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Abstract: This study examines Turkey’s energy planning in terms of strategic planning, energy
policy, electricity production planning, technology selection, and environmental policies. A mixed
integer optimization model is proposed for strategic electricity planning in Turkey. A set of energy
resources is considered simultaneously in this research, and in addition to cost minimization, different
strategic level policies, such as CO2 emission reduction policies, energy resource import/export
restriction policies, and renewable energy promotion policies, are also considered. To forecast
electricity demand over the planning horizon, a variety of forecasting techniques, including regression
methods, exponential smoothing, Winter’s method, and Autoregressive Integrated Moving Average
methods, are used, and the best method is chosen using various error measures. The optimization
model constructed for Turkey’s Strategic Electricity Planning is obtained for two different planning
intervals. The findings indicate that the use of renewable energy generation options, such as solar,
wind, and hydroelectric alternatives, will increase significantly, while the use of fossil fuels in energy
generation will decrease sharply. The findings of this study suggest a gradual increase in investments
in renewable energy-based electricity production strategies are required to eventually replace fossil
fuel alternatives. This change not only reduces investment, operation, and maintenance costs, but
also reduces emissions in the long term.

Keywords: time series forecasting; strategy planning; electricity production; integer programming

MSC: 37M10; 90C05

1. Introduction

Strategic energy planning is the process of coming up with long-term energy policies
that will affect the future of energy systems in a region or the whole country. Due to
globalization, fast population growth, and countries’ efforts to become more industrialized,
the demand for energy and natural resources has grown a lot. The demand for energy
services is expected to grow by 1.3% per year until the year 2040 [1]. The main sources of
energy are hydraulic, nuclear power, and thermal. Renewable energy sources can also be
thought of as alternatives to traditional energy sources, such as wind, sunlight, geothermal
heat, waterpower, and biomass [2].

A lot of greenhouse gases are made by the main energy sources, which causes global
warming. On the other hand, the main problems with using renewable energy resources
are the high initial investment costs, the unknown operational risks, and the need to choose
different locations for facilities [2]. Due to these problems, energy resources are not used
as well as they could be, thus, optimal planning is very important and can help ensure
sustainability and protect the natural balance.

In this study, a strategic level energy planning model is proposed for Turkey. This
model can be used to figure out different ways to produce electricity during the planning
horizon, considering strategic goals, resource limits, available demand, emission goals
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and limits, and other factors. To forecast electricity demand over the planning horizon, a
variety of forecasting techniques, including regression methods, exponential smoothing,
Winter’s method, and Autoregressive Integrated Moving Average (ARIMA) methods, are
used, and the best method is chosen using various error measures. Thus, this ensures that
the information needed in optimization modeling is accurately predicted.

In the proposed optimization model different types of alternative energy sources are
considered, such as fossil, renewable, and nuclear. The cost to build, run, maintain, and
fuel each type of power plant is different. The levelized cost concept is used so that all costs
can be measured in the same way. This concept is defined as “the average cost over the
lifetime of the electricity generation plan per MWh of electricity generated” [3]. Optimiza-
tion methods are needed to choose the best portfolio of ways to produce electricity that
minimizes costs while meeting operational constraints and long-term goals. Mathematical
modeling is used to find the best way to reduce the total levelized cost of all power plants
that are running during the planning period.

All possible energy resources, such as fossil fuels, renewable energy resources, nuclear
energy, and so on, are considered in the production of electricity. As a result, in terms of
“classifying energy problems based on energy type,” our problem is an electricity planning
problem. Furthermore, we consider energy resources, such as solid fuels, oil/gas, renewable
energy sources, and nuclear energy sources. The research is a general energy planning
problem in this regard. The research problem includes a set of alternative energy policies,
such as reducing CO2 emissions, using fewer fossil fuels in electricity generation, and
utilizing more renewable energy resources. In terms of application, it falls into the category
of “energy policy analysis.” In addition, the proposed model performs strategic level
energy planning over the planning horizon while meeting annual total electricity demand
throughout the year. In this regard, the problem in this study can also be considered as an
“Energy Power Planning” issue.

In the rest of this study, Section 2 gives a detailed review of the related literature.
Section 3 goes over the methods used to figure out how much electricity costs and how
much energy it uses, and the prices and methods used to predict how much electricity will
be used. In Section 4, the results are analyzed based on a real-world application. Finally, in
Section 5, the study is summed up and future research ideas are given.

2. Literature Review

Multiple objectives are handled concurrently in energy planning issues, making it
a strong application area for operations research. As a result, the number of studies in
energy planning is expanding in the literature [4]. In the literature, problems, such as
energy efficiency improvement, energy decision-making, energy investment and planning,
energy plant selection, selection of the most suitable energy alternative, energy resource
sharing, and energy source reliability, are studied in terms of energy optimization applica-
tions [4]. Several researchers focus on decision-making challenges in the literature. The
most commonly used multi-criteria approaches in the literature are the Analytic Hierar-
chy Process (AHP), Preference Ranking Organization Method for Enrichment Evaluation
(PROMETHEE), Elimination and Choice Translating Reality (ELECTRE), and Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) methods [5–13].

Since most energy resources are used in response to climatic circumstances, opti-
mization approaches are necessary for the design, planning, and control phases of energy
management. Challenges in the energy sector are complicated, unclear, and involve several
associated parties. As a result, the choices are constrained by many restrictions. As there
are so many choice factors and parameters, they are technically complicated to solve. It is
seen that a variety of studies are available in the literature [14–28].

Moreover, there are several evaluations on energy planning issues. These works
examine and categorize the literature on energy planning and suggest some future research
areas. For example, ref. [29] examined energy supply models to assess investment options
and expansions. It was assumed that demand quantities and input costs were known,
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and the model determined the investment choice with the lowest cost over time. Energy
type (fossil, nuclear, single hydro, or hydro), energy transport options, investment, and
replacement schedules, and optimal mode of system operation are all factors to consider.
Ref. [30] examined African countries’ electrical planning studies that used both qualitative
and quantitative methodologies. Ref. [31] studied Turkey’s generation plans up to 2023
and assessed the viability of the 2023 Vision. The capacity objectives were examined, and
projections were made using a semi-empirical electrical demand model. Other recent
studies on Turkish electricity markets are [32–34].

On the other hand, there are also many studies conducted on electricity demand
forecasting. Indeed, electricity demand forecasting is classified into three categories: short-
term, mid-term, and long-term forecasting. Short-term predictions range from one hour
to one week, mid-term forecasts range from one week to a year, and long-term forecasts
span more than a year [35,36]. Demand forecasting is a prominent study topic since it
occurs in practically every system that involves production and customers. In the literature,
several techniques and models have been established for electricity demand forecasting,
such as Holte Winters exponential smoothing approach, multivariate adaptive regression
splines, ARIMA, and support vector regression [37–43]. Another classification of demand
forecasting is based on the degree of mathematical analysis involved in the forecasting
process. These approaches are classified as quantitative and qualitative. Qualitative
approaches include the Delphi method and curve fitting. Regression, machine learning
by [44], smoothing approaches by [45], deep learning by [46,47], and the Box-Jenkins
methodology by [48], on the other hand, are examples of quantitative methods.

To summarize, electricity planning is a prominent research field in the literature, and
several works examine various elements of energy planning. Our study varies from the
previous research for many reasons. First, we address the energy planning problem for
Turkey over several time horizons. Some investigations have been undertaken in Turkey,
such as [49,50]. These studies also look at energy planning in Turkey, but only in the past,
therefore they do not address the present situation.

Furthermore, we evaluate the government’s most recent strategic aims under current
strategic plans in our research. As a result, we throw light on the near future. This
analysis takes into consideration not just Turkey’s present installed energy capacity, but
also projected energy investments and closures. In other words, in addition to present
capacity, prospective power plants must be opened or shuttered within the timeframes
specified. First, demand is forecasted for several planning horizons (e.g., 10 and 20 years)
utilizing a set of forecasting approaches in this work. The best forecasting technique is
chosen using several error measurements, and the prediction provided by the chosen
approach is incorporated into the mathematical model.

3. Methodology

Framework developed for the strategic planning of electricity production in Turkey is
summarized as shown in Figure 1. Forecasted data is the main requirement of strategic
plans. To generate this data there are different time series forecasting methods available in
the literature. All of these methods require past-time data to be used in the forecasting of
the future. Our framework begins with the gathering of the energy demands in the past and
these data were used to evaluate different time series forecasting methods under different
performance metrics, as explained in Section 4. Following the evaluation phase, the selected
forecasting method is used to forecast energy demand in the years 2021–2040 and this
data is used in the mixed integer programming model formulated to plan the number
and capacities of energy plants according to their types. Different types of time series
forecasting methodologies have been utilized and the one which has the best performance
metrics is used to get the future demand of electricity loads. The forecasted electricity loads
are used as the input of the model. The formulated mathematical model has been coded
in General Algebraic Modeling System (GAMS) software which includes built-in solvers
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to find the optimal solution for different types of mathematical models. Runs are made in
GAMS for two different time intervals and three additional scenarios.
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3.1. Time Series Forecasting

Determining the most appropriate energy resources to satisfy the yearly energy de-
mand requires consideration of alternative electricity generation options, such as fossil
fuels, renewable energy, and nuclear energy, and selecting a subset of these energy genera-
tion technologies while taking government strategic goals and environmental issues into
account. To assist this goal a methodology is developed to forecast yearly energy demands
and by using these demand forecasts a mathematical optimization model is formulated
to select the most appropriate energy resources to satisfy these demands. The developed
methodology is applied to the Turkey case to identify investment decisions for the next
twenty years. To accomplish this goal, demand data for Turkey from 1981 to 2020 is used
to forecast demand between 2021 and 2040. The steps described by [51] were followed to
determine the best forecasting model that fits the demand data.

Quantitative forecasting methods are used in this study to generate long-term fore-
casts of electricity demand. Regression Analysis (linear/exponential/beta growth and first,
second, and third order polynomial equations), Double Exponential Smoothing, Winters’
Method (linear, additive, and multiplicative models), and ARIMA for different autoregres-
sive, differencing, and moving average parameters are among the forecasting methods
considered. Regression analysis is a set of statistical methods for estimating the relation-
ships between one or more independent variables and a dependent variable. The least
squares method is used to approximate the model parameters, resulting in an improved
model. For parameter estimation, the method minimizes the sum of squares.

Yt = β0 + β1t + et, (1)

where t is the time, β0 is the constant, β1 is the average difference from one period to the
next, and et is the error term. The regression model can be linear or nonlinear and different
mathematical models can be used for modeling the input data, such as linear growth,
exponential growth, beta growth, the polynomial of the first order, second order, third
order, etc. In this study, different regression types are used for finding the best regression
model that fits the demand data and third order polynomial model produced the best fits.

Double exponential smoothing uses a level and a trend component at each period.
This method has two smoothing weights for updating the components in each period.
Winters’ Method smooths the data and provides forecasts for the short to medium term
using Holt–Winters’ exponential smoothing. When both seasonality and trend are present,
this procedure can be beneficial. These two components can have a linear, multiplicative,
or additive relationship. Winters’ Method generates dynamic estimates for three variables:
level, trend, and seasonal. When there is no seasonality in the data, the linear model is used,
and this method is known as the Holt–Winters nonseasonal algorithm. When the seasonal
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pattern in the data does not change with the data size, an additive model is used. When
seasonal patterns in data depend on data size, a multiplicative model is used. ARIMA
model is a modified traditional technique that is used for modeling time series [40,41,51].
In this research, the forecasting accuracy measures are calculated for the comparison of
different forecasting methods. Scale dependent measures are used commonly whose scale
depends on the scale of the data. Root mean square errors (RMSE) and mean absolute errors
(MAE) are the most commonly used scale dependent measures while percentage errors
are scale independent, they are frequently used to compare forecasting performance across
different data sets. Mean absolute percentage error (MAPE) and coefficient of determination
score (R2) are the most commonly used percentage error measures [51].

3.2. Optimization Model

In this section, the assumptions, sets and indices, parameters, decision variables, and
mathematical model are presented.

3.2.1. Assumptions

• Even if construction is completed within the previous year, the new power plants are
expected to be operational at the beginning of the following year;

• The availability factor determines the maximum working hours of power plants
while taking maintenance and other resource requirements into account. Unplanned
interruptions and plant failures are considered at the operational level;

• Due to the closing dates of the power plants are unknown due to the government’s
information privacy policy, it is assumed that the existing facilities will be operational
without interruption until the end of the planning period;

• Future costs are calculated using average escalation rates that are determined for each
cost component, and future cash flows are calculated using an average interest rate;

• There is no significant variation or dramatic change in economic indicators and de-
mand patterns, and they continue to follow the long-term trend;

• The potential energy resources in Turkey will not change significantly over the plan-
ning horizon;

• Power plant basic data, efficiency, initial investment costs, and CO2 emissions are
assumed to be constant over time.

3.2.2. Set, Indices, Parameters, and Decision Variables

The set of indices used in the mathematical model is as follows:

I:
Set of energy resources used for electricity production, indexed by i;
I = {lignite, hard coal, imported coal, natural gas, uranium};

J:
Set of electrical generation power plant types, indexed by j;
J = {Fluized Lignite, Elbistan Lignite, Hard Coal, Imported Coal, Natural Gas, Nuclear, Hydroelectric,
Wind, solar, Geothermal};

K:
Set of power plant categories indexed by k;
K = {Renewables (R), Fossil Fuels (F), Nuclear (N)};

Jk:

Set of power plants that are in resource category k;
JR = {Hydroelectric, Wind, Solar, Geothermal};
JF = {Fluized Lignite, Elbistan Lignite, Hard Coal, Imported Coal, Natural Gas};
JN = {Nuclear};

T:
Set of years considered in the planning period, indexed by t;
t = {2021,2023, . . . ,T}.
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The parameters of the model are:

Cj,tinv: Capital investment cost of type j power plant at year t ($);
Cj,tOM: Operation and maintenance cost of type j plant at year t;
Cj,tfuel: Fuel cost of type j power plan at year t ($);
Ej,t: Total energy generation of type j power plant at year t (MWh);
Tj: The operational lifetime of type j power plant (year);
Tjconst: Construction time of type j power plant (year);
ICapj: Installed capacity of type j power plant (MW);
β j: Availability percentage of type j power plant (%);
βhour

j : Availability factor of type j power plant (h/year);
LCj: Levelized cost of type j power plant ($/MWh);
Ctimp: Unit import cost in year t ($/MWh);
Ctexp: Export revenue in year t ($/MWh);
explimit: Annual export limit (MWh);
implimit: Annual import limit (MWh);
AVLj: Number of type j power plants that are operational before the planning horizon;

PLNjt:
Number of type j power plants that are already planned to be opened before the planning
horizon at year t

Dt: Electric Demand in Year t (MWh);

NJRopr:
Maximum number of renewable power plants that can be in operation in a year (calculated
based on resource potential);

Hnum
t :

Maximum number of hydroelectric power plants that can be opened in year t (calculated
based on construction capacity in Turkey);

ε j : The CO2 emission factor of type j power plant (ton/MWh);
εlimit

t : Emission limit of CO2 in year t (ton);
Yt: Percentage of renewable power plant capacity in year t (%);
M: A sufficiently large number;
r: Interest rate (%);
ef: Escalation rate for fuel type f (%);
eOM : Escalation rate for operation and maintenance costs (%).

The escalation rate is the price increase for goods and services caused by a variety
of factors, such as inflation, supply, and demand, engineering changes, or other similar
causes. Using historical data, average escalation rates for fuel types, and operation and
maintenance costs are estimated. Lastly, the decision variables are as follows:

xjt: Number of type j power plants opened in year t;
wjt: Number of type j power plants closed in year t;
Njt: Total number of type j power plants in year t;
vj: Binary variable, 1 if the capacity of type j power plants is increased, 0 otherwise;
yjt: The energy supply of type j power plant in year t (MWh);
expt: Electric energy exported in year t (MWh);
impt: Electric energy imported in year t (MWh);
z: Total levelized cost of power plants.

3.2.3. Mathematical Model

A mathematical optimization model is required to decide on the optimal combination
of different power plants and capacities required from each type. For this purpose, a
linear mixed integer programming model is formulated. As with all linear programming
models, real-life objectives and constraints are represented as mathematical equations in the
proposed model. Each equation formulated for this purpose is explained in detail below.

The objective function of the model seeks to minimize the total cost, which has three
sub goals. The first one is to minimize the levelized cost of power plants operating within
the planning horizon. The levelized cost is the average cost per MWh of electricity generated
over the life of a power plant. The lifetime cost of a power plant is expressed in terms
of generation cost in $/MWh. Investment costs, operation, and maintenance costs, and
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fuel costs are all included in the levelized cost. The second part of the objective function
minimizes the total energy import costs, and finally, the last part of the objective function
maximizes the total energy export revenues.

Minimize z = ∑
tεT

∑
jεJ

βhour
j ICapjNjtLCj + ∑

tεT
Cimp

t impt −∑
tεT

Cexp
t expt (2)

LCj =
Total Capital and Operation Costs o f Power Plant j During Li f etime

Net Electricity Generation o f Power Plant j During Li f etime

LCj =
Cinv

j,0 + ∑
Tj
t=1

[(
Cinv

jt + COM
jt + C f uel

jt

)
/(1 + r)t

]
∑

Tj
t=1
[
Ejt
]

Ejt = βhour
j (ICap j

)
COM

jt = COM
j0 (1 + eOM)t

C f uel
jt = C f uel

j0

(
1 + e f

)t

Constraints (3) and (4) are the flow balance constraints, and they ensure that the sum
of already existing type j power plants in year t before the planning period, type j power
plants that have already planned to be opened or closed in year t, and new type j power
plants opened or closed in year t equals to the total number of type j power plants in year
t. Constraint (4) ensures that the number of type j power plants from the previous period
(t − 1) is updated accordingly in the following years.

AVLj + PLN jt + xjt − wjt = Njt for ∀j ∈ J and t = 2021 (3)

Nj,t−1 + PLN jt + xjt − wjt = Njt for ∀j ∈ J and t > 2021 (4)

Constraints (5) and (6) control the opening and closing decisions for power plants. A
power plant type can be either opened or closed within the planning horizon in a given
year, but not both.

xjt ≤ M vj for ∀j ∈ J and t ∈ T (5)

wjt ≤ M
(
1− vj

)
for ∀j ∈ J and t ∈ T (6)

Constraint (7) prevents a power plant from being operational before the construction
time at the start of the planning horizon. For example, because nuclear power plants
take seven years to build, it is not possible to open one during the first seven years of the
planning horizon.

xjt = 0 for ∀j ∈ J and t ≤ Tconst
j (7)

Constraint (8) confirms that the total electricity generation capacity of type j power
plants cannot exceed the total installed electricity generation capacity of type j power plants
in any year during the planning horizon. The availability factor of a type j power plant, the
installed capacity of a unit type j power plant, and the number of type j power plants in
operation in year t are multiplied to calculate the electricity generation capacity of a type j
power plant in year t.

yjt ≤ βhour
j ICapjNjt for ∀j ∈ J and t ∈ T (8)



Mathematics 2023, 11, 1865 8 of 20

The total electrical energy generated by power plants plus total imports minus total
exports should be greater than or equal to the forecasted demand at year t. This constraint
is formulized as follows:

∑
j∈J

[
yjt + impt − expt

]
≥ Dt for ∀t ∈ T (9)

Constraints (10) and (11) confirm that total exports and imports in year t cannot exceed
total export and import limits. The capacity of the transmission lines, which connect
the importing and exporting countries, determines export and import limits. There are
independent transmission lines between the countries in each direction (export and import),
thus we have different limits for exports and imports.

expt ≤ explimit for ∀t ∈ T (10)

impt ≤ implimit for ∀t ∈ T (11)

Renewable power plants should at least generate a certain percentage of the total
installed capacity. This percentage is determined by the government and stated in the
government’s strategic goals.

∑
j∈Jr

ICapjNjt ≥ γt∑
j∈J

ICapjNjt for ∀t ∈ T (12)

Constraint (13) confirms that power plants’ total CO2 emissions should be less than or
equal to the CO2 emission limit. CO2 emissions are proportional to the amount of electricity
generated by power plants.

∑
j∈J

ε jyjt ≤ εlimit
t for ∀t ∈ T (13)

Constraint (14) ensures that nuclear power plants are not closed due to the govern-
ment’s strategic goals.

vNuclearPP = 1 (14)

Due to construction capacity, Constraint (15) limits the number of hydroelectric power
plants built each year.

xHydroelectricPP,t ≤ Hnum
t for ∀t ∈ T (15)

Constraint (16) ensures that the total number of type j renewable energy plants does not
exceed renewable capacity. Potentials for each type of renewable energy plant are defined
for each country. For example, in the case of solar energy, the potential is determined by
the angle of solar radiation, total sunbathing time, the total area suitable for solar farms,
and so on. Wind power plant potentials are determined by wind speed, duration, and the
total area reserved for wind farms. The flow rates of the rivers, available areas for power
plants, and construction time and capacity limitations are all considered when determining
hydroelectric potential. The potential of geothermal energy is determined by the amount
of thermal water and its temperature.

Njt ≤ Nopr
j for ∀j ∈ JR and t ∈ T (16)

Finally, the sign restrictions of the model are as follows:

xjt, wjt, and Njt ≥ 0 and integer∀j ∈ J and t ∈ T
vj ∈ {0, 1}∀j ∈ J

yjt, expt, and impt ≥ 0∀j ∈ J and t ∈ T
(17)
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4. Time Series Analysis and Application of the Model
4.1. Time Series Analysis

For Turkey, demand data from 1981 to 2020 are used to forecast demand for the years
2021–2030 and 2021–2040 [52], respectively. As a result, 40 observations are gathered. The
obtained data shows an increase over the years. First, the data is represented graphically
to determine whether or not it is stationary. Several tests and analyses, including the
Augmented Dickey–Fuller Test (ADF) based on the unit root process, were used to analyze
the demand data. At a 5% significance level, the unit root test implies nonstationary. As [51]
suggests we differentiate the time series and this time we reject the null hypothesis of ADF.
Thus, the time series investigated is integrated as order 1 (I(1)). The first difference in the
time series is used for the ARIMA model in this study.

The demand data from 1980 to 2020 is used to forecast demand between 2021–2030 and
2021–2040. First, various regression methods are used, including beta growth, exponential
growth, and first, second, and third order polynomial equations. The third-order regression
model produced the best fit of these methods. Different ARIMA models, on the other
hand, are considered, and the best model is found to be ARIMA (2,1,2), which produces
the best fit. Furthermore, double exponential smoothing, and Holt-additive, Winter’s
multiplicative, and linear models, are considered. Table 1 compares selected forecasting
methods in terms of different performance measures. When the performance results of
all statistical models in this table are examined, it is seen that especially R2 and MAPE
values show very good performance results. Since these selected models produce extremely
good and sufficient results for the given data, the statistical modeling approach is preferred
instead of learning-based models.

Table 1. Comparison of Forecasting Methods.

Performance
Metrics

Nonlinear
Regression (Third
Order Polynomial)

Exponential
(Double)

Holt–Winters
(Additive)

Holt–Winters
(Multiplicative)

Holt–Winters
(Linear) ARIMA (2,1,2)

RMSE 3984 4986 5600 5329 4771 3236
MAPE 2.160% 3.162% 3.541% 3.247% 2.844% 1.702%
MAE 2776 3689 4181 3842 3519 2322

R2 99.82% 99.69% 99.62% 99.65% 99.72% 99.87%

Based on these analyses, the ARIMA (2,1,2) model outperformed the other forecasting
methods across all performance metrics. As a result, the ARIMA (2,1,2) model can be used
to forecast electricity demand in Turkey. Hence, ARIMA forecast results are used in our
mathematical model.

4.2. Application of the Mathematical Model

In this section, we will look at Turkey’s strategic energy production planning problem
and apply the mathematical model defined in Section 3. The parameters’ values are
gathered from a variety of sources, including Turkey Electricity Transmission Company
(TEA), the International Energy Agency (IEA), the Turkish Statistical Institute, and others.

The proposed model is studied in terms of constraints and goal function during model
verification. The model is shown to perform correctly, and all imposed conditions are
met as expected. The validation stage confirms that the mathematical model’s outputs
are appropriate when compared to real-world strategies and goals. The suggested model
estimates power plant types and total installed capacities based on operational limitations
and strategic goals. The model’s outputs meet the strategic goals set by institutions, such
as Energy Market Regulatory Authority’s (EMRA), strategic plans. As a result, we find that
the suggested model accurately captures the real system. The model is solved with GAMS
optimization software for two distinct periods, namely 2021–2030 and 2021–2040.

The number of power plants in operation between 2020 and 2030 is shown in Table 2.
In general, the number of fossil power plants is decreasing while the number of renewable
power plants is increasing. Specifically, the coal power plants (Elbistan lignite, fluidized
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lignite, hard coal, and imported coal) are scheduled to close within the next ten years.
Natural gas power plants, another type of fossil fuel power plant, are reduced in numbers
(from 37 to 11), but not completely closed. On the other hand, the number of renewable
options, such as wind, solar, and hydroelectric power plants is increasing. Geothermal
power plants, the other renewable option, are scheduled to close within the planning
horizon. Finally, in 2024, five preplanned nuclear power plant modules are put into service
and used within the planning interval. In general, due to strategic goals, such as renewable
share constraints and emission limits, the renewable share is increasing.

Table 2. Number of Power Plants (Njt) for the 2020–2030 Period.

Power Plant (j) 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Elbistan Lignite 8 3 3 0 0 0 0 0 0 0 0
Fluized Lignite 48 0 0 0 0 0 1 0 0 0 0
Geothermal 54 54 54 33 4 3 2 1 1 0 0
Hard Coal 3 1 1 0 0 0 0 0 0 0 0
Hydroelectric 214 214 214 214 214 225 277 285 288 291 295
Imported Coal 18 0 0 0 0 0 0 0 0 0 0
Natural Gas 37 37 37 37 28 25 19 17 15 13 11
Nuclear 0 0 0 0 5 5 5 5 5 5 5
Solar 133 133 133 233 352 452 552 652 752 852 950
Wind 221 221 321 464 564 664 764 864 964 1064 1164

The total installed capacity of power plants follows a similar pattern to the number
of power plants. Table 3 shows that the shares of wind, solar, hydroelectric, and nuclear
power plants are increasing while the share of other power plants is decreasing. Along
with strategic goals, the total share of fossil fueled power plants decreases significantly.

Table 3. Installed Capacities of Power Plants (MW) for the 2021–2030 Period.

Power Plant (j) 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Elbistan Lignite 1080 1080 0 0 0 0 0 0 0 0
Fluidized Lignite 0 0 0 0 0 150 0 0 0 0
Geothermal 1620 1620 990 120 90 60 30 30 0 0
Hard Coal 300 300 0 0 0 0 0 0 0 0
Hydroelectric 28,676 28,676 28,676 28,676 30,150 37,118 38,190 38,592 38,994 39,530
Imported Coal 0 0 0 0 0 0 0 0 0 0
Natural Gas 25,900 25,900 25,900 19,600 17,500 13,300 11,900 10,500 9100 7700
Nuclear 0 0 0 5000 5000 5000 5000 5000 5000 5000
Solar 6650 6650 11,650 17,600 22,600 27,600 32,600 37,600 42,600 47,500
Wind 8840 12,840 18,560 22,560 26,560 30,560 34,560 38,560 42,560 46,560

During the planning horizon, the total supply of natural gas decreases significantly.
Wind and solar, on the other hand, are becoming increasingly important. In addition, the
hydroelectric contribution increases marginally. Finally, nuclear will make a consistent
contribution beginning in 2024. Wind, hydroelectric, solar, natural gas, and nuclear power
plant options are listed in decreasing order of contribution in 2030.

Finally, Figure 2 depicts the total emissions from all power plants. As can be seen,
emissions decrease over the planning horizon after a slight increase. This is because the
contribution of renewable resources is increasing while the contribution of fossil fuels is
decreasing. As a result, emissions decrease over time in tandem with the strategic goals.
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Figure 2. CO2 Emissions between 2021–2030 (tons).

Table 4 displays the number of power plants that will be operational between 2020
and 2040. In general, the number of fossil power plants is decreasing, while the number
of renewable power plants is increasing. Specifically, coal power plants (Elbistan lignite,
fluidized lignite, hard coal, and imported coal) and natural gas power plants are scheduled
to close within the next 20 years. On the other hand, the number of renewable options, such
as wind, solar, and hydroelectric power plants, is increasing. Geothermal power plants, the
other renewable option, are scheduled to close within the planning horizon. Additionally,
between 2024 and 2032, five preplanned nuclear power plant modules are put into service
and used within the planning interval. In general, due to strategic goals, such as renewable
share constraints and emission limits, the renewable share is increasing.

Table 4. Number of Power Plants (Njt) for the 2020–2040 Period.

Power Plant (j) 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Elbistan Lignite 8 3 3 0 0 0 0 0 0 0 0
Fluidized Lignite 48 0 0 0 0 0 1 0 0 0 0
Geothermal 54 54 54 33 4 3 3 0 0 0 0
Hard Coal 3 1 1 0 0 0 0 0 0 0 0
Hydroelectric 214 214 214 214 214 225 277 288 299 311 335
Imported Coal 18 0 0 0 0 0 0 0 0 0 0
Natural Gas 37 37 37 37 28 25 19 17 15 12 8
Nuclear 0 0 0 0 5 5 5 5 5 5 5
Solar 133 133 133 233 352 452 552 652 752 852 1052
Wind 221 221 321 464 563 663 762 856 940 1040 1188

Power Plant (j) 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

Elbistan Lignite 0 0 0 0 0 0 0 0 0 0
Fluized Lignite 0 0 0 0 0 0 0 0 0 0
Geothermal 0 0 0 0 0 0 0 0 0 0
Hard Coal 0 0 0 0 0 0 0 0 0 0
Hydroelectric 347 357 367 378 390 402 415 428 442 456
Imported Coal 0 0 0 0 0 0 0 0 0 0
Natural Gas 0 0 0 0 0 0 0 0 0 0
Nuclear 10 10 10 10 10 10 10 10 10 10
Solar 1152 1252 1352 1452 1552 1652 1752 1852 1951 2050
Wind 1198 1198 1200 1200 1200 1200 1200 1200 1200 1200
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The total installed capacity of power plants follows a similar pattern to the number
of power plants. Table 5 shows that the shares of wind, solar, hydroelectric, and nuclear
power plants are increasing, while the share of other power plants is dropping. Along with
strategic goals, the total share of fossil fuel power plants drop dramatically.

Table 5. Installed Capacities of Power Plants (MW) for the 2021–2040 Period.

Power Plant (j) 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Elbistan Lignite 1080 1080 0 0 0 0 0 0 0 0
Fluidized Lignite 0 0 0 0 0 150 0 0 0 0
Geothermal 1620 1620 990 120 90 90 0 0 0 0
Hard Coal 300 300 0 0 0 0 0 0 0 0
Hydroelectric 28,676 28,676 28,676 28,676 30,150 37,118 38,592 40,066 41,674 43,282
Imported Coal 0 0 0 0 0 0 0 0 0 0
Natural Gas 25,900 25,900 25,900 19,600 17,500 13,300 11,900 10,500 8400 7000
Nuclear 0 0 0 5000 5000 5000 5000 5000 5000 5000
Solar 6650 6650 11,650 17,600 22,600 27,600 32,600 37,600 42,600 47,600
Wind 8840 12,840 18,560 22,520 26,520 30,480 34,240 37,600 41,600 44,440

Power Plant (j) 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

Elbistan Lignite 0 0 0 0 0 0 0 0 0 0
Fluidized Lignite 0 0 0 0 0 0 0 0 0 0
Geothermal 0 0 0 0 0 0 0 0 0 0
Hard Coal 0 0 0 0 0 0 0 0 0 0
Hydroelectric 44,890 46,498 47,838 49,178 50,652 52,260 53,868 55,610 57,352 59,228
Imported Coal 0 0 0 0 0 0 0 0 0 0
Natural Gas 5600 0 0 0 0 0 0 0 0 0
Nuclear 5000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
Solar 52,600 57,600 62,600 67,600 72,600 77,600 82,600 87,600 92,600 97,550
Wind 47,520 47,920 47,920 48,000 48,000 48,000 48,000 48,000 48,000 48,000

During the planning horizon, the overall supply of natural gas and other coal power
plants is reduced to zero. Wind, solar, and hydroelectric solutions, on the other hand,
contribute much more. Finally, as additional power plants are built, nuclear will make a
consistent contribution from 2024 to 2032 and from 2032 to 2040. Solar, hydroelectric, wind,
and nuclear power plant choices are listed in decreasing order of contribution in 2040.

Figure 3 shows the total emissions from all power stations. As can be observed,
emissions drop across the planning horizon following a minor increase caused by increased
demand. This is because the contribution of renewable resources is increasing while the
contribution of fossil fuels is declining. As a result, emissions decrease over time in tandem
with the strategic goals.

As the last step in the mathematical model sensitivity analysis and validations are
conducted and we found no evidence of disruptions in the model. Additionally, scenario
analyses are completed, and they are summarized in the following paragraphs.

The first scenario is the case with no preplanned plants. In contrast to the base scenario,
it is envisaged that no preplanned power plants will be operational within the planning
horizon. The goal here is to see the model’s ideal selections considering the available power
plants at the beginning of the planning horizon. For example, in the base scenario, it is
envisaged that several nuclear power reactors will be operational in different years. In
this scenario, the model determines the number of new power plants to be built, and it
will be possible to see whether or not these preplanned power plants are chosen. Results
regarding the installed capacities of power plants for the first scenario are visualized as
shown in Figures 4 and 5 for 2021–2030 and 2021–2040 planning horizons, respectively.
According to this scenario, wind and solar power plant capabilities do not differ much from
the baseline scenario for the same period. Natural gas power plants are utilized instead
of nuclear energy, which was used in the base scenario, hence the percentage of natural
gas in 2030 is 6.7% greater than in the base scenario. In contrast, the share of hydroelectric
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power plants declined by 3.7% by 2030 when compared to base scenario. Wind and solar
power plant capabilities do not differ much from the baseline scenario for the same period.
Natural gas had a 0% share in the base scenario, whereas nuclear power plants had a 4.6%
share. However, in this situation, nuclear power plants are not used, and natural gas plants
are not completely shut down. Natural gas capacity will account for 6.2% of total capacity
by 2040. Finally, the share of hydroelectric power plants falls by roughly 2%.
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Figure 4. Installed capacities for the first scenario in the 2021–2030 horizon.
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Figure 5. Installed capacities for the first scenario in the 2021–2040 horizon.

The starting capacity of each power plant type was supplied in the base scenario, and
the new power plant requirements were estimated based on this initial capacity. In the
second scenario, we want to explore what happens when the model determines all power
plant types and their capacities. Furthermore, as in the first scenario, it is anticipated that
no power plant openings are planned. To summarize, the model determines all power
plant types and capacities in this scenario. Since there is no available capacity at time
zero, the requisite number of power plants should be opened to meet demand throughout
the first period. As a result, we abandoned the power plant building schedule limits.
Otherwise, because no power plants can be operational in the early stages, demand cannot
be met, and the model becomes unsustainable. Furthermore, we remove the renewable
capacity restriction constraint to check if the model selects only renewable resources or not.
Installed capacities for 2021–2030 and 2021–2040 planning horizons under the assumptions
of the second scenario are visualized in Figures 6 and 7, respectively. The main power
plant types chosen in the second scenario for the period 2021–2030 are solar, wind, and
natural gas power plants. In comparison to the base scenario, solar share climbs to 39.9%
(7.4% higher), wind share decreases to 22.5% (9.3% lower), and natural gas share remains
same at around 32%. Hydroelectric and geothermal power plants are also used, but their
contributions are less than 4%. When compared to the baseline scenario, the geothermal
potential is fully utilized, while hydroelectric capacity is significantly reduced. Wind and
solar power plant shares are close to the base scenario for the period 2021–2040. Natural
gas capacity remains unchanged, but hydropower capacity drops by 17% towards the end
of the planning horizon compared to the base scenario, and geothermal potential is utilized
to maximum capacity.
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Figure 6. Installed capacities for the second scenario in the 2021–2030 horizon.
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In the third scenario, we considered the case that all power plants are renewable.
The goal of this scenario is to examine what occurs when all capacity is constrained to
renewable sources. We will also be able to determine whether the current renewable
potential is sufficient to meet the available demand. In this scenario, the available capacity
of renewables is stated as the beginning capacity, and additional power plants other than
renewables are not included. Furthermore, prospective nonrenewable power projects
are not considered. Construction time limits are dropped, as in the second scenario. In
addition to satisfy demands, import limits are removed. Findings under the assumptions
of the third scenario are shown in Figures 8 and 9 for 2021–2030 and 2021–2040 planning
horizons, respectively. All electricity demand is met by renewable power plants and
imports. As existing renewable potential is insufficient to fulfill demand, the import option
is adopted. The majority of the demand is met by solar, wind, and hydroelectric power
sources. Furthermore, geothermal power plants are utilized to their utmost capability.
Solar, hydroelectric, wind, and geothermal power plants, and imports, provide the demand.
The average import contribution is around 19%. Solar power plants supply around 49% of
energy, 28% of hydropower, 22% of wind, and 1% of geothermal energy.
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Figure 8. Installed capacities for the third scenario in the 2021–2030 horizon.
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Figure 9. Installed capacities for the third scenario in the 2021–2040 horizon.

5. Conclusions

This study examines Turkey’s strategic level electrical energy planning challenge
from various perspectives, including the strategic plan, energy policy, capacity planning,
and environmental policies of the government. To tackle the given problem, a mixed
integer mathematical programming model that takes into account alternative power plant
categories, such as fossil fuels, renewable energy, nuclear energy, and so on, is proposed. As
several energy resources are included, the defined problem is characterized as a “general
electricity planning problem”. In addition to lowering electricity generation costs, a variety
of alternative policies, such as lowering CO2 emissions, limiting energy resource share
regulations (such as limiting the use of fossil fuels), and promoting renewable energy, are
taken into account in this study. This study is also falling under the “energy policy analysis”
category in this regard. Two different planning horizons are considered, namely 2021–2030
and 2021–2040, and it is observed that the share of renewable resources increases while the
share of fossil fuels declines with time.

As a result of this research, various key insights and outcomes involving power
investment and production planning have been achieved. Due to the highest levelized
costs of all choices, the first nuclear energy option is not chosen if the model is not required
to do so. If nuclear energy is required by government regulations, all fossil fueled power
facilities must be shut down during the planning horizon. Otherwise, coal power facilities
are shut down, while natural gas power plants are up and running. Hydroelectric power
plants are the least appealing renewable energy source because they have a higher levelized
cost than wind and solar power plants and a lower availability factor than geothermal
power plants.

The findings of this study indicate the trend toward renewable energy. Although
nuclear energy is perceived as an effective energy resource, it is shown that renewable
energy resources are more cost effective under the determination of CO2 emissions and
generation capabilities. These results can be used as a guide to update strategic energy
generation plans to improve the long-term effectiveness of future investments in power
plants. It is advocated in this research to steadily boost renewable energy expenditures
(particularly solar, wind, and geothermal) and eventually replace fossil fuel alternatives.
The proposed energy plan not only saves investment, operation, and maintenance expenses,
but also cuts emissions. Nuclear energy can also be used as an alternate and reliable source



Mathematics 2023, 11, 1865 18 of 20

of energy, but the possible risks and greater costs must be addressed. Additionally, more
renewable energy resources, such as hydrogen power can be included in the analysis, and
minimization of total emission can be introduced as an additional goal in the objective
function in future research. Additionally, the suggested model is deterministic, and it is
assumed that the parameter values are known precisely. However, in reality, this is not
the case, and the values of various factors may fluctuate based on economic, political,
environmental, and strategic aims. The renewable shares, import and export limits, de-
mand, and levelized cost parameters can also be modeled as stochastic variables in future
studies. Moreover, as in [53] microstructure of Turkey’s renewable electricity sources can
be studied in the future to create cost efficiency and reduce carbon emissions. This type
of study may provide insights into developing countries. In conclusion, ARIMA is used
as a statistical time series model. Although statistical estimation methods are used in
optimization algorithms in some studies, the integration of forecasting results from the
ARIMA model to the mixed integer linear programming is a new and recently evolving
area of interest [54,55]. In addition to that, the contribution to energy planning is especially
appropriate for developing countries, such as Turkey, in which switching to renewable
energy resources is in the early phases. The findings of this study may serve as a guideline
to prioritize energy resource preferences in developing countries during the planning phase
since it is shown that optimization is required before the preparation of any regulations
since these regulations have a considerable effect on the distribution of plants used.

The results show that the use of renewable energy generation options is the most
preferable source of energy as expected. However, it is found that some regulations and not
optimized plans may prevent the effective use of these resources. As seen in the results of
the scenario analyses geothermal and hydroelectric alternatives are found as better options
when compared to nuclear power plants when current plans are neglected which causes
the shutdown of geothermal plants and inefficient increase in hydropower facilities. In
this context, it should be added that if there are not any existing hydropower facilities it is
found that building many new ones is not a feasible option. Furthermore, it is observed that
natural gas power plants are preferred to nuclear power plants and even as an alternative
to hydropower facilities. Even though natural gas is a fossil fuel-based resource, this
alternative is used to support renewable energy plants in optimal scenarios since CO2
emission rates can still be fulfilled. Finally, solar power plants are found to be the best
energy generation option, especially in long term plans as they become more feasible than
wind power plants, whereas geothermal resources are found to be used at full capacity
even though they are much scarcer than solar and wind options.
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