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Abstract: A mixed signal with several unknown modes is common in the industry and is hard to
decompose. Variational Mode Decomposition (VMD) was proposed to decompose a signal into
several amplitude-modulated modes in 2014, which overcame the limitations of Empirical Mode
Decomposition (EMD), such as sensitivity to noise and sampling. We propose an improved VMD,
which is simplified as iVMD. In the new algorithm, we further study and improve the mathematical
model of VMD to adapt to the decomposition of the broad-band modes. In the new model, the ideal
flattest response is applied, which is derived from the mathematical integral form and obtained from
different-order derivatives of the improved modes’ definitions. The harmonics can be treated via
synthesis in our new model. The iVMD algorithm can decompose the complex harmonic signal
and the broad-band modes. The new model is optimized with the alternate direction method of
multipliers, and the modes with adaptive broad-band and their respective center frequencies can
be decomposed. the experimental results show that iVMD is an effective algorithm based on the
artificial and real data collected in our experiments.

Keywords: mode decomposition; spectral decomposition; variational problem; augmented Lagrangian;
Fourier transform
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1. Introduction

With the development of science and technology, nonstationary signal processing and
its applications in engineering are gaining more and more attention. During recent decades,
scholars have developed many approaches to process single-channel nonstationary signals,
or even multi-channel ones, which are not discussed in this paper. Short-Time Fourier Trans-
form (STFT) [1] and Wavelet Transform (WT) [2] are two of the most popular algorithms
used to perform time–frequency (TF) transform on nonstationary signals. These transform
methods exhibit limited TF resolutions [3], and cannot separate a multi-component signal
into mono-components. These sometimes suffer from the consequences of the Heisenberg
uncertainty principle. However, data-driven signal decomposition methods can decompose
a multi-component signal into several modes—for example, Empirical Mode Decomposi-
tion (EMD) [4], and Variational Mode Decomposition (VMD) [5]. We develop a new signal
decomposition method here.

Variational Mode Decomposition (VMD) [5] and Variational Nonlinear Chirp Mode
Decomposition (VNCMD) [6] are proposed to adaptively extract a set of modes, which
are called Intrinsic Mode Functions (IMFs). VMD is a non-recursive algorithm method to
decompose a signal into several modes with quasi-orthogonality, intrinsics, and adaptiv-
ity [7]. VMD can concurrently look for the IMFs and their respective center frequencies.
Each IMF is compact at a particular band. Unlike the EMD-based methods, VMD is built
on well-founded mathematical theories.

Several other VMD-based algorithms have emerged. Due to the difficulty of selecting
the mode number, successive VMDs (SVMD) [8] need not predefine the mode number
K. The adaptive chirp mode pursuit (ACMP) [9] is proposed to recursively extract the
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nonlinear chirp modes. However, VNCMD and ACMP require high-limited instanta-
neous frequency (IF) initialization [6,9], and VMD and SVMD suffer from the narrowband
assumption of IMFs.

The VMD was proposed as a one-dimensional algorithm [5], and a two-dimensional al-
gorithm was later published [10,11]. Then, multivariate VMD (MVMD) [12] was developed
to achieve a better performance than the direct use of univariate VMD in a channel-by-
channel method. However, MVMD still suffered from the limited narrowband assumption,
and the VMD-based developed algorithms could not decompose signals composed of
wideband multivariate IMFs (MIMFs). A multivariate nonlinear chirp mode decomposition
(MNCMD) and its improved version, multivariate intrinsic chirp mode decomposition
(MICMD) [13], were developed. These two algorithms could process multichannel signals
involving wideband MIMFs.

The VMD has attracted a broad variety of time–frequency analysis applications, such
as signal decomposition in multivariate time–frequency analysis [3], speech signal process-
ing [14,15], emotional speech classification [7,16], system identification [17], medicine [18],
fault diagnosis [19], seismic signal analysis [20], and so on.

VMD suffers from the narrow band-limited mode, which has a center frequency, and
VMD cannot decompose a complex signal with harmonics, in theory [21]. In this paper, we
further develop a more adaptive variation method by augmenting the concept of flattest
response in the mathematical model with extra adaptive bandwidth, and we also consider
the high-order harmonics of the decomposed mode.

The rest of this paper is organized as follows: Section 2 reviews VMD primarily on the
definition of the mode and the model of VMD; Section 3 introduces our idea for improving
VMD mainly on the concept of the flattest response and bandwidth; Section 4 presents our
improved model and its solution; Section 5 contains our rich experiments and results; and
Section 6 concludes the discussion on iVMD.

2. Review of VMD
2.1. Mode Definition

Until now, there have been two definitions of mode.
Definition 1 of the Intrinsic mode function [2] is as follows: Intrinsic mode function

(IMF), as the original IMF definition, is an amplitude-modulated and frequency-modulated
(AMFM) signal, which is defined as

uk(t) = ak(t) cos(φk(t)). (1)

Here, the phase φk(t) is a nondecreasing function, while φ′k(t) ≥ 0, and φ′k(t) are
the instantaneous frequencies. The envelope is a non-negative, ak(t) ≥ 0. The maximum
frequency contained in ak(t) and φ′k(t) is much smaller than that in φk(t) [2].

The original IMF is a signal whose number of local extreme and zero-crossings differ
at most by one [4]. IMFs are decomposed by VMD, and VMD IMFs [5] by VMD. The
definition of VMD IMF is slightly more strictive than the original IMF definition. VMD
IMF has a central frequency, ωk, with limited bandwidth, Bk, which is the total practical
IMF bandwidth.

Definition 2 on the total practical IMF bandwidth (VMD bandwidth definition) [5] is
as follows: total bandwidth of an IMF is defined as

Bk = 2(∆ f + fFM + fAM). (2)

Here, ∆ f is one half of the variation range of the instantaneous frequency, while fFM is
the excursion of the mode according to Carson’s rule, and fAM is the highest frequency of
the envelope ak(t).

We offer a newer definition of each decomposed mode, whose bandwidths are decided
via the flattest response filter. Details are given in the next sections. In those sections, we
derive the adaptive bandwidth which is achieved via the flattest response filter.
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2.2. VMD Model

We set a real valued input signal x(t), which includes K modes, noted as uk(t), k = 1, · · · , K.
The goal of VMD [5] is to decompose x(t) into uk(t), k = 1, · · · , K. The modes uk(t) have
specific sparsity properties, and thus the modes are fully quasi-orthogonal. The constrained
variational problem of the VMD algorithm is

min
{uk ,ωk}

{
∑
k

∣∣∣∣∣∣ ∂
∂t

[((
δ(t) + j

πt

)
∗ uk(t)

)
e−jωkt

]∣∣∣∣∣∣2
2

}
st. ∑

k
uk(t) = x(t).

(3)

VMD and its related algorithms solve the inverse problem by decomposing a signal
into a given number K of modes with limited bandwidth [6,9], either exactly or in a
least square sense. A classical ADMM approach [22] is applied to solve the variational
problem. All the parameters, including the modes themselves, are updated directly in the
Fourier domain.

2.3. Wiener Filtering of VMD

Consider the AM–FM signal x(t), contaminated by an additive zero-mean Gaussian
noise. The observed signal x0(t) is,

x0(t) = x(t) + η (4)

Recovering the unknown signal x(t) is a typical ill-posed inverse problem [23], classi-
cally addressed using the Tikhonov regularization [24],

min
x

{
‖x− x0‖2

2 + α‖∂tx‖2
2

}
(5)

of which the Euler–Lagrange equations are easily obtained and typically solved in the
following Fourier domain,

x̂(ω) =
x̂0

1 + αω2 (6)

Here x̂(ω) = F{x(·)}(ω) = 1
2π

∫
R x(t)e−jωtdt, with j =

√
−1, and α is the coefficient.

K. Dragomiretskiy and D. Zosso [5] took the mode in (4) and its solution (6) as Wiener filter,
and applied it in the VMD mathematical model (3).

3. Ideas for Improving VMD

In this section, we briefly propose a few ideas for improving VMD. These ideas
constitute the building blocks of our improved VMD, which is simply abbreviated to iVMD.

3.1. The Flattest Response

VMD can recover an AM–FM mode with a low-pass, narrow-band selection of the
input signal. The form in (6) was taken as a Wiener filter, and thus the recovered mode
had a lowpass power spectrum. Based on the heuristic method of the filtering concept in
(5) and (6), we rewrite the differential part ∂

∂t x of the model in (3) as a time differential
equation to solve the model in (3), and generalize it as

P

∑
p=0

βn∂
p
t x(t) = x0(t) (7)

Here, ∂
p
t , ∂p

∂tp , p = 0, · · · , P is the p-th derivative operator with P ≥ 1, the highest
derivative order, and ∂0

t x(t) , x(t). We have noted that βp is the coefficient of ∂
p
t x(t)

and β0 = 1.
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Therefore, we can obtain the corresponding frequency domain form of (7),

x̂(ω) =
x̂0(ω)

1 + ∑P
p=1 βp(jω)p (8)

We set the ratio of x̂(ω)
x̂0(ω)

= HP(ω) as the filter system; therefore,

HP(ω) =
1

1 + ∑P
p=1 βp(jω)p (9)

When P = 1, 2, 3, their amplitude spectra are, respectively,

x̂1(ω) =
x̂0(ω)

1+β1jω ,

x̂2(ω) =
x̂0(ω)

1−β2ω
2+β1jω ,

x̂3(ω) =
x̂0(ω)

1−β2ω
2+j(β1ω−β3ω

3)

(10)

and thus,
|H1(ω)| = 1√

1+(β1ω)2
,

|H2(ω)| = 1√
(1−β2ω

2)
2
+(β1ω)2

,

|H3(ω)| = 1√
(1−β2ω

2)
2
+(β1ω−β3ω

3)
2

(11)

Table 1 provides the coefficients of the different lowpass filters, and Figure 1 shows
the squared amplitude frequency characteristic, |HP(ω)|2. The system is a lowpass filter
expressed by HP(ω), with its coefficients carefully selected via many methods of filter
designing from Butterworth, Chebyshev, etc. Here, we design the filter as a Butterworth
filter [25], which has the flattest response in the frequency as depicted in Figure 1. The
parameters of the Butterworth filter are calculated in the following equations:

P =

1
2

lg
(

10
αs
10 −1

10
αp
10 −1

)
lg
(

ωs
ωp

)
, ωc =

ωp(
10

αp
10 − 1

) 1
2P

(12)

Here, [·] is meant to take the maximum integer and add 1, while αp, αs are the band pass
and stop attenuations, respectively, and ωp, ωs are the responding frequencies. Certainly,
other filter-type designs can also be applied here.
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Table 1. Coefficient of the lowpass Butterworth filter in the model (7).

P β1 β2 β3 β4 β5 β6

1 1
2

√
2 1

3 2 2 1
4 2.61312593 3.41421356 2.61312593 1
5 3.23606798 5.23606798 5.23606798 3.23606798
6 3.86370331 7.46410162 9.14162017 7.46410162 3.86370331 1

Note that β0 = 1.

3.2. To Set the Bandwidth

In the design of the lowpass Butterworth filter, we can adjust the bandwidth by
normalizing the frequency. We set the normalized frequency as ω

ωc
, and thus we can set the

lowpass bandwidth as B = ωc. Figure 1 shows the bandwidth is normalized by dividing
with B, where the cutoff frequency is 1 kHz.

From (9), we rewrite the system function as

Hp

(ω

B

)
=

1
1 + ∑P

p=1 βp
(
jωB
)p (13)

Based on the property of the Fourier transform, if denormalization means ω is divided
by B in the frequency domain, then the time domain response is Bhp(Bt), where hp(t) is the
inverse Fourier transform of Hp(ω). We obtain the denormalized version of the filter as

P

∑
p=0

βnB∂
p
t f (Bt) = f0(t) (14)

3.3. Harmonics

Continuous periodic signal (mode), uk(t), may have multiple harmonic components
with its base frequency of ωk, each of which has a gradually attenuated amplitude am with
the harmonic frequency mωk, m = 1, 2, · · · , Mk. We find that Mk is the highest order of
harmonic frequency. In theoretical application, M→ ∞ . That is,

uk(t) = ∑
m

amejmωkt. (15)

Therefore, the composite signal may consist of one harmonic mode with maximum har-
monic order at Mk, and the center frequencies of the harmonic mode are mωk, m = 1, 2, · · · , Mk.

4. Improved VMD
4.1. Improved Optimal Problem

In this section, we introduce our improved mathematical model for the variational
mode decomposition based on the VMD idea [5] and the previous section.

The new model is similar to the model found in (3), except in a few aspects. The
sparsity in each mode is chosen to be its bandwidth, 2B, in the spectral domain. Each mode
without the harmonical frequencies, uk, is compact around a center pulsation, ωk, which is
to be determined among the decomposition. Each mode with the harmonical frequencies
is compact around the harmonical frequencies, mωk, m = 1, 2, · · · . Here, the sparsity also
indicates full quasi-orthogonality.

We propose the following improved idea to decompose the signal x(t): (1) for each
mode, uk, that has an adaptive bandwidth of 2B, we design the flattest response lowpass
filter which permits the mode to pass through; (2) for each mode, uk, we shift the mode’s
harmonic frequencies spectrum with the baseband, by multiplying it with an exponential,
e−jmωkt, which is tuned to the respective estimated center frequency, mωk.
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We set the analytical signal of uk(t) as,

ak(t) =
(

δ(t) +
j

πt

)
∗ uk(t) (16)

Here, ∗ is the convolution operator. The resulting constrained variational problem is

min
{uk ,ωk ,Bk}

{
∑
k

∑
m
‖∂P

t
[
Bkak(Bkt)e−jmωkt]‖2

2

}
st. ∑

k
uk(t) = x(t)

(17)

where uk, k = 1, · · · , K is the mode to be decomposed, where K is the given number of
the modes, where Bk is the basic bandwidth of the mode uk, and where ωk is the center
frequency corresponding with the mode uk.

4.2. Solution to the Problem

The constraint optimal problem (17) can be solved via the augmented Lagrangian
method. Lagrangian multipliers λ(t) are set with a quadratic penalty term to render the
problem unconstrained. The weight αk of the penalty term is set as the factor of each
mode uk.

First, we project the minimization problem (17) into solving the extreme point of the
augmented Lagrangian equation [26], which is

L(uk, ωk, Bk, λ) = αk ∑
k

∑
m
‖∂t

[
Bkak(Bkt)e−jmωkt

]
‖

2

2
+

∣∣∣∣∣
∣∣∣∣∣x(t)−∑

k
uk(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

+ 〈λ(t), x(t)−∑
k

uk(t)〉 (18)

The augmented Lagrangian (18) is in a sequence of alternate direction methods of
multipliers (ADMM) [27]. Next, we detail how the respective sub-problems can be solved.

4.3. Minimization w.r.t uk

To update the modes uk, the problem (18) is rewritten as the following unconstraint
goal function for uk:

Luk = αk ∑
m
‖∂t

[
Bkak(Bkt)e−jmωkt

]
‖

2

2
+

∣∣∣∣∣
∣∣∣∣∣x(t)−∑

k
uk(t) +

λ(t)
2

∣∣∣∣∣
∣∣∣∣∣
2

2

(19)

This was achieved via Parseval–Plancherel Fourier isometry [28], and we take ω+mωk
Bk

→ ω
in the first term; then,

Lûk = αk ∑
m

∣∣∣∣∣
∣∣∣∣∣ P

∑
p=1

βp(jBkω− jmωk)
p[(1 + sgn(ω))ûk(ω)]

∣∣∣∣∣
∣∣∣∣∣
2

2

+

∣∣∣∣∣
∣∣∣∣∣x̂(ω)−∑

k
ûk(ω) +

λ̂(ω)

2

∣∣∣∣∣
∣∣∣∣∣
2

2

(20)

By exploiting the Hermitian symmetry of the real signals,

Lûk =
∫ +∞

0

4αk ∑
m

∣∣∣∣∣ P

∑
p=1

βp(Bkω−mωk)
pûk(ω)

∣∣∣∣∣
2

+ 2

∣∣∣∣∣x̂(ω)−∑
k

ûk(ω) +
λ̂(ω)

2

∣∣∣∣∣
2
dω (21)

Letting the first variation vanish, i.e., δ
δuk
Luk = 0, for the positive frequencies. Thus,

ûk(ω) =
x̂(ω)−∑i 6=k ûi(ω) +

λ̂(ω)
2

1 + 2αk ∑m ∑P
p=1 β2

p|Bkω−mωk|2p (22)
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When M = 1, P = 1, Bk = 1, and β1 = 1, which is taken from Table 1, then the above
equation is simplified as,

ûk(ω) =
x̂(ω)−∑i 6=k ûi(ω) +

λ̂(ω)
2

1 + 2αk|ω−ωk|2
(23)

If we set αk = 1, M = 1, P = 1, and β1 = 1 in Equation (22), then,

ûk(ω) =
x̂(ω)−∑i 6=k ûi(ω) +

λ̂(ω)
2

1 + 2B2
k

∣∣∣ω− ωk
Bk

∣∣∣2 . (24)

When M = 1, P = 2, and βp which is taken from Table 1, then Equation (22) is,

ûk(ω) =
x̂(ω)−∑i 6=k ûi(ω) +

λ̂(ω)
2

1 + 2αk ∑m

(√
2|Bkω−mωk|2 + |Bkω−mωk|4

) (25)

When αk = 1 and M = 1, Equation (25) is clearly identified as a Butterworth filtering
of the current residual.

4.4. Minimization w.r.t ωk

The center frequency ωk is solved via the optimization of the following goal function,

Lωk = ∑
m
‖∂t[Bkak(Bkt)]e−jmωkt‖2

2 (26)

As described previously, the minimization of (26) can work in the Fourier domain;
that is,

Lωk =
2
π

∫ +∞

0
∑
m

∣∣∣∣∣ P

∑
p=1

βp(Bkω−mωk)
p

∣∣∣∣∣
2

|ûk(ω)|2dω (27)

We also take the derivative of Lωk to ωk, and set it to be zero; then,

∑
m

P

∑
p=1

P

∑
p′=1

mp′βp′βp

∫ +∞

0
(Bkω−mωk)

p+p′−1|ûk(ω)|2dω = 0 (28)

Applying the binomial theorem, we get,

P

∑
p=1

P

∑
p′=1

p+p′−1

∑
i=0

[
(−1)p+p′−isp+p′−i

m p′βp′βpCi
p+p′−1Bi

kωi
]
ω

p+p′−1−i
k = 0 (29)

Here, we find that Ci
n = n!

i!(n−i)! , ωn =
∫ +∞

0 ωn|ûk(ω)|2dω, and sn
m = ∑M

m=1 mn.
Equation (29) is a polynomial 2P-power equation about ωk. We rewrite (29) as

2P−1

∑
n=0

cnωn
k = 0 (30)

Here, cn is the n-power coefficient, and

cn = ∑
n=p+p′−1−i
p,p′=1,2,...,P

i=0,1,...,p+p′−1

(−1)p+p′−isp+p′−i
m p′βp′βpCi

p+p′−1Bi
kωi (31)



Mathematics 2023, 11, 1858 8 of 15

Solving the above equation in (30), we can obtain the solution of ωk via the Newton–
Raphson method, or others. Since Equation (28) is complex, it is not easy to obtain the
solution. In fact, we find that M, P are not large, so we provide the different possible values
of M, P, and obtain the corresponding solutions. Table 2 shows the different solutions
of ωk under M, P, and shows that ωk should be selected via the conditions, (1) ωk > 0;
(2) ωk being a real number. Additionally, the solution exists in practice, which can be clearly
proven since the power order is odd.

Table 2. The different solutions of ωk(M, N).

P M ωk(M,P)

1

1
c1 = ω0, c0 = −Bkω

ωk = Bk

∫ +∞
0 ω|ûk(ω)|2dω∫ +∞

0 |ûk(ω)|2dω

2 ωk = Bk
3
∫ +∞

0 ω|ûk(ω)|2dω

5
∫ +∞

0 |ûk(ω)|2dω

m ωk = Bk
∑m m

∫ +∞
0 ω|ûk(ω)|2dω

∑m m2
∫ +∞

0 |ûk(ω)|2dω

2 m

c3ω3
k + c2ω2

k + c1ωk + c0 = 0
Here,

c3 = 2ω0s4
m

c2 = [−2
√

2
−

ω0 −
√

2
−

ω0 − 6Bk

−
ω1]s3

m

c1 =
[
2ω0 + 4

√
2Bkω1 + 2

√
2Bkω1 + 6B2

kω2
]
s2

m

c0 =
[
−2Bkω1 − 2

√
2B2

k ω2 −
√

2B2
k ω2 − 2B3

k ω3
]
s1

m

3 m

c5ω5
k + c4ω4

k + c3ωkω3
k + c2ω2

k + c1ωk + c0 = 0
Here,

c5 = +3ω0s6
m

c4 =
(
−15Bkω1 − 10ω0

)
s5

m

c3 =
(
+30B2

k ω2 + 40Bkω1 + 16ω0
)

s4
m

c2 =
(
−30B3

k ω3 − 60B2
k ω2 − 48Bkω1 − 12ω0

)
s3

m

c1 =
(
+15B4

k ω4 + 40B3
k ω3 + 48B2

k ω2 + 24Bkω1 + 4mω0
)

s2
m

c0 =
(
−3B5

k ω5 − 10B4
k ω4 − 16B3

k ω3 − 12B2
k ω2 − 4Bkω1

)
s1

m

4.5. Minimization w.r.t Bk

The Bandwidth, Bk, is solved via optimization of the following goal function:

LBk = ∑
m
‖∂t[Bkak(Bkt)]e−jmωkt‖2

2 (32)

The minimization of (32) can be completed in the Fourier domain; that is,

LBk =
2
π

∫ +∞

0
∑
m

∣∣∣∣∣ P

∑
p=1

βp(Bkω−mωk)
p

∣∣∣∣∣
2

|ûk(ω)|2dω (33)

We also take the derivative of LBk to Bk, and set it to be zero; that is, ∂
∂Bk
LBk = 0, then,

via the binomial theorem, we get,

P

∑
p=1

2p−1

∑
i=0

p(−1)iωi+1s2p−1−i
m βp

2Ci
2p−1ωk

2p−1−iBk
i = 0 (34)
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Here, we still rewrite (34) as

2P−1

∑
i=0

d2P−1−iBi
k = 0 (35)

Here, di is the i-power coefficient, and

d2P−1−i = (−1)iωi+1
P

∑
p=1

ps2p−1−i
m βp

2Ci
2p−1ωk

2p−1−i (36)

When P = 1, then
d0 = ω2M
d1 = ω1s1

mωk
(37)

And

Bk = ωk
s1

mω1

Mω2
(38)

As in the previous section, when solving the above equation in (35), we can obtain the
solution of Bk via the Newton–Raphson method, or others.

4.6. Complete Algorithm

The Lagrangian multiplier λ(t) is updated with the following equation [5]:

λn+1(t) = λn(t) + τ

(
x(t)−∑

k
uk(t)

)
(39)

As well as in the frequency domain,

λ̂n+1(ω) = λ̂n(ω) + τ

(
x̂(ω)−∑

k
ûk(ω)

)
(40)

Here, n is the iterative number, and τ is the update parameter.
We directly optimize in the Fourier domain, and then we obtain the complete algorithm

for iVMD in Algorithm 1.

Algorithm 1: Complete optimization of iVMD

Initialize {û1
k}, {ω

1
k},
{

B1
k
}

, λ̂1, n← 1
Repeat

n← n + 1
For k = 1 : K do

Update ûk for all ω ≥ 0:

ûn+1
k (ω)← x̂(ω)−∑i<k ûn+1

i (ω)−∑i>k ûn
i (ω)+ λ̂n (ω)

2

1+2α ∑m ∑P
p=1 β2

p|Bkω−mωn
k |

2n

Update ωk:
ωn+1

k ← ωk(M, N) in Table 2
Bn+1

k ← Solving (35)
End for

Update Lagrangian multiplier for all ω ≥ 0:

λ̂n+1(ω) = λ̂n(ω) + τ

(
x̂(ω)−∑

k
ûn+1

k (ω)

)
Until convergence

∑
k

‖ûn+1
k −ûn

k ‖
2

‖ûn
k ‖

2 < ε
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4.7. Reconstruction versus Denoising

The role of the Lagrangian multiplier [5] λ(t) is the same in iVMD as in VMD, which
serves to enforce the constraint, while the quadratic penalty αk improves convergence.

The iVMD algorithm adds the extra bandwidth Bk, and it acts as a penalty factor, as
detailed in Equation (24). Both the penalty factor and the bandwidth improve convergence,
and we can initially set the factor and leave the bandwidth adaptively undated. If we set
the bandwidth as Bk = 1, the penalty factor of iVMD acts as the VMD.

5. Experiments and Results

To demonstrate the effectiveness of the iVMD algorithm, we consider the same test
signals that were previously suggested [2,5] with the purpose of increased comparability.

5.1. Example 1 with Linear Trend

The first signal is

xSig1(t) = 6t + cos 8πt +
1
2

cos 40πt. (41)

The signal composes three parts, detailed in (41). The linear growth term in (41)
has higher-order harmonics, which spread over the whole spectrum. Figure 2 shows the
effective partition of the input spectra via iVMD, and we compare it with the results run
via the VMD in Figure 3. The results are almost identical.
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5.2. Example 2 with a Piecewise Signal

The second signal is

xSig2(t) = 6t2 + cos
(

10πt + 10πt2
)
+

{
cos 60πt t ≤ 0.5

cos(80πt− 10π) t > 0.5
(42)

We set K = 4 in the iVMD algorithm, thus assigning each half of the piecewise-constant
frequency signal to a separate mode. Both iVMD and VMD achieve effective convergence
with the expected center frequencies after carefully tuning the parameters of the respective
algorithms. For details, see Figures 4 and 5. When comparing the peaks in frequencies at
30, 40 Hz, the results run via iVMD show slightly better results.
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Figure 5. VMD decomposition of xSig2(t).

5.3. Example 3: Intrawave Frequency Modulation

The third signal is

xSig3(t) =
1

1.2 + cos(2πt)
+

cos(32πt + 0.2 cos(64πt))
1.5 + sin(2πt)

(43)

The iVMD and VMD results are almost identical, as illustrated in Figures 6 and 7. In
fact, the second term in (43) quickly converges with the correct main frequency of 16 Hz.

5.4. Example 4: Sawtooth Signal

The fourth signal is
xSig4(t) = x41(t) + x42(t). (44)

The components x41, x42 are sawtooth signals of different center frequencies, 10 Hz and
80 Hz, and amplitudes at 2. Figure 8, run via iVMD, shows the decomposition of the two



Mathematics 2023, 11, 1858 12 of 15

sawtooth composite signals. The iVMD algorithm can obtain effective decomposition with
the relatively small-value difference curve between the raw sawtooth and the estimated
sawtooth. The two are compared by running at different settings of harmonical order—
M, M = [1; 3; 5]—the bigger M is taken to allow more harmonical components, and the
difference is smaller.
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decomposed IMFs and the originals, while the right two are the correspondence differences.
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For comparison, we still provide the results run by the VMD with the same aspect,
which is depicted in Figure 9. The difference between the original and decomposed signal
is relatively smoother in the iVMD results.
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5.5. Example 5: An Electrocardiogram

The fifth signal, xSig5(t), is an electrocardiogram (ECG). The data are shared by [2].
The data present numerous components in which there exists an oscillating low-frequency
pattern, and a noise with a high frequency. Figure 10 illustrates the spectra and the results
run via iVMD. A high number of 12 modes is detected. The center frequencies are effectively
detected, which converges with ECG spectral peaks. The first mode represents the baseline
oscillation, and the last mode represents the high-frequency noise.
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6. Conclusions and Outlook

We further developed the algorithm of VMD as iVMD from three points: (1) flattest
response, (2) harmonic, and (3) bandwidth. The flattest response is applied in iVMD and
thus, we can set the higher differential order P with respect to time, which results in the
added weighting coefficient which can be obtained via Butterworth filter designing. As
the harmonics may exist in the input signal, the mathematical model of VMD is further
studied and modified via the harmonic order M, and the improved version can support
M-order harmonical center frequency, mωk. Each mode may have its adaptive bandwidth,
and we set it in the model in (13) and (17). Through the above three points, we developed
the algorithm iVMD.
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In our experiments, iVMD works effectively with the same abilities as VMD and
achieves a better performance than VMD.

The assumption of iVMD is the same as VMD, except that we can set the differential
order and harmonic order with adjustable bandwidth, Bk. We explain the reasons behind
decomposing the two sawtooth composite signals, and it is due to setting the M-order
harmonics in the mathematical model.

The algorithm iVMD is now being further extended with two-dimension decomposi-
tion, and we expect further challenges to decompose more complex composite signals.
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