 0. We now consider the sign of ρ1.
We can check that

2A− B =
4τ2 + (3− 2k)τ − k

k(1 + τ)
,

which has a unique positive root, denoted by τ̂, which is given by

τ̂ :=
2k− 3 +

√
4k2 + 4k + 9
8

. (15)

It can be directly checked that

τ̂ ∈

(0, k), if 0 < k ≤ 1,Å
k− 1

2
, k
ã

, if k > 1.
(16)

Clearly, 2A− B < 0 for τ ∈ (0, τ̂), while 2A− B > 0 for τ > τ̂.
Then, for any τ ∈ [τ̂, k), µ ∈ (0, 1) and θ > 0, ρ1 > 0. Therefore, for any α > 0,

M2(α)M1(α)−M0(α) > 0. By Appendix of [19], (τ, vτ , wτ) is locally asymptotically stable
in system (4).

In what follows, we study the case when τ ∈ (τ0, τ̂) so that 2A− B < 0, where

τ0 :=

0, if 0 < k ≤ 1,
k− 1

2
, if k > 1.

(17)

If we regard A and B as the functions of τ, we can check that A = A(τ) is increasing
and B = B(τ) is decreasing in τ. Moreover, A− B < 0 for τ ∈ (τ0, τ̂).

One can check that for any τ ∈ (τ0, τ̂), ρ1 = 0 (resp., ρ1 < 0) is equivalent to

µ = µ̂(τ) :=
A2

θ(2A− B)
+ 1, (resp., µ < µ̂(τ)). (18)

Then, we have

µ̂′(τ) =
2AA′(A− B) + A2B′

θ(2A− B)2 < 0. (19)
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When τ → τ̂, 2A− B → 0−, A2 → A2(τ̂) 6= 0, then µ̂(τ) → −∞ as τ → τ̂; When
τ → τ+

0 , since A2 → 0, 2A− B 6= 0, we have µ̂(τ)→ 1 as τ → τ+
0 . Then, for any τ ∈ (τ0, τ̂),

we have µ̂(τ) ∈ (−∞, 1). Since µ̂′(τ) < 0, a unique τ∗ ∈ (τ0, τ̂) exists such that

µ̂(τ)


∈ (0, 1), if τ ∈ (τ0, τ∗),
= 0, if τ = τ∗,
∈ (−∞, 0), if τ ∈ (τ∗, τ̂).

(20)

If τ ∈ [τ∗, τ̂), then for any µ ∈ (0, 1), it always holds true that µ > µ̂(τ), which means
that ρ1 > 0. Thus, M2(α)M1(α)−M0(α) > 0 for any α > 0, (τ, vτ , wτ) is locally stable in
system (4).

If τ ∈ (τ0, τ∗), then µ̂(τ) ∈ (0, 1). Therefore, for any µ ∈ (0, 1), a unique τµ ∈ (τ0, τ∗)
exists, satisfying 

µ̂(τ) > µ, if τ ∈ (τ0, τµ),
µ̂(τ) = µ, if τ = τµ,
µ̂(τ) < µ, if τ ∈ (τµ, τ∗),

(21)

or equivalently 
ρ1 < 0, if τ ∈ (τ0, τµ),
ρ1 = 0, if τ = τµ,
ρ1 > 0, if τ ∈ (τµ, τ∗).

Then, for any τ ∈ [τµ, τ∗), (τ, vτ , wτ) is locally stable in system (4).
Next, we assume the case of τ ∈ (τ0, τµ), in which ρ1 < 0. Regarding M2(α)M1(α)−

M0(α) = α2 + ρ1α + ρ0 as the quadratic function τ, we can obtain its discriminant

∆α := θ2B2µ2 + 2θB(2θA− θB− A2)µ + A4 − 2θA2B− 4θ2 AB + θ2B2. (22)

Assume that for some θ > 0, we have ∆α < 0. Then, for any α > 0, we have
M2(α)M1(α)−M0(α) = α2 + ρ1α + ρ0 > 0. Hence, for any α > 0, (τ, vτ , wτ) is locally stable
in system (4).

Assume that for some θ > 0, we have ∆α > 0. Then, M2(α)M1(α)−M0(α) = Aα2 +
ρ1α + ρ0 = 0 has two distinct positive solutions given by

α1 :=
−ρ1 −

√
∆α

2A
> 0, α2 :=

−ρ1 +
√

∆α

2A
> 0. (23)

Thus, for any α ∈ (0, α1) ∪ (α2, ∞), we have M2(α)M1(α) − M0(α) = Aα2 + ρ1α +
ρ0 > 0. Then, (τ, vτ , wτ) is locally stable in system (4). While if α ∈ (α1, α2), we have
M2(α)M1(α)−M0(α) = Aα2 + ρ1α + ρ0 < 0. Then, (τ, vτ , wτ) is unstable in system (4).

We are now in the position to state the stability results of (τ, vτ , wτ):

Theorem 3. Suppose that either 0 < k ≤ 1 but τ ∈ (0, k) or k > 1 but τ ∈
Å

k− 1
2

, k
ã

holds

so that (τ, vτ) is stable in system (5). Let τ̂, τ0, τ∗, and τµ be defined in (16), (17), (20) and (21),
respectively. Then, we have τ0 < τµ < τ∗ < τ̂ < k. In particular,

1. Suppose that τ ∈ (τ0, τµ) holds. Let ∆α be defined by (22).

(a) If, additionally, ∆α < 0, then for any α > 0, (τ, vτ , wτ) is locally asymptotically stable
in system (4);

(b) If, additionally, ∆α > 0, then for any α ∈ (0, α1) ∪ (α2,+∞), (τ, vτ , wτ) is locally
asymptotically stable in (4), while for α ∈ (α1, α2), (τ, vτ , wτ) is unstable in system (4).

2. Suppose that τ ∈ [τµ, k) holds. Then, for any α > 0, (τ, vτ , wτ) is locally asymptotically
stable in system (4).
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Remark 1.

1. We would like to remark that it is analytically demanding to analyze the sign of ∆α. Indeed,
we need to resort to numerical simulations to determine when ∆α > 0 or ∆α < 0. It is found
from numerical simulations that for some θ, we have ∆α < 0, while for the other θ, ∆α > 0;

2. We assume that either 0 < k ≤ 1 but τ ∈ (0, k) or k > 1 but τ ∈
Å

k− 1
2

, k
ã

holds so that

(τ, vτ) is stable in system (5). However, for case of 2(b), when α ∈ (α1, α2), (τ, vτ , wτ) is
unstable. From this, we can see a difference between the system without dormancy and the
system with dormancy.

Theorem 4. Suppose that either 0 < k ≤ 1 but τ ∈ (0, k) or k > 1 but τ ∈
Å

k− 1
2

, k
ã

holds, so

that (τ, vτ) is stable in system (5). Let τ ∈ (τ0, τµ) and ∆α > 0 so that α1 and α2 are well-defined.
Then, at α = α, the Hopf bifurcation around (τ, vτ , wτ) occurs. Moreover, at α = α, the Hopf
bifurcating periodic solution is stable and the bifurcation direction is forward if Re(c1(α)) < 0,
while the Hopf bifurcating periodic solution is unstable and the bifurcation direction is backward if
Re(c1(α)) > 0, where α = α1 or α2, and Re(c1(α)) is defined by (26).

Proof. 1. The proof of the existence of Hopf bifurcations at α = α1 and α2. By the
aforementioned analysis, at α = α1 and α2, we have M2(α)M1(α) − M0(α) = 0. Thus,
at α = α1 and α2, the eigenvalue problem has a pair of purely imaginary roots and a
negative root. Furthermore, according to Theorem 3, we have

M′1(α1)M2(α1) + M1(α1)M′2(α1)−M′0(α1) < 0,

M′1(α2)M2(α2) + M1(α2)M′2(α2)−M′0(α2) > 0.

Therefore, by the Hopf bifurcation theorem, at α = α1 and α2, the Hopf bifurcation
around (τ, vτ , wτ) occurs.

2. Now, we derive conditions to determine the bifurcation direction and the stability
of the periodic solutions.

By Theorem A.1 of [19] (or see also Lemma 2 below), the bifurcation direction (forward
or backward) and the stability/instability of the periodic solutions can be determined by
the sign of Re(c1(α))(2αA + ρ1), where α = α1 or α2, and ρ1 is defined in (14).

By using the framework of Theorem A.1 of [19], we need to calculate the term Re(c1(α)).
To that end, we define the matrix P in the following way:

P(α) =

Ñ
1 0 1

p21 p22 p23
p31 p32 p33

é
, (24)

where

p21(α) :=− A
θ

, p22(α) := −
√

M1(α)
θ

, p23(α) :=
α + (1− µ)θ

θ
, p31(α) :=

A
θ

,

p32(α) :=
√

M1(α)(A− θ(1− µ))
αθ

, p33(α) := − (α + (1− µ)θ)(A + α) + µθB
αθ

.

Then, we can calculate

h1(α, y1, y2, y3) =
(

p22 p33 − p23 p32
)
g1 + p32g2 − p22g3

det(P)
,

h2(α, y1, y2, y3) =
(

p31 p23 − p21 p33
)
g1 +

(
p33 − p31

)
g2 +

(
p21 − p23

)
g3

det(P)
,

h3(α, y1, y2, y3) =
(

p21 p32 − p22 p31
)
g1 − p32g2 + p22g3

det(P)
,

(25)
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where the determinant of P denotes as det(P) and

g1 :=
(y1 + y3)2

k
− m(y1 + y3)(p21y1 + p22y2 + p23y3)

1 + y1 + y3
,

g2 :=
µm(y1 + y3)(p21y1 + p22y2 + p23y3)

1 + y1 + y3
,

g3 :=
(1− µ)m(y1 + y3)(p21y1 + p22y2 + p23y3)

1 + y1 + y3
,

and y1, y2, y3 denote the transformation from the variables u, v, w. Then, by (A.17) in
Appendix of [19], we have

Re(c1(α)) =
1

16
√

M1(α)

(
(h1)y1y1 (h2)y1y1 − (h1)y1y1 (h1)y1y2 + (h2)y1y1 (h2)y1y2

)
+

1
16
(
(h1)y1y1y1 + (h2)y1y1y2

)
+

1
8M2(α)

(h3)y1y1

(
(h1)y1y3 + (h2)y2y3

)
+

M2(α)
16
(

M2(α)2 + 4M1(α)
) (h3)y1y1

(
(h1)y1y3 − (h2)y2y3

)
+

M2(α)
8
(

M2(α)2 + 4M1(α)
) (h3)y1y2

(
(h1)y2y3 + (h2)y1y3

)
+

√
M1(α)

8
(

M2(α)2 + 4M1(α)
) (h3)y1y1

(
(h2)y1y3 + (h1)y2y3

)
−

√
M1(α)

4
(

M2(α)2 + 4M1(α)
) (h3)y1y2

(
(h1)y1y3 − (h2)y2y3

)
,

(26)

where h1, h2, and h3 are defined in (25).
By Theorem A.1 of [19] (see also Lemma 2 below), we can draw the following conclu-

sions: at α = α1, the bifurcating periodic solution is unstable and the bifurcation occurs for
α ∈ (α1 − ε, α1) for sufficiently small ε > 0 if Re(c1(α1)) > 0, and the bifurcating periodic
solution is stable and the bifurcation occurs for α ∈ (α1, α1 + ε) for sufficiently small ε > 0
if Re(c1(α1)) < 0 holds. On the other hand, at α = α2, the bifurcating periodic solution
is unstable and the bifurcation occurs for α ∈ (α2, α2 + ε) for sufficiently small ε > 0 if
Re(c1(α2)) > 0, and the bifurcating periodic solution is stable and the bifurcation occurs for
α ∈ (α2 − ε, α2) for sufficiently small ε > 0 if Re(c1(α2)) < 0 holds.

Remark 2.

1. It is analytically demanding to obtain a explicit expression of Re(c1(α)), and we shall resort to
numerical tools to calculate it in the part of numerical simulations;

2. For simplicity, we denote (up(t), vp(t), wp(t)), and P by the Hopf bifurcating periodic solution
and its minimum period.

3. Diffusion-Induced Instability of the Bifurcating Periodic Solutions

In this section, we shall consider diffusion-induced instability of the periodic solutions
obtained in the last section. About diffusion-induced instability, we can see [20].
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3.1. Preliminaries

We recall the following results of [19] on diffusion-induced instability of the bifurcating
periodic solutions for the general reaction-diffusion system

∂u1

∂t
= d1∆u1 + f1(α, u1, u2, u3), x ∈ Ω, t > 0,

∂u2

∂t
= d2∆u2 + f2(α, u1, u2, u3), x ∈ Ω, t > 0,

∂u3

∂t
= d3∆u3 + f3(α, u1, u2, u3), x ∈ Ω, t > 0,

∂νu1 = ∂νu2 = ∂νu3 = 0, x ∈ ∂Ω,

(27)

where f1, f2, f3 ∈ C3, and for any α > 0, (0, 0, 0) is always the constant equilibrium
solution; d1 > 0, d2 > 0, and d3 > 0; Ω := {`y : y ∈ Ω∗} is star-shaped centered by
the origin; 0 < ` < ∞; and Ω∗ is a bounded domain in Rn (n ≥ 1) with sufficiently smooth
boundary ∂Ω∗.

The ODE system of system (27) is given by:

du1

dt
= f1(α, u1, u2, u3),

du2

dt
= f2(α, u1, u2, u3),

du3

dt
= f3(α, u1, u2, u3), (28)

where fi (i = 1, 2, 3) are defined in (27).
The linearized operator of (28) at (α, 0, 0, 0) can be evaluated as follows:

J(α) :=

Ñ
a11(α) a12(α) a13(α)
a21(α) a22(α) a23(α)
a31(α) a32(α) a33(α)

é
, (29)

where aij(α) := ∂ fi(α, 0, 0, 0)/∂uj, for i, j = 1, 2, 3. Rewrite the system (28) in the following
form: Ñ

u′1
u′2
u′3

é
= J(α)

Ñ
u1
u2
u3

é
+

Ñ
g1(α, u1, u2, u3)
g2(α, u1, u2, u3)
g3(α, u1, u2, u3)

é
,

where ′ := d/dt, and for δ = 1, 2, 3,

gδ(α, u1, u2, u3) =
1
2

Å 3

∑
k=1

∂2 fδ

∂u2
k
+ 2 ∑

1≤i<j≤3

∂2 fδ

∂ui∂uj

ã
+

1
6

Å 3

∑
k=1

∂3 fδ

∂u3
k
+ 3

3

∑
1≤i<j≤3

Å
∂2 fδ

∂u2
i ∂uj

+
∂2 fδ

∂ui∂u2
j

ã
+ 6

∂3 fδ

∂u1∂u2∂u3

ã
+ o,

where o is the higher order terms of gδ(α, u1, u2, u3).
The eigenvalue problem of J(α) is governed by the following equation:

µ3 + M2(α)µ2 + M1(α)µ + M0(α) = 0, (30)

where

M2(α) :=−
3

∑
i=1

aii(α), M1(α) :=
3

∑
i=1

Aii(α), M0(α) := −det(J(α)), (31)

where aij(α) is defined in (29), Aij(α) represents the algebraic cofactor of aij(α), and det(·) is
the determinant of a matrix.

In [19], Wang and Yi obtained the following results:



Mathematics 2023, 11, 1875 10 of 16

Lemma 2. Assume that there exists a positive α, such that M0(α) > 0, M1(α) > 0, M2(α) > 0,
and that

M1(α)M2(α)−M0(α) = 0, M1(α)M′2(α) + M′1(α)M2(α)−M′0(α) 6= 0. (32)

Then, we have

1. For α ∈ (α, α + ε), the steady state (0, 0, 0) is locally asymptotically stable, while it is unstable
for α ∈ (α− ε, α) provided that

M1(α)M′2(α) + M′1(α)M2(α)−M′0(α) > 0,

where ε > 0 is the sufficiently small number.
2. For α ∈ (α, α + ε), the steady state (0, 0, 0) is unstable, while it is locally asymptotically stable

for α ∈ (α− ε, α) provided that

M1(α)M′2(α) + M′1(α)M2(α)−M′0(α) < 0,

where ε > 0 is the sufficiently small number.
3. At α = α, near (0, 0, 0), system (28) will experience Hopf bifurcations. The Hopf bifurcating

periodic solution is stable if Re(c1(α)) < 0, while it is unstable if Re(c1(α)) > 0. The
bifurcation direction is backward if

Re(c1(α))
Å

M1(α)M′2(α) + M′1(α)M2(α)−M′0(α)
ã
< 0,

while the bifurcation direction is forward if

Re(c1(α))
Å

M1(α)M′2(α) + M′1(α)M2(α)−M′0(α)
ã
> 0,

where c1(α) denotes the first Lyapunov coefficient and Re(c1(α)) represents the real parts of c1(α).

Moreover, Wang and Yi [19] also provide conditions on d1, d2, d3 so that diffusion-
induced instability of the periodic solutions occurs, which methods and theories base
on [21–25].

Lemma 3. Let α be fixed to be sufficiently close to α such that (up
1 (t), up

2 (t), up
3 (t)) is a stable

bifurcating periodic solution of system (28) described in Lemma 2. Then, (up
1 (t), up

2 (t), up
3 (t)) is

unstable in system (27) if the constant ` is sufficiently large, and

M1(α)
Å(

a11(α)Q(α)− 1
)
d1 +

(
a22(α)Q(α)− 1

)
d2 +

(
a33(α)Q(α)− 1

)
d3

ã
+

Å
M2(α)Q(α) + 1

ãÅ
A11(α)d1 + A22(α)d2 + A33(α)d3

ã
> 0,

(33)

where

Q(α) :=
√

M1(α)
M1(α) + M2

2(α)
Im(c1(α))
Re(c1(α))

− M2(α)
M1(α) + M2

2(α)
. (34)

3.2. Diffusion-Induced Instability of the Periodic Solutions for Predator-Prey System

In this subsection, we shall utilize the abstract contents in preliminaries to study
the diffusion-induced instability of the periodic solution (up(t), vp(t), wp(t)) as defined in
Section 2.

Suppose that either (1): 0 < k ≤ 1 and τ ∈ (0, k) or (2): k > 1 and τ ∈
Å

k− 1
2

, k
ã

holds

so that (τ, vτ) is stable in system (5).
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Let τ ∈ (τ0, τµ) and ∆α > 0 so that α1 and α2 are well-defined. Then, at α = α1
and α = α2, the Hopf bifurcation around (τ, vτ , wτ) occurs. Moreover, we assume that
Re(c1(α1)) < 0 (resp., Re(c1(α2)) < 0) so that the periodic solution which bifurcating from
Hopf bifurcating at (α1, τ, vτ) (resp., (α2, τ, vτ)) is orbitally asymptotically stable.

According to Lemma 3, to study the diffusion-induced instability of the periodic
solution (up(t), vp(t), wp(t)), we need to compute Im(c1(α)), where α = α1 or α2. Then,
by using the method in Appendix of [19], we can obtain

Im(c1(α)) =
1

32
√

M1(α)

(
(h1)2

y1y1
− (h2)2

y1y1
+ 2(h1)y1y2 (h2)y1y1

)
− 1

16
√

M1(α)

((
(h1)y1y1 + (h1)y2y2

)2
+
(
(h2)y1y1 + (h2)y2y2

)2)
− 1

96
√

M1(α)

Å(
(h1)y1y1 − (h1)y2y2 − 2(h2)y1y2

)2
+
(
(h2)y1y1 − (h2)y2y2 + 2(h1)y1y2

)2
ã

+
1

8M2(α)
(h3)y1y1

(
(h2)y1y3 − (h1)y2y3

)
+

1
16
(
(h2)y1y1y1 − (h1)y1y1y2

)
+

M2(α)
16(M2(α)2 + 4M1(α))

(h3)y1y1

(
(h2)y1y3 + (h1)y2y3

)
− M2(α)

8(M2(α)2 + 4M1(α))
(h3)y1y2

(
(h1)y1y3 − (h2)y2y3

)
−

√
M1(α)

8(M2(α)2 + 4M1(α))
(h3)y1y1

(
(h1)y1y3 + (h2)y2y3

)
−

√
M1(α)

4(M2(α)2 + 4M1(α))
(h3)y1y2

(
(h2)y1y3 + (h1)y2y3

)
.

(35)

Then, from Lemma 3, we now state our main results.

Theorem 5. Let α be fixed to be close to α, where α = α1 or α2, and Re(c1(α)) < 0 so that
(up(t), vp(t), wp(t)) is stable in the kinetic system (4). Then, (up(t), vp(t), wp(t)) is able to experience
diffusion-induced instability provided that the constant ` is large enough and

M1(α)
Å(
− AQ(α)− 1

)
d1 +

(
(µ− 1)θQ(α)− 1

)
d2 −

(
αQ(α) + 1

)
d3

ã
+ (M2(α)Q(α) + 1)

Å
d2 Aα + d3θ(A(1− µ) + µB)

ã
> 0,

(36)

where A, B, M1(α), M2(α) are set in (9) and (11); moreover,

Q(α) :=
√

M1(α)
M1(α) + M2(α)2

Im(c1(α))
Re(c1(α))

− M2(α)
M1(α) + M2(α)2 ,

where Re(c1(α)) is described in (26).

Remark 3. It is analytically demanding to obtain a explicit expression of Re(c1(α)), Im(c1(α)) and
Q(α). We shall resort to numerical tools to calculate it in the part of numerical simulations.

4. Numerical Examples

In this section, we present some numerical examples. We divided our numerical
simulations into two parts: “larger”µ (µ is very close to 1) and “smaller”µ (µ is very close
to 0).

Case 1 (“larger”µ). We set m = 100, θ = 10, k = 1.1, and µ = 0.8. In this case, we have

α1 = 8.8542, α2 = 132.771, Re(c1(α1)) = −11.6638 < 0, Re(c1(α2)) = −14.3536 < 0.
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By Theorem 4, at α = 8.8542 and α = 132.771, the supercritical Hopf bifurcation occurs
around (τ, vτ , wτ) = (0.1111, 0.01, 0.1769). That is, the bifurcating periodic solution, denoted
by (up(t), vp(t), wp(t)), is stable in the ODEs system.

At α = α1 = 8.8542,

Re(c1(α1))
(

M1(α1)M′2(α1) + M′1(α1)M2(α1)−M′0(α1)
)
< 0,

which indicates that Hopf bifurcation direction is backward. Set α = 8.7542, Ω = (0, 1000),
u0(x) = τ + 0.001, v0(x) = vτ + 0.001, w0(x) = wτ + 0.0001.

Firstly, we set d1 = d2 = d3 = 1. Numerical simulation shows that (up(t), vp(t), wp(t))
remains stable in the diffusive system. No diffusion-induced instability of (up(t), vp(t), wp(t))
occurs (see Figure 1).

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 1. When d1 = d2 = d3, (up(t), vp(t), wp(t)) remains stable in the diffusive system (3).

Secondly, we set d1 = 1, d2 = 5, d3 = 30; Ω = (0, 1000); u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.001 sin(0.005x). By Theorem 5, (up(t), vp(t), wp(t))
becomes diffusion-induced unstable in diffusive system (3). This is demonstrated by
Figure 2.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 2. (up(t), vp(t), wp(t)) becomes diffusion-induced unstable, and the emerging spatiotemporal
patterns can be observed.

At α = α2 = 132.771, we have

Re(c1(α2))
Å

M1(α2)M′2(α2) + M′1(α2)M2(α2)−M′0(α2)
ã
> 0,

which implies that the bifurcating direction is forward. Then, we choose α = 132.871,
Ω = (0, 1000), u0(x) = τ + 0.001, v0(x) = vτ + 0.001, w0(x) = wτ + 0.0001. In this case,
there is a stable periodic solution in the system (4) and denoted by (up(t), vp(t), wp(t)).

First, we set d1 = d2 = d3 = 1. Ω = (0, 1000), u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.0001 sin(0.5x). In this case, (up(t), vp(t), wp(t))
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remains stable in system (3). No diffusion-induced instability of (up(t), vp(t), wp(t)) occurs.
This is demonstrated by Figure 3.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 3. For d1 = d2 = d3, (up(t), vp(t), wp(t)) is still stable in system (3).

Secondly, we set d1 = 1, d2 = 5, d3 = 30, Ω = (0, 1000), u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.0001 sin(0.005x). In this case, by theorem 5,
(up(t), vp(t), wp(t)) becomes diffusion-induced unstable in system (3). This is demonstrated
by Figure 4.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 4. (up(t), vp(t), wp(t)) becomes diffusion-induced unstable, and the emerging spatiotemporal
patterns can be simulated.

Case 2 (“smaller”µ). We set m = 100, θ = 10, k = 1.1 and µ = 0.1. In this case, we have

α1 = 1.1589, α2 = 636.1936, Re(c1(α1)) = −0.4907 < 0, Re(c1(α2)) = −14.3536 < 0.

According to Theorem 4, at α = α1 or α = α2, the supercritical Hopf bifurcation occurs
around (τ, vτ , wτ) = (0.1111, 0.01, 0.1042). That is, the bifurcating periodic solution, denoted
by (up(t), vp(t), wp(t)), is asymptotically stable in the ODEs system.

At α = α1 = 1.1589,

Re(c1(α1))
(

M1(α1)M′2(α1) + M′1(α1)M2(α1)−M′0(α1)
)
< 0,

which indicates that the Hopf bifurcation direction is backward. Set α = 1.0589,
Ω = (0, 1000), u0(x) = τ + 0.001, v0(x) = vτ + 0.001, and w0(x) = wτ + 0.0001. System (4)
has a stable periodic solution, denoted by (up(t), vp(t), wp(t)).

First, we set d1 = d2 = d3 = 1. Ω = (0, 1000). No diffusion-induced instability of
(up(t), vp(t), wp(t)) occurs. This is demonstrated by Figure 5.
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(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 5. When d1 = d2 = d3, (up(t), vp(t), wp(t)) remains stable in system (3).

Secondly, we set d1 = 1, d2 = 5, d3 = 30. Ω = (0, 1000), and u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.001 sin(0.005x). By Theorem 5, (up(t), vp(t), wp(t))
becomes diffusion-induced unstable and the emerging spatiotemporal patterns can be
found. This is demonstrated by Figure 6.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 6. (up(t), vp(t), wp(t)) becomes diffusion-induced unstable, and the emerging spatiotemporal
patterns are observed.

At α = α2, we have

Re(c1(α2))
Å

M1(α2)M′2(α2) + M′1(α2)M2(α2)−M′0(α2)
ã
> 0,

which confirms that the Hopf bifurcation is forward. We set α = 636.2936, Ω = (0, 1000),
u0(x) = τ + 0.001, v0(x) = vτ + 0.001, w0(x) = wτ + 0.0002. Then, the kinetic system (4)
possesses a periodic solution (up(t), vp(t), wp(t)), which is stable.

First, we set d1 = d2 = d3 = 1. Ω = (0, 1000). The diffusion-induced instability of
(up(t), vp(t), wp(t)) cannot be found. This is demonstrated by Figure 7.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 7. When d1 = d2 = d3, (up(t), vp(t), wp(t)) remains stable in system (3).
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Secondly, let d1 = 1, d2 = 5, d3 = 30. Ω = (0, 1000), and u0(x) = τ + 0.001 sin(x),
v0(x) = vτ + 0.001 sin(3x), w0(x) = wτ + 0.001 sin(0.005x). By Theorem 5, (up(t), vp(t), wp(t))
becomes diffusion-induced unstable and the emerging spatiotemporal patterns can be
observed. This is demonstrated by Figure 8.

(a) u(x,t) (b) v(x,t) (c) w(x,t)

Figure 8. (up(t), vp(t), wp(t)) becomes diffusion-induced unstable, and the emerging spatiotemporal
patterns can be observed.

5. Concluding Remarks

In this paper, a homogeneous diffusive predator-prey system with the dormancy of
predators is mainly considered. It concentrates on the diffusion-induced instability of the
Hopf bifurcating periodic solutions.

Without regard to the dormancy effect, the predator-prey system is a system with
two components. Motivated by [2,3], we choose the first component τ of the positive
equilibrium solution (τ, vτ) as the bifurcation parameter. We assume that the unique
positive equilibrium solution of the system (the 2-component predator-prey system) is
stable with respect to the corresponding ODEs system, say

either 0 < k ≤ 1 but τ ∈ (0, k), or k > 1 but τ ∈
Å

k− 1
2

, k
ã

holds so that (τ, vτ) is stable in system (5). By [2], (τ, vτ) is globally asymptotically stable in
system (5).

In the presence of the dormancy effect, the predator-prey system becomes a system
with 3-components. Our results indicated that for some θ, if ∆α > 0, then for suitable τ
and α (say, τ ∈ (τ0, τµ), α = α1 and α = α2), the ODEs predator-prey system might exhibit
temporal oscillations. This suggests that the dormancy effects can favor the emergence
of temporal oscillatory patterns. Precisely, the smaller µ (the modeling the strengthen of
the dormancy effect) is, the larger stability range of τ is. At α = α1 and α = α2, Hopf
bifurcations around (τ, vτ , wτ) occur. By calculating the first Lyapunov coefficients, we can
derive conditions to determine the stability of the periodic solutions.

When diffusions are introduced into the predator-prey system with dormancy, we can
deduce the reaction-diffusion equations with the 3-components system. Referring to the
abstract results in [19], we are able to expound some precise conditions on the diffusion
coefficients to determine the diffusion-induced instability of the periodic solutions.
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