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Abstract: Driver distraction detection (3D) is essential in improving the efficiency and safety of
transportation systems. Considering the requirements for user privacy and the phenomenon of data
growth in real-world scenarios, existing methods are insufficient to address four emerging challenges,
i.e., data accumulation, communication optimization, data heterogeneity, and device heterogeneity.
This paper presents an incremental and cost-efficient mechanism based on federated meta-learning,
called ICMFed, to support the tasks of 3D by addressing the four challenges. In particular, it designs a
temporal factor associated with local training batches to stabilize the local model training, introduces
gradient filters of each model layer to optimize the client–server interaction, implements a normalized
weight vector to enhance the global model aggregation process, and supports rapid personalization
for each user by adapting the learned global meta-model. According to the evaluation made based
on the standard dataset, ICMFed can outperform three baselines in training two common models
(i.e., DenseNet and EfficientNet) with average accuracy improved by about 141.42%, training time
saved by about 54.80%, communication cost reduced by about 54.94%, and service quality improved
by about 96.86%.

Keywords: federated learning; meta-learning; incremental federated meta-learning; driver distraction
detection; ICMFed

MSC: 68T20

1. Introduction

Currently, even though vehicles are upgraded to support a higher level of autonomy,
humans are still their primary operators. Therefore, driver distraction is still a major
problem that can disrupt and jeopardize transportation systems [1,2]. In general, driver
distraction occurs when a driver’s attention is diverted, leading to a delay in recognizing
vital information to keep vehicles running safely [3]. Especially with the proliferation of
in-vehicle multimedia devices and personal smart gadgets, diverse in-vehicle activities
exacerbate driver distraction. To prevent potential hazards and incidents, warnings to dis-
tracted drivers need to be fast and precise, which shows the necessity of driver distraction
detection (3D).

With the rapid development of advanced technologies, e.g., Artificial Intelligence and
Internet of Things (IoT), the capabilities of in-vehicle devices have improved, such as
sensing, communication, computing, etc. Intelligent vehicle systems are often equipped
with rich computing capabilities to support various tasks. Particularly, data-driven ap-
proaches to deep learning models have been widely developed and applied to support 3D,
e.g., with various core models that are trained on driver face poses [4], driving actions [5],
electroencephalography signals [6], and other sensed information to detect distractions,
such as unfocused eyesight [7], inattention [6], and inappropriate operation [5].
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Traditional deep learning methods centrally process data, namely, vehicles need to
upload signals, images, and other sensed data to a central server. After the collection
of sensed data, the server will train the required model based on the data consolidated
from multiple sensing devices, also known as smart vehicles. However, in this process,
the data to be transmitted may contain private or sensitive information, such as travel
trajectories and passenger profiles. It is vulnerable to being intercepted and attacked via
network connections between vehicles and servers. Under the restrictions listed in recently
announced data protection laws and regulations, more isolated data silos are formed
and become unbreakable barriers to applying centralized model learning solutions [8].
Therefore, federated learning (FL) is emerging as a feasible solution that can train models
without private and sensitive information leaving its local repository [8,9].

Even though various solutions are proposed by using FL to upgrade the model
learning paradigm of 3D [10–12], they are still incapable of handling the dynamics and
heterogeneity encountered in the daily usage of 3D. First, most recent research is conducted
based on predefined experimental settings, in which clients possess preassigned data and
exchange model parameters directly without any optimizations. Specifically, in more
realistic scenarios, data can be sensed continuously. Since current solutions focus more
on old data, if they are applied to the incremental data directly, it may make the model
learning inefficient, leading to catastrophic forgetting of knowledge [13]. Second, even
though current solutions based on FL do not need to transmit raw data, it is still costly
to train high-performance models based on more frequent and excessive client–server
interactions [9]. Finally, it is common to see that the availability of local data and computing
powers of moving vehicles may change over time and place, and this may make current
solutions inefficient at not only accommodating heterogeneous devices but also data with
various distributions, uneven sizes, and missing label classes [9,14,15].

To tackle the aforementioned challenges, this paper proposes an incremental and
cost-efficient mechanism for federated meta-learning, named ICMFed, to support 3D. In
general, ICMFed integrates incremental learning and meta-learning with federated learning
to provide a novel learning paradigm that can be applied to address the dynamics and
heterogeneity within real-world 3D scenarios. The main contributions of this work can be
summarized as follows:

• ICMFed introduces temporal factors on batches created according to sample sensed
time ascendingly, which can ensure rapid and balanced extraction of features from
gradually accumulated data. Meanwhile, by calculating the gradient similarity of
model layers, a layer-wise model uploading process is implemented to reduce com-
munication costs without degrading the model performance.

• Taking advantage of meta-learning and federated learning, ICMFed can remedy the
impact of heterogeneity in data and devices to learn the global meta-model by employ-
ing a weighted model aggregation strategy, which enhances the model aggregation
process by an adaptive weight calculated based on the richness of local information.

• Through the evaluation based on the 3D dataset collected by State Farm and two
classical models, ICMFed can not only significantly elevate the learning performance,
i.e., communication cost and learning accuracy, but also dramatically improve related
service quality.

The remainder of this paper is organized as follows. Section 2 summarizes related
challenges and solutions. Then, ICMFed is presented and evaluated in Sections 3 and 4,
respectively. Finally, Section 5 concludes this work and presents future research directions.

2. Challenges and Related Work

This section first introduces four challenges regarding the dynamics and heterogene-
ity encountered in incremental federated meta-learning (IFM), and accordingly, related
solutions are discussed.
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2.1. Emerging Challenges

First, as for the dynamics in real-world scenarios, the following two critical challenges
are faced by 3D:

• C1.1 Data Accumulation. While the 3D service is installed, the vehicles can continu-
ously sense driver status and increase the samples to be used for model updates. In
comparison to static scenarios where the training samples will not change frequently,
data accumulation can cause pre-trained knowledge to be obsolete in processing new
data [13,16].

• C1.2 Communication Optimization. To train a model jointly, 3D services require frequent
interaction between the clients and the server. Even though in IFM, model parameters
are exchanged instead of entire data, which can reduce the network traffic [8], the
client–server interaction frequency increases to update the model iteratively, resulting
in high latency to update the model on the fly [9,17,18].

Moreover, the heterogeneity embedded in 3D is represented by two main aspects, namely:

• C2.1 Data Heterogeneity. Due to the restriction in IFM, data sensed are stored locally to
protect user privacy, and as a result, the local data of different users may vary to be
non-iid (non-independent and identically distributed), i.e., different distribution of
samples, uneven data quality, etc. Such heterogeneity can significantly complicate the
learning process of IFM [15,18].

• C2.2 Device Heterogeneity. The devices to support 3D may have different configurations
in terms of software and hardware, e.g., operation systems, sensing capabilities,
storage spaces, computing powers, etc. Moreover, on the device, more than one
service is running in parallel, and as a result, the availability of learning resources
may vary among them. Therefore, how to select proper clients becomes an emerging
challenge in IFM to remedy the impact of such heterogeneity [19–21].

2.2. Related Solutions

To tackle the abovementioned challenges, related solutions are proposed.

2.2.1. Solutions to Data Accumulation

The data accumulation of IFM can be solved by timely updating of global models or
optimizing local training patterns. While considering incremental scenarios, if the global
model or training task is not updated adequately and in a timely manner, it will lead to
poor performance [22,23]. Current research commonly adopts a predefined configuration
for model learning [8,15,24]. Moreover, without modifying the model structure, several
methods optimize local training patterns to improve knowledge retention on both old and
new samples. For example, Wei et al. [22] proposed a method named FedKL utilizing
knowledge lock to maintain the previously learned knowledge. Yoon et al. [25] introduced
FedWeIT, allowing clients to leverage indirect experience from other clients to support
continuous learning of federated knowledge. Le et al. [26] suggested a weighted processing
strategy for model updating to prevent catastrophic forgetting. However, to achieve the
optimal performance of these methods, the training will become less efficient, especially to
process non-iid data.

2.2.2. Solutions to Communication Optimization

There are two major approaches for communication optimization, i.e., minimizing the
amount of data exchanges or reducing the size of data transmitted. Specifically, the first ap-
proach can be achieved by reducing model upload frequency [27,28], adjusting aggregation
schedules [28–30], and optimizing network topology [9,31]. In addition, technologies such
as knowledge distillation [10,24] and sparse compression [25,32] can be used to compress
parameters exchanged without degrading model performance. Finally, the significance of
each model layer can be determined in order to perform layer-wise uploading based on
user similarity [33], model similarity [34,35], etc.
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2.2.3. Solutions to Data Heterogeneity

Data heterogeneity, in general, can be addressed by knowledge distillation or meta-
learning. Specifically, as for knowledge distillation, Lin et al. [24] proposed a FedDF frame-
work, combining federated learning with knowledge distillation. Shang et al. [10] presented
FedBiKD, which is a simple and effective federated bidirectional knowledge distillation
framework. Moreover, meta-learning as the process of learning how to learn can guide local
learning for better performance. There are many meta-learning algorithms, e.g., Model-
Agnostic Meta-learning (MAML) [36], First-Order Model-Agnostic Meta-learning (FO-
MAML) [37], and Reptile [38]. The joint utilization of meta-learning algorithms and feder-
ated learning enables quick, personalized, and heterogeneity-supporting training [14,15,39].
Federated meta-learning (FM) offers various similar applications in transportation to over-
come data heterogeneity, such as parking occupancy prediction [40,41] and bike volume
prediction [42].

2.2.4. Solutions to Device Heterogeneity

In general, client heterogeneity can be resolved by client selection prior to task start
and weighting during global aggregation. To simplify the learning process, random or full
client selection is commonly utilized [8,26,34], under the prerequisite that all clients need to
be available with little performance disparity. Thus, more advanced strategies are designed
to mitigate the unreliability among clients, e.g., a compensatory first-come-first-merge
algorithm adopted by Wu et al. [43], and the dynamic selection based on the status and
availability of clients considered by Huang et al. [44]. Moreover, aggregation weights are
also widely discussed. Particularly, the size of local samples [8,31,34] is the most common
weight, but with drawbacks to handling IFM as the size of samples can change over time
and place. Hence, weights relevant to the characteristics of devices are introduced, such as
information richness [30], temporal weight [28,30], etc.

In summary, as summarized in Table 1, existing methods focus more on solving the
optimization issues related to communication (i.e., C1.2), and also present visible progress
in addressing the two challenges in heterogeneity (i.e., C2.1 and C2.2). However, it is still
missing a solution that can resolve the four challenges encountered in IFM. Therefore,
ICMFed is proposed with dedicatedly designed model learning and adaptation processes
to not only boost the learning performance but also improve the service quality.

Table 1. The overview of related works (# NOT SUPPORTED and  SUPPORTED).

Related Work C1.1 C1.2 C2.1 C2.2

FedAVG [8] #   #

FedBiKD [10] #   #

Per-FedAvg [14] # #  #

FedMeta [15] # #  #

FedKL [22] # #  #

FedDF [24]   # #
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Table 1. Cont.

Related Work C1.1 C1.2 C2.1 C2.2

FedWeIT [25]  #  #

FCL-BL [26]   # #

Fed2a [28] #  #  

ASO-Fed [29] #   #

TrisaFed [30] #  #  

HFL [31] #  #  

STC [32] #   #

COFEL [34] #  #  

FedReptile [39] # #  #

SAFA [43] #  #  

RBCS-F [44] #  #  

This paper
(ICMFed)     

3. Methodology

To tackle the challenges mentioned above, an incremental and cost-efficient mechanism
of federated meta-learning called ICMFed is proposed. As illustrated in Figure 1, essentially,
it comprises five consecutive stages, i.e., (1) Task Coordination: The server will start the
task on demand and perform stage transition periodically in incremental scenarios; (2)
Local learning: The participant vehicles, i.e., clients, will execute local meta-training based
on their own data accumulated continuously; (3) Model uploading: Each client calculates
and filters the gradients of layers of the updated local model, and then uploads them to the
server dynamically; (4) Global aggregation: The server receives and aggregates the local
model gradients to update the global model; (5) Personalized adaptation: Based on the
trained global meta-knowledge, user vehicles can execute few rounds of local training to
gain their personalized models. Additionally, stages 2–4 belong to the training phase, stage
5 is the adaptation phase, and stage 1 is the generic phase supporting both the training and
adaptation phases.

In this section, we first define the problem and then describe in detail the five stages
of ICMFed. In addition, the key notations and their explanations appearing below are
summarized in Table 2.
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Table 2. Notations and explanations.

Module Notation Description

Client

C The client set. A client can be represented by c, c ∈ C

Cs The client set for training in a stage s.

Ce The client set for evaluation.

u The target user, who requires 3D services.

Coefficient

CIRc,s Client information richness, e.g., calculated by information entropy.

cslr,l
c,s Cosine similarity of layer l in learning round r, whose values range from [−1, 1].

CSVr
c,s Cosine similarity vector composed by cslr,l

c,s, whose size is 1× L.

GMr
s Gradient matrix composed by gr,l

c,s, whose size is |C| × L.

SIPc,s Stage incremental proportion of clients.

wc,s Aggregation weight calculated based on SIPc,s and CIRc,s.

WVs Weight vector composed by wc,s, whose size is 1× |C|.

Data

B Number of batches split for training. Each batch can also be represented by b.

Dc Data of client c, generally consisting of feature Xc and label Yc.

Dc,s Data at the initial stage.

Dc,s:s+1 Incremental data between two adjacent stages.

Dspt
c,s Support set for FM.

Dqry
c,s Query set for FM.

Function

L(θ, D) Loss function based on model parameters θ and the data D.

N(x) Simplified representation of the normalization function.

sum(X) Function to sum the elements in matrix X.

Hyperparameter

α Local learning rate, also called inner learning rate.

β Global learning rate, also called outer learning rate.

γ Adaptation learning rate for target users.

µ The threshold for layer filter.

R Total number of rounds within a stage. Each round can also be represented by r.

S Total number of stages. Each stage can also be represented by s.

Model

θr
c,s Local model parameter.

θ̂r
c,s Intermediate model parameter.

θr
glo,s Global model parameter.

gr
c,s Gradient of local model. Each layer of it can also be represented by gr,l

c,s.

gr
glo,s Gradient of global model. Each layer of it can also be represented by gr,l

glo,s.

L Layer number of the model. A individual layer is marked as l, l ∈ L.
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Global Model Local Gradient Filtered Gradient Global Gradient

Client Private Data Training Phase Adaptation Phase Generic Phase

Motivation

ORPlatform Demand User Request

Execution

Task Initialization Stage Training
Stage

Motivation

ORPlatform Demand User Request

Execution

Task Initialization Stage Training
Stage

1) Task Coordination

No available

model

Server Service

is available

Request

3D User

3D
Service

Personalized
Model

5) Personalized Adaptation

3) Model Uploading 4) Global Aggregation

Vehicle 1

Vehicle 2

Vehicle n

Vehicle 3

Layer
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Layer

Flilter

Layer

Flilter

Gradient

Descent
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(gradient matrix)

N Clients

M Layers

WV
(weight vector)

N Clients

Execute iteratively and stage by stage

2) Local Learning

Figure 1. The overall workflow of ICMFed. Specifically, stage 1 is the generic phase supporting
both training and adaptation phases; stages 2 to 4 belong to the training phase, executing training
iteratively and stage by stage; and stage 5 is the adaptation phase to quickly train personalized
models for the clients.

3.1. Problem Definition

For typical FL tasks, the basic framework typically consists of a server and client set C.
Each client c ∈ C will perform local learning using private data, denoted as Dc = {Xc, Yc}.
Especially in FM, Dc will be further split into a support set Dspt

c and a query set Dqry
c . Based

on the support and query sets, FM aims to find a model initialization (i.e., meta-knowledge)
that can perform well on heterogeneous clients to be quickly adapted with the local gradient
descent defined in Formula (1).

min
θ∈Rd

1
|C| ∑

c∈C
Lc(θ − αOLc(θ, Dspt

c ), Dqry
c ) (1)

where θ ∈ Rd are the model parameters; α stands for the local learning rate, also commonly
called inner learning rate; and Lc represents the loss function of client c (by default, cross-
entropy for 3D).

In the case of real-world applications of FM as in 3D, both the number of available
clients and the size of local data may change dynamically, i.e., online statuses of participant
vehicles and driver conditions sensed by in-vehicle devices may vary over time and place.
Therefore, we divide the learning task into multiple stages, since the pre-trained knowledge
in incremental scenarios may become invalid as it may drift while new data are sensed.

Therefore, the timing of stage transitions shall be determined, which is based on the
number of training rounds in this work. The training objects within a stage s are as static
as FM, i.e., the client set for training Cs is fixed and takes data at initialization of stage Ds
as training samples. When discussing the transition to a new stage s + 1, new clients are
selected as Cs+1 while the incremental data Ds:s+1 are updated according to Formula (2).

Ds+1 = Ds ∩ Ds:s+1 (2)
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In general, as indicated by Formula (3), the goal of IFM is to maintain high model
performance in each stage. Accordingly, ICMFed is designed to minimize the usage of
communication resources and reduce the time consumption of model training through the
five stages, i.e., task coordination, local learning, model uploading, global aggregation, and
personalized adaptation.

min
θs∈Rd

1
|Cs| ∑

c∈Cs

Lc(θs − αOLc(θS, Dspt
c,s ), Dqry

c,s ) (3)

3.2. Task Coordination

The main tasks of the server are to (1) start the learning tasks according to the actual needs,
and (2) coordinate learning participants for the meta-knowledge. In general, the initialization
of learning tasks is triggered by the server, when the performance of the deployed model
decreases significantly, or users with limited local data in the learning consortium require a
model to assist the 3D task. Moreover, the server is also responsible for the management of
clients and the transition of stages. Note that when a task begins, the server will first select
adequate clients as learning participants and then dispatch training-related information (such
as the current global model, predefined hyperparameters, etc.) to them.

3.3. Local Learning

In each client, ICMFed conducts the local training through four steps, i.e., (1) training
initialization, (2) data sampling, (3) model training, and (4) gradient calculation, which are
described below.

3.3.1. Step 1: Training Initialization

Since the mechanism is targeted synchronously, each client will receive the most recent
global model parameters θglo from the server at the beginning of each learning round. The
initial model parameters of client c in round r of stage s can be represented by Formula (4).

θr
c,s = θr−1

glo,s (4)

where θ0
glo,s is the initialized global model parameters of stage s.

3.3.2. Step 2: Data Sampling

Within a client c, the local data are sampled into a support set Dspt
c,s and a query set

Dqry
c,s . Then, Dspt

c,s will again be split into B batches with their samples ordered ascendingly
according to the created time. The main purpose of batch splitting is to maintain the
temporal information in the model-updating step as described below.

3.3.3. Step 3: Model Updating

After the preparation of training samples, the client will update its local model param-
eters based on the support set, as shown in Formula (5).

θ̂r
c,s = θr

c,s − α ∑
b∈[1,B]

e−
b
B O

θr,b−1
c,s
Lc(θ

r,b−1
c,s , Dspt,b

c,s ) (5)

where θ̂r
c,s is the intermediate model parameter; b stands for batch id; Dspt,b

c,s represents

the bth batch of Dspt
c,s ; and e−

b
B is named as timing factor to adjust the step size of gradient

descent according to the temporal information of each batch.
Local models in ICMFed conduct multiple batch gradient descent inside a round, whereas

the general local training of FM processes the dataset to generate one gradient descent for
the model parameter learning. Moreover, ICMFed employs the optimization on the temporal
batches based on the timing factors, to ensure that the model feature extraction process can be
quickly adapted among clients to simplify and unify the model learning behavior.
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3.3.4. Step 4: Gradient Calculation

ICMFed can support FOMAML or Reptile to calculate the gradient required in updat-
ing the global meta-model. In general, besides the gradient calculated based on the support
set as in Reptile, FOMAML also needs the gradient from the query set. The two modes are
expressed in Formula (6) (FOMAML) and Formula (7) (Reptile), respectively.

gr
c,s = Oθ̂r

c,s
L(θ̂r

c,s, Dqry,b
c,s ) (6)

gr
c,s = θ̂r

c,s − θr−1
glo,s (7)

where gr
c,s is the uploaded gradient of client c in round r of stage s.

3.4. Model Uploading

After obtaining the uploaded gradients, clients need to upload the gradients to the
server via the network. Note that as the number of clients grows or the model structure
becomes more complicated, uploading multi-layer parameters will incur large communica-
tion costs. Therefore, an adaptive filter is proposed to upload valuable and critical layers
without jeopardizing the overall model performance.

Accordingly, ICMFed applies the cosine similarity vector (CSV) as the measure of the
layer filter [45,46]. CSV, expressed by Formula (8), calculates the directional correlation of
each layer between the local and global parameters in the adjacent round.

CSVr
c,s =

[
cslr,1

c,s cslr,2
c,s . . . cslr,L

c,s

]
1×L

(8)

where L is the number of model layers, which is a constant value in a task; cslr,l
c,s ∈ [−1, 1] is

the cosine similarity of layer l, which can be expressed by Formula (9).

cslr,l
c,s =

sum(gr,l
c,s ◦ gr,l

glo,s)√
sum(gr,l

c,s ◦ gr,l
c,s)×

√
sum(gr,l

glo,s ◦ gr,l
glo,s)

(9)

where ◦ is the Hadamard Product; and sum(X) is a function to sum the elements in matrix
X. Based on hyperparameter µ designed as a threshold for the layer filter, client c will not
upload the parameter of layer l when cslr,l

c,s ≥ µ.
However, while the global model is already distributed in the form of model pa-

rameters, broadcasting the global parameters to clients every round would significantly
increase communication costs. To reduce such cost, the global gradient can be obtained
from continuous alterations in global models, as shown in Formula (10).

gr,l
glo,s ≈ −(θ

r
glo,s − θr−1

glo,s) (10)

where θ0
glo,s = θR

glo,s−1, i.e., the parameters in the last round of the previous stage, where
R is the total learning rounds per stage. Note that no layer filtering is required in the first
round of the first stage.

Following the layer filter, clients can upload parameters via the network, e.g., wireless
communication with roadside devices.

3.5. Global Aggregation

After the receipt of local updates from the clients, the global aggregation is executed
in the server in three steps, e.g., parameter collation, weight analysis, and model updating.
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3.5.1. Step 1: Parameter Collation

The server will continuously receive the gradient parameters submitted by clients. In
synchronous mode, the server will wait for all clients to upload parameters and then use
the formed gradient matrix (GM, as defined in Formula (11)) for the aggregation.

GMr
s =


gr,1

1,s gr,2
1,s . . . gr,L

1,s
gr,1

2,s gr,2
2,s . . . gr,L

2,s
...

...
. . .

...
gr,1

C,s gr,2
C,s . . . gr,L

C,s


|C|×L

(11)

Note that if gr,l
c,s is not successfully received in a predefined amount of waiting time,

i.e., the value is null, it would be substituted by the corresponding layer of the previous
global gradient, as indicated in Formula (12).

gr,l
c,s =

{
gr,l

c,s, gr,l
c,s 6= None

gr−1,l
glo,s , gr,l

c,s = None
(12)

3.5.2. Step 2: Weight Analysis

Existing FM mechanisms tend to aggregate GM directly to update the global model,
but this is not suitable in IFM scenarios. As in incremental scenarios, the data heterogeneity
of clients is amplified, and treating them equally will impact the overall model performance.

To tackle it, ICMFed designs a weight vector (WV) based on stage incremental propor-
tion (SIP) and client information richness (CIR). Specifically, SIP indicates the proportion of
newly sensed data in a stage, as shown in Formula (13). CIR is the information entropy of
the training data. WV can be quantified in three ways, i.e., SIP, CIR, and a mixture of the
two, as given by Formula (14).

SIPc,s =
|Dc,s−1:s|
|Dc,s|

(13)

WVs =
[
w1,s w2,s . . . wC,s

]
1×|C|

s.t. wc,s = {N(SIPc,s), N(CIRc,s), N(SIPc,s, CIRc,s)}
(14)

where N(x) is a normalization function, i.e., Softmax.

3.5.3. Step 3: Model Updating

Finally, global gradient and updated global model parameters in round r of stage s
can be obtained according to Formula (15) and Formula (16), respectively.

gr
glo,s = WVs × GMr

s (15)

θr
glo,s = θr−1

glo,s − βgr
glo,s (16)

where β stands for the global learning rate.
After the model updating, related training content will be distributed to the clients.

The training contents include training configurations, updated model parameters, and flags
to harmonize tasks.

3.6. Personalized Adaptation

Users who use 3D services can download the current global meta-model to train
personalized models based on their local data as illustrated in Formula (17).

θu = θglo − γOθgloL(θglo, Du) (17)
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where u represents the target user; and γ is the adaptation learning rate, which is recom-
mended to be equal to α. With one or a few epochs of gradient descent, a personalized
model can be learned and applied.

3.7. Algorithm of ICMFed

Besides the preparation of the learning in phase 1 of ICMFed, the training and adapta-
tion phases present the main workflow of ICMFed in each stage. The algorithms of these
two phases are described below, respectively.

3.7.1. Algorithm of Training Phase

As listed in Algorithm 1, this phase consists of two parts, namely:

Algorithm 1 Training phase of ICMFed

PART 1: Pseudocode for the server.
1: Initialize and start a task;
2: for stage s ∈ [1, S] do
3: Select clients and send the “SELECTED” signal;
4: Distribute the training configuration, e.g., model structure, hyperparameters, etc.;
5: for round r ∈ [1, R] do
6: Distribute current global model parameters θr−1

glo,s to the selected clients;
7: Send “TRAIN” signal to the selected clients;
8: Wait for local parameters from the selected clients;
9: Receive local model gradient gr

c,s from each selected client;
10: Calculate aggregation weight wc,s;
11: Update global model parameters θr

glo,s according to Formula (16);
12: end for
13: if Task termination conditions are met then
14: Send “STOP” signal and distribute the latest global model to all clients;
15: else
16: Transit to the next stage;
17: end if
18: end for
PART 2: Pseudocode for the client;
19: if “SELECTED” signal is received then
20: Prepare itself according to the training configurations;
21: Sample a support set Dspt

c,s with B batches and a query set Dqry
c,s ;

22: Initialize local model according to Formula (4);
23: else if “TRAIN” signal is received then
24: Update local model according to Formula (5);
25: Calculate gradient according to Formula (6) or Formula (7);
26: Upload local gradient and the required parameters to calculate aggregation weight;
27: else if “STOP” signal is received then
28: Stop local training;
29: end if

1. Part 1 at the server. After the initialization of the task, the server will iteratively and
periodically perform model training according to the settings. First, the server will
choose qualified clients at the beginning of each learning round. Note that the server
will perform model aggregation only after all selected clients upload their parameters
or the predefined waiting time is exceeded. The termination conditions will be
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determined once a single training stage is completed. Particularly, the conditions can
be the performance target, task execution time, etc.

2. Part 2 at each client. The clients will take various actions based on the signals received
from the server. When a client is selected to perform a training stage, it will sample
the training dataset and initialize the local model training. In each training round,
clients update and upload their local model after the receipt of the global meta-model
parameters from the server. Clients perform their learning tasks through continuous
interactions with the server.

3.7.2. Algorithm of Adaptation Phase

As indicated in Algorithm 2, this phase also consists of two parts. The server peri-
odically makes the recently trained global meta-model available to be downloadable by
users who require 3D capabilities (also known as the target users). Accordingly, the target
clients can download available models on demand. Due to the advantages of FM, the
model to support 3D services can benefit from the fast adaptation of meta-knowledge to
be personalized.

Algorithm 2 Adaptation phase of ICMFed

PART 1: Pseudocode for the server.
1: Make the newly updated meta-model available;
2: if The model download request is received then
3: Validate the identity of the user;
4: Send the current model parameter θglo to the client;
5: end if

PART 2: Pseudocode for the target client.
Require: The client has sent a model download request to the server;

6: Receive the latest meta-model from the server;
7: Start local adaptation and personalize meta-model according to Formula (17).
8: Deploy the personalized model.

4. Evaluation

In this section, the performance of ICMFed is evaluated and discussed. First, common
settings are introduced. Next, ICMFed is compared with baselines by training different
models to demonstrate its supremacy in supporting 3D in IFM. Finally, the discussion is
presented to provide some insights from the results.

4.1. Common Settings

For fairness, common settings for evaluation dataset, models, scenarios, methods, and
metrics are configured, and note that random operations mentioned below are executed
under the same seed.

4.1.1. Evaluation Dataset

IFM tasks are evaluated through the State-Farm-Distracted-Driver-Detection (https://
www.kaggle.com/competitions/state-farm-distracted-driver-detection/data (accessed on
13 February 2023)) dataset. The dataset contains 10 classes of distracted driving situations,
with a total of 22,424 labeled samples from 26 drivers. As summarized in Table 3, each
driver is considered as a client with heterogeneous data, where six drivers are randomly
selected as evaluation clients and the remaining 20 are training clients. Local data of clients
are split into support sets and query sets randomly and evenly while FOMAML is used.
Moreover, images are zoomed in to focus on drivers and cropped to the size of 224× 224
during pre-processing.

https://www.kaggle.com/competitions/state-farm-distracted-driver-detection/data
https://www.kaggle.com/competitions/state-farm-distracted-driver-detection/data
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Table 3. Details of State-Farm-Distracted-Driver-Detection dataset.

Driver ID Role c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 Total

p002 Training 76 74 86 79 84 76 83 72 44 51 725

p012 Training 84 95 91 89 97 96 75 72 62 62 823

p014 Training 100 103 100 100 103 102 101 77 38 52 876

p015 Training 79 85 88 94 101 101 99 81 86 61 876

p016 Training 111 102 101 128 104 104 108 101 99 120 1078

p021 Training 135 131 127 128 132 130 126 98 99 131 1237

p022 Evaluation 129 129 128 129 130 130 131 98 98 131 1233

p024 Training 130 129 128 130 129 131 129 101 99 120 1226

p026 Training 130 129 130 131 126 130 128 97 97 98 1196

p035 Evaluation 94 81 88 89 89 89 94 87 56 81 848

p039 Training 65 63 70 65 62 64 63 64 70 65 651

p041 Training 60 64 60 60 60 61 61 61 59 59 605

p042 Evaluation 59 59 60 59 58 59 59 59 59 60 591

p045 Training 75 75 76 75 75 76 71 67 66 68 724

p045 Evaluation 75 76 75 75 76 71 67 66 68 80 724

p047 Training 80 91 81 86 82 87 81 82 82 83 835

p049 Training 84 85 119 110 109 116 119 74 79 116 1011

p050 Training 123 45 52 98 83 91 82 81 65 70 790

p051 Training 182 81 81 83 81 83 95 80 62 92 920

p052 Training 72 71 84 75 72 72 77 71 71 75 740

p056 Training 81 80 80 78 82 81 80 74 83 75 794

p061 Evaluation 84 81 81 83 79 81 80 79 81 80 809

p064 Training 83 81 83 84 86 85 82 79 81 76 820

p066 Training 129 100 106 101 102 102 105 86 114 90 1034

p072 Evaluation 63 62 36 31 34 6 35 2 21 56 346

p075 Training 81 81 85 79 89 79 82 82 79 77 814

p081 Training 100 90 96 82 77 81 79 77 61 80 823

Total 2489 2267 2317 2346 2326 2312 2325 2002 1911 2129 22,424

4.1.2. Evaluation Models

Evaluations are performed on two representative models, i.e., DenseNet-121 [47] and
EfficientNet-B0 [48]. Training settings of each model are shown in Table 4. Note that in
general, to achieve a better performance, Reptile requires different update epochs and
learning rates from FAMOML, but in this study, all these configurations remain the same to
ease the comparison.
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Table 4. Training settings of tasks.

Model α β γ Batch Size

DenseNet-121 0.03 0.03 0.03 32

EfficientNet-B0 0.0005 0.0005 0.0005 32

4.1.3. Evaluation Scenarios

To mimic real-world 3D tasks, namely, incremental scenarios implicated by IFM, two
scenario settings are considered:

• Stage Transition. Stage transition simulates the continuous upgrade of the meta-model
for 3D services. For each task, 40 stages are created. To reduce the experimental
variables and support the assumption of changes in data sensed, five training rounds
are executed at each stage regularly.

• Data Growth. Data growth simulates continuous sensing of driver data. For each
training client, 5% data is given when a task is initialized, and in each subsequent
round, it will have a 50% chance to increase by 0% to 0.5%. The new data may contain
a copy of existing data to mimic user behaviors (i.e., some common actions happen
more often). Note that this configuration is not applied in evaluation clients, i.e., the
data for evaluation clients are static.

Meanwhile, a delay of 3–20 s is added to each client to simulate the realistic network
status, while communication cost is measured by the actual volume of exchanged data.
Note that a more realistic scenario would also consider the client growth, but due to the
limitation in the number of drivers in the dataset, it is not implemented in this experiment.

4.1.4. Evaluation Methods

Based on the above models to process the datasets prepared in configured scenarios,
the following four methods are compared to reveal the performance difference:

• FedAvg [8]: FedAvg is the most recognized and representative synchronous FL algo-
rithm. It aggregates models with a weighted average based on size of client data.
Although FedAvg does not involve meta-learning, it is considered here as an evalua-
tion baseline.

• FedMeta [15]: FedMeta considers a combination of FL and three types of meta-learning
algorithms, namely, MAML, FOMAML, and Meta-SGD. The one with FOMAML is chosen
for this experiment. FedMeta aggregates the gradients through the average function.

• FedReptile [39]: FedReptile is a combination of FL and Reptile. FedReptile also aggre-
gates the gradients through the average function.

• ICMFed: ICMFed is the proposed method. It adopts two classical meta-learning
algorithms for local training, namely, FOMAML [37] and Reptile [38]. Moreover,
based on the importance of each layer update, local gradients will be filtered before
uploading. Finally, ICMFed aggregates the gradients based on both SIP and CIR.

4.1.5. Evaluation Metrics

To comprehensively evaluate the performance of each method, two types of metrics
are designed, namely, general metrics and service-quality metrics. Specifically, four general
metrics are utilized, namely:

• Average Accuracy (AA): Accuracy is the most common measurement in machine learning.
AA of all evaluation clients is recorded in each round, as expressed by Formula (18),
where TP, TN, FP, and FN represent true positives, true negatives, false positives,
and false negatives, respectively.

• Average Loss (AL): Cross-entropy is employed as the loss function for this experiment.
AL of all evaluation clients is recorded in each round, as by Formula (19), where X
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refers to data samples; I is the number of label categories (i.e., 10 for the dataset used
in this study), and y and p are ground truth and prediction result, respectively.

• Training Time (TT): TT is the cumulative time of trained rounds, including both time
spent at the server Ts and all clients Tc, as defined in Formula (20). Note that since
clients work in parallel, the maximum elapsed time among all clients is used as Tc.

• Communication Cost (CC): Major communication cost occurs when clients upload
gradients CCup and the server distributes models CCdown, as shown in Formula (21).

AA =
1
|Ce| ∑

c∈Ce

TPc + TNc

TPc + TNc + FPc + FNc
(18)

AL =
1
|Ce| ∑

c∈Ce

(
1
|X| ∑

x∈[1,|X|]
(− ∑

i∈[1,I]
yc,x,i ln pc,x,i)) (19)

TT = ∑
r∈[1,R]

(Ts + max(Tc)) (20)

CC = ∑
r∈[1,R]

(CCdown + CCup)) (21)

Moreover, three service-quality metrics are designed as follows:

• Best Service Quality (BSQ): BSQ is the maximum AA for all stages in the task. It is the
maximum AA among all rounds and stages, as defined in Formula (22).

• Improvement of Service Quality (ISQ): ISQ indicates performance improvement during
the continuous model upgrades. It is the average variation of AA in each stage, as
shown in Formula (23).

• Stability of Service Quality (SSQ): SSQ stands for performance stability during the model
updating. It is the proportion of AA decline during the task, as defined in Formula (24),
where dec is a mark of performance decline, and decavg is the average value of dec.

BSQ = max(AAr
s) (22)

ISQ =
1

S− 1 ∑
s∈[2,S]

(
1
R ∑

r∈[1,R]
AAr

s −
1
R ∑

r∈[1,R]
AAr

s−1) (23)

SSQ =
1

1 + decavg

s.t.



decavg =
1

S× R ∑
s∈[1,S]

∑
r∈[1,R]

decr
s

decr
s =



1, r < R & ACr
s ≥ ACr+1

s

1, r = R & s < S & ACr
s ≥ AC1

s+1

0, r < R & ACr
s < ACr+1

s

0, r = R & s < S & ACr
s < AC1

s+1

0, s = S

(24)

4.2. Evaluation of Gradient Filter

Before the comparison with baselines, the effect of the threshold for the gradient filter
should be analyzed, i.e., the value of µ. In general, µ controls the cosine similarity, and
µ ∈ [−1, 1], based on the fact that when the cosine similarity is negative, there exist opposite
components of the two vectors. Thus, only non-negative µ is considered. As shown in
Figures 2 and 3, the performance of the two tested models with different µ is examined by
using FOMAML.
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Figure 2. Heat map of the communication cost required to reach different AAs in (a) DenseNet-121
and (b) EfficientNet-B0. Note that “-” indicates that the AA cannot be reached.
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Figure 3. Overall distribution of AA under different µ, where µ = 0.6 and evaluation without
gradient filters are highlighted.

First, as shown in Figure 2, different communication costs and rounds are required
to reach AAs as indicated by the x-axis. It can be seen that when µ = 0.6 is used, a more
significant improvement in learning performance can be achieved, as ICMFed can save
3121.57% and 23.39% on average in DenseNet-121 and EfficientNet-B0, respectively. This
shows the efficiency of the gradient filter in saving communication costs.

Moreover, as for learning stability, the AA curve under different µ is presented in
Figure 3, in which the optimal results with µ = 0.6 and the basic result without gradient
filters are highlighted, respectively. It shows that the maximum and average improvement
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in AA are 29.57% and 13.47% in DenseNet-121, and 20.38% and 7.97% in EfficientNet-B0,
respectively. Such results show that the amount of information to be transmitted through
the network can be significantly reduced in each learning round.

4.3. Evaluation of General Metrics

Based on the above analysis, µ = 0.6 is used by default and accordingly, the three
general metrics are used to compare the proposed ICMFed with the baselines.

First, as shown in Figure 4, under the same configuration, all the methods can surpass
the baseline FedAvg, and FedMeta outperforms FedReptile with a clear gap between their
AA curves. Unsurprisingly, ICMFed with FOMAML and Reptile show the same results as
illustrated in the compared results between FedMeta (using FOMAML) and FedReptile, and
more importantly, regardless of models to be trained; ICMFed can significantly improve AA,
i.e., on average by 105.81% and 95.46% with FOMAML and 265.08% and 99.32% with Reptile.

FedMeta FedReptile FedAvg

ICMFed+FOMAML ICMFed+Reptile
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Figure 4. Relationship between AA and TT in (a) DenseNet-121 and (b) EfficientNet-B0

Second, as presented in Figure 5, ICMFed can boost AL by about 57.03% and 28.52%
with FOMAML and 38.58% and 23.27% with Reptile, while comparing to the baselines.
Specifically, as shown in Figure 5a, ICMFed can remediate the overfitting experienced in the
baselines to train DenseNet-121. As shown in Figure 5b, even though the AL curves of two
ICMFed variants fluctuate, it can still have the best performance compared to the baselines.

(b) EfficientNet-B0
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Figure 5. Relationship between AL and TT in (a) DenseNet-121 and (b) EfficientNet-B0.
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Finally, Figure 6 demonstrates AA reached with the specified communication cost
for each evaluated method. Five gigabytes (GB), fifteen GB, and thirty GB are chosen as
the three communication cost thresholds. In general, DenseNet-121 requires less cost than
EfficientNet-B0 to reach a higher AA. For the three testing cases in DenseNet-121, ICMFed
can improve the reached AA on average by 312.34%, 369.50%, and 453.33% with FOMAML
and 269.06%, 282.73%, and 301.55% with Reptile, respectively. As for the three cases in
EfficientNet-B0, ICMFed can improve the reached AA on average by 243.25%, 269.31%,
and 320.84% with FOMAML and 251.67%, 250.53%, and 241.83% with Reptile, respectively.
In summary, ICMFed can improve overall performance by 297.16%.
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Figure 6. AA reached with the specified communication cost, namely, 5G, 15G, and 30G, in
(a) DenseNet-121 and (b) EfficientNet-B0.

The above analyses show that compared to the baselines, ICMFed (especially the one
equipped with FOMAML) can not only significantly reduce the communication cost but
also dramatically improve the learning accuracy for both tested models.

4.4. Evaluation of Service-Quality Metrics

Based on the three service-quality metrics, the proposed ICMFed is further compared
with the baselines. As illustrated in Table 5, in general, ICMFed with FOMAML is better
than the one with Reptile, even though they can both outperform other methods. Specifi-
cally, while compared to the three baselines, ICMFed with FOMAML can enhance service
quality by 193.46% in DenseNet-121 and 116.42% in EfficientNet-B0, which is 71.24% and
77.57% for Reptile. Note that SSQ of ICMFed is slightly lower in EfficientNet-B0, which can
be interpreted as its slight sacrifice of stability for better service quality.

In summary, an average improvement of 96.86% is achieved by ICMFed in service
quality for both tested models.
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Table 5. Evaluation result of service-quality metrics.

Model Metric ICMFed+FOMAML ICMFed+Reptile FedMeta FedReptile FedAvg

DenseNet-121

BSQ 0.399 * 0.260 † 0.207 0.094 0.039

ISQ 0.501 0.180 0.169 0.014 0.137

SSQ 0.210 0.208 0.204 0.193 0.185

EfficientNet-B0

BSQ 0.356 0.287 0.172 0.142 0.043

ISQ 0.340 0.247 0.186 0.146 0.081

SSQ 0.208 0.207 0.209 0.205 0.171

* The best value among the compared methods is bolded. † The second best value among the compared methods
is underlined.

4.5. Discussion

For experiment settings, the following two points are worth elaborating:

• Heterogeneous Setting. Even though the abovementioned settings do not include a
specific section to describe the heterogeneous settings, there are three heterogeneous
settings in our experimental scenario. First, in the State-Farm-Distracted-Driver-
Detection dataset, there is heterogeneity across driver data, as shown in Table 3, and
the clients are divided according to drivers to obtain data heterogeneity across clients.
Second, random time delays for the clients are added to simulate heterogeneous
communication conditions. Finally, during data increment, both the proportion of
data growth and the probability of its occurrence may vary greatly between clients to
simulate the heterogeneous data-aware process.

• Model Selection. To fairly evaluate the methods, DenseNet-121 and EfficientNet-B0 are
selected to perform the experiments. These are chosen because they are classic and
widely used models, and can achieve state-of-the-art performance in computer vision
with a representative and indicative value [49,50]. They are also widely used in other
works as testing models [51–53].

According to the above evaluations, the following observations can be drawn, namely:

• Gradient filters are helpful in optimizing both learning cost and accuracy. Gradient filters are
originally designed to save communication costs. Since the amount of information to
be updated is reduced, the filter may impact the overall learning accuracy. However,
the results show that the usage of gradient filters will not affect the model performance,
and instead, it can slightly improve AA by using an appropriate threshold µ.

• Meta-learning is effective to support 3D tasks in a personalized context. Based on the fast
adaptation enabled by the meta-model, meta-learning combined with FL, i.e., FM,
can enable the personalization of local models to better support 3D. Moreover, by
using dedicated strategies proposed by ICMFed, the performance can be significantly
improved to support IFM, which is more realistic.

• ICMFed shows significant improvements compared to the baselines. According to the evalu-
ation results in generic and service-quality metrics, ICMFed is cost-efficient to support
IFM in 3D regardless of the models to be trained. Specifically, ICMFed equipped with
FOMAML can outperform the one with Reptile under the same configuration.

5. Conclusions

To protect user privacy and gradually increasing process data, IFM is starting to be
discussed to support 3D. In particular, four emerging challenges, i.e., data accumulation,
communication optimization, data heterogeneity, and device heterogeneity, need to be
addressed and hence, this paper proposes ICMFed, which can (1) achieve retention of
knowledge by introducing a temporal factor associated with the batches created by sorting
data created time-ascendingly in local training, (2) optimize the client–server interaction
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according to gradient filters of each model layer with communication costs reduced, (3)
update the global model based on the weights measuring the differences of local updates
in information richness to learn meta-learning efficiently, and (4) enhance 3D capability for
each user based on the adaptation of the global meta-model to improve personalization.

According to the evaluation made on the State-Farm-Distracted-Driver-Detection
dataset, ICMFed with FOMAML or Reptile can outperform the baselines to train both
DenseNet-121 and EfficientNet-B0 models. Particularly, ICMFed can boost model accuracy
by about 297.16% (when the target communication cost is reached), and improve service
quality by about 96.86%.

In the future, first, the asynchronous mode of ICMFed will be studied to further
improve the learning performance, especially the model update speed. Meanwhile, in asyn-
chronous mode, the inference of global gradients on clients needs to be taken into account,
i.e., due to the asynchronization, it cannot be inferred directly from the alterations between
two adjacent rounds. In addition, the local gradients, whose creation time may vary, shall
be aggregate-adaptive to remedy the impact of temporal difference. Finally, incentive
mechanisms will be designed for ICMFed to attract more users to share their knowledge.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Driver Distraction Detection
AA Average Accuracy
AL Average Loss
BSQ Best Service Quality
CC Communication Cost
CIR Client Information Richness
CSV Cosine Similarity Vector
FL Federated Learning
FM Federated Meta-learning
FOMAML First-Order Model-Agnostic Meta-learning
GB Gigabyte
GM Gradient Matrix
ICMFed Incremental and Cost-efficient Mechanism of Federated Meta-learning
IFM Incremental Federated Meta-learning
IoT Internet of Things
ISQ Improvement of Service Quality
MAML Model-Agnostic Meta-learning
Non-IID Non-Independent and Identically Distributed
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SIP Stage Incremental Proportion
SSQ Stability of Service Quality
TT Training Time
WV Weight Vector
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