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Abstract: Roughly speaking, differential privacy is a privacy-preserving strategy that guarantees
attackers to be unlikely to infer, from the previous system output, the dataset from which an output
is derived. This work introduces differential privacy to discrete event systems modeled by proba-
bilistic automata to protect the state information pertaining to system resource configurations. State
differential privacy is defined to protect the initial state of a discrete event system, which represents
its initial resource configuration. Step-based state differential privacy verification is proposed in the
framework of probabilistic automata, such that an attacker is unlikely to determine the initial state
from which a system evolves, within a finite step of observations, if two systems with two different
initial states satisfy state differential privacy. Specifically, the probability distributions of generating
observations within a finite step from the two different initial states are approximate. If the two
systems do not satisfy state differential privacy, a control specification is proposed, such that state
differential privacy is enforced via supervisory control that is maximally permissive. Experimental
studies are given to illustrate that the proposed method can effectively verify state differential privacy
and enforce privacy protection in the probabilistic automata framework.

Keywords: differential privacy; discrete event system; probabilistic automaton; supervisory control;
privacy protection

MSC: 93C65; 93E03

1. Introduction

With the extensive applications of computer communication and data mining tech-
nology, many organizations and institutes have studied the value of data by publishing
user data sets, which contain personal private data. In the process of publishing the data
sets, the privacy of users may be leaked, damaging the security of private information [1,2].
This requires publishers to anonymize or encrypt the data before publishing the security-
sensitive data sets. Cryptography cannot only ensure the confidentiality of information,
but also ensure its integrity and availability [3,4]. However, it reduces data processing
speed and decreases data storage capacity. K-anonymity method anonymizes relational
databases such that the individual information contained in the release cannot be distin-
guished from at least k-1 individuals whose information also appears in the release [5].
A (k, p)-anonymity extends k-anonymity to hide multiple pieces of sensitive information in
transactions and sanitize transactional database with personalized sensitivity [6]. To reduce
the computational complexity of k-anonymity, the authors in Ref. [7] proposed a novel
efficient anonymization system to anonymize transactional data with a small information
loss. These methods rely on the background knowledge of attackers. The more background
knowledge attackers have, the higher the probability of privacy leakage is.

To solve this problem, the author in Ref. [8] proposed the notion of differential privacy,
providing a mathematically strict method to protect sensitive personal information. Differ-
ential privacy protects sensitive data by adding random noise to the results to be inquired
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by an attacker or a malicious observer [9–11]. To protect different data between two data
sets that differ by one record, noise mechanisms are developed to achieve differential
privacy by adding random noise satisfying different distributions to the query results, such
as Laplace mechanism and Gauss mechanism [12–14]. These mechanisms are not suitable
for protecting non-numerical sensitive data. The exponential mechanism is developed
to achieve differential privacy for non-numerical data by randomly generating responses
based on how well those responses approximate the non-private response [15]. An attacker
or a malicious observer conducts a differential attack based on data sets that differ by one
record, but the probabilities of two data sets outputting the same result are approximate.

Different from the private information protected by these privacy protection technolo-
gies, the sensitive information of discrete event systems (DESs) is the behavior information
and resource configuration information, which is represented by the language and state, re-
spectively. DESs refer to systems in which system states transit discretely at certain random
points of time, thanks to the triggering of events [16]. An attacker or malicious observer
can attack a DES by observing its behavior to infer the other sensitive information, such
as the initial state. As an example, the initial state of an armored truck application system
represents its initial location information, which should be kept confidential, otherwise it
may enable potential hijackers to elaborate upon a perfect hijack plan.

The existing methods for protecting the sensitive information (e.g., the initial state and
language) of a DES are developed through the formation of notion of state-based opacity
and language-based opacity, where the secret is defined as a set of states and language,
respectively [17,18]. For the language-based opacity, a system is said to be opaque with
respect to a given secret if no execution leads to an estimate that is completely contained in
the secret. Unlike language-based opaque verification, the authors in Ref. [19] developed
an exponential mechanism that approximates a sensitive string (or word) using a randomly
chosen string (or word) that is given by the Levenshtein distance, which is used to control
the similarity or nearness of a sensitive string and its output counterpart. The work is
extended to both real-time control and Markov chains for protecting trajectories generated
by symbolic systems [20]. However, these methods do not consider the security of state
privacy information of a symbolic control system. In this work, we focus on protecting the
initial state of DESs modeled with probabilistic automata.

For the initial-state opacity (an important state-based security property), it is assumed
that a malicious attacker (observer) fully knows the structure of a system, but only partially
observes the event occurrences in it. Note that unobservable events are invisible to the
attacker, and the attacker does not know the initial state unless it can be inferred by
observations. Given a secret described by a set of states, a system is said to be initial-state
opaque with respect to the secret if the attacker is never able to infer that the initial state of
the system is within the secret [21–24]. The initial state information in the framework of
probabilistic DESs cannot be protected by the existing methods of initial-state opacity if
the occurrence likelihood of events is considered. With a metric on the states of a system,
the authors in Ref. [25] formalized differential privacy by use of the probability ratio in the
distributions after the same labeled transitions of relevant states. However, an attacker can
infer the initial state based on the probability distribution of the language generated by the
system via a long-term observation.

Automata and Petri nets are two typical tools to simulate the operation of DESs, where
a finite state automaton is a machine that, given a symbolic input, transforms a series of
states according to a transition function [26–28]. To the best of our knowledge, the verifica-
tion and enforcement of differential privacy in DESs has not been well-defined and fully
explored. The introduction of differential privacy into the framework of automata is of
great significance for the protection of state private information, especially the protection
of system initial states. To this end, differential privacy is introduced to the community of
DESs that are, in this particular research, modeled by probabilistic automata [29,30].

This paper addresses the differential privacy problem in the framework of DESs mod-
eled by probabilistic automata. The main contributions of this work can be summarized:
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1. The notion of state differential privacy is formulated to protect the initial state in-
formation of a DES whose behaviors can be described by a probabilistic automaton.
Two adjacent initial states are defined to represent the similar initial resource config-
urations. Step-based verification for state differential privacy is proposed to verify
whether two probabilistic automata satisfy state differential privacy, within a finite
step of observations, after the two systems generate a given observation from two
adjacent initial states.

2. For two probabilistic automata with two adjacent initial states, a verifier is constructed
to compute the probabilities of generating any same observation from the two adjacent
initial states. If the two systems do not satisfy state differential privacy, we propose a
control specification such that the state differential privacy is enforced to the closed-
loop systems via supervisory control. The supervisory control is maximally permissive
for enforcing privacy protection.

3. Through experimental studies, it is shown that the proposed method achieves state
differential privacy in the considered class of automata and protects the initial state.

The rest of the paper is organized as follows. Section 2 introduces the backgrounds
of probabilistic automata and the notion of differential privacy in sensitive data security.
Section 3 is a problem statement. Step-based verification for state differential privacy is
formulated in Section 4. Section 5 reports a method to enforce state differential privacy
via supervisory control. A numerical example is shown in Section 6. Finally, Section 7
concludes this paper.

2. Preliminaries

In this section, we introduce probabilistic automata and the standard concept of
differential privacy.

2.1. Probabilistic Automata

A deterministic finite automaton (DFA) is a four-tuple A = (Q, Σ, δ, q0), where Q is a
finite set of states, Σ = {α, β, · · · } = Σo∪̇Σuo is an alphabet of finite events (Σo is the set
of observable events and Σuo is that of unobservable events), δ : Q× Σ → Q is a partial
transition function, and q0 ∈ Q is an initial state. The state transition function specifies the
dynamics of the DFA: write δ(q, e)! if e ∈ Σ can occur from state q ∈ Q, saying that δ(q, e)
is defined.

The transition function δ is traditionally extended by induction on the length of strings
to δ : Q× Σ∗ → Q by defining δ(q, ε) = q and δ(q, se) = δ(δ(q, s), e) for q ∈ Q, s ∈ Σ∗ and
e ∈ Σ, where δ(q, s) and δ(δ(q, s), e) are both defined. Given a state q ∈ Q and a string
s ∈ Σ∗, write δ(q, s)! if δ is defined for s at q. The length of a string s, denoted by |s|, is the
number of symbol occurrences in it.

The generated language of an automatonA = (Q, Σ, δ, q0) from a state q ∈ Q is defined as

L(A, q) = {s ∈ Σ∗ | δ(q, s)!}.

An attacker can only observe and record observable events. The natural projection P :
Σ∗ → Σ∗o can be used to map any string executed in a system to the sequence of observable
events, called an observation. This projection is defined recursively as P(se) = P(s)P(e),
s ∈ Σ∗, e ∈ Σ, with P(e) = e if e ∈ Σo and P(e) = ε if e ∈ Σuo, where ε represents the
empty string.

The generated observations of an automaton A = (Q, Σ, δ, q0) from a state q ∈ Q is
defined as

Lo(A, q) = {ω ∈ Σ∗o | s ∈ L(A, q) & P(s) = ω}.

This paper explores the differential privacy problem on DESs modeled by probabilis-
tic automata.
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Definition 1 (Probabilistic automaton [29]). A probabilistic automaton is a DFA equipped
with a probability distribution of event occurrences, denoted by a two-tuple G = (A, ρ), where
A = (Q, Σ, δ, q0) is a DFA and ρ : Q× Σ → [0, 1] is a probability distribution function. Given
a state q ∈ Q and an event e ∈ Σ, ρ(q, e) indicates the firing probability of e from q such that
ρ(q, e) = 0 if δ(q, e) is not defined and ρ(q, e) > 0 if δ(q, e)!. The set of all enabled (feasible) events
at a state q ∈ Q is denoted by E(q) = {e ∈ Σ | ρ(q, e) > 0} with ∑e∈E(q) ρ(q, e) = 1.

In what follows, Gs = (Q, Σ, δ, ρ) is called a probabilistic automaton structure (or the
skeleton of a probabilistic automaton), that is, a probabilistic automaton G = (Q, Σ, δ, q0, ρ)
is a probabilistic automaton structure Gs = (Q, Σ, δ, ρ) equipped with an initial state q0.
Write G = (Q, Σ, δ, q0, ρ) as G(q0) if Gs is implicitly defined.

Example 1. A probabilistic automaton structure Gs = (Q, Σ, δ, ρ) is shown in Figure 1. Given an
initial state q1, G(q1) is a probabilistic automaton with Q = {q0, q1, q2, q3, q4, q5} and Σ = {α,
β, λ, γ, µ, τ}, it holds ρ(q1, β) = 0.4 and ρ(q1, λ) = 0.6. Furthermore, ∑e∈E(q1)

ρ(q1, e) = 1
with E(q1) = {β, λ}.

q0 q1 q3 q5

q2 q4

α:0.5

β:0.5

β:0.4
λ:0.6

β:0.3
λ:0.3

γ:0.4

τ:0.8

γ:0.2 τ:1

µ:1

Figure 1. A probabilistic automaton structure Gs.

2.2. Differential Privacy

Generally speaking, a randomized algorithm is said to satisfy differential privacy if
an attacker (or a malicious observer) is unlikely to distinguish between the outputs of two
data sets differing on, at most, one element. Specifically, given a non-negative real number
ε, a randomized algorithm F satisfies ε-differential privacy if, for any two input data sets
D1 and D2 differing on, at most, one element (either D1 = D2 or there exists a datum d
such that D1 ∪ {d} = D2 or D2 ∪ {d} = D1), and for any set of outputs O, it holds that [12]

e−ε ≤ P(F (D1) ∈ O)

P(F (D2) ∈ O)
≤ eε.

Note that F (D1) (or F (D2)) is the output of F on input D1 (or D2), P : O→ (0, 1] is
the probability function, mapping an output of F to a real number between zero and one
(including one), and ε is the privacy budget parameter that stipulates the level of privacy
protection with ε ∈ R and ε ≥ 0, where R is the set of real numbers.

3. Problem Statement

This section introduces differential privacy into the framework of probabilistic au-
tomata to protect the initial state information. We first define state differential privacy and
establish its mathematical developments below.

3.1. State Differential Privacy

Given a probabilistic automaton G = (Q, Σ, δ, q0, ρ), the probability of generating
string se ∈ Σ∗ from state q with s ∈ Σ∗ and e ∈ Σ is recursively defined as

Prσ(q, se) =


1, if se = ε

Prσ(q, s)× ρ(δ(q, s), e), if δ(q, s)!
0, otherwise
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where ε ∈ Σ∗ is the empty string. Intuitively, Prσ(q, s) could be viewed as the probability
that the string s can be executed from q in plant G. Prσ(q, s) > 0 if δ(q, s)! for s ∈ Σ∗.

The generated language of a probabilistic automaton G = (Q, Σ, δ, q0, ρ) from a state
q ∈ Q is defined as

L(G, q) = {s ∈ Σ∗ | Prσ(q, s) > 0}.

Accordingly, the generated observations of a probabilistic automaton G = (Q, Σ, δ, q0, ρ) from
a state q ∈ Q is defined as

Lo(G, q) = {ω ∈ Σ∗o |∃s ∈ L(G, q) : ω = P(s)}.

The set of strings that are consistent with observation ω ∈ Σ∗o generated at state q is
defined as

S(q, ω) = {s ∈ Σ∗ | s ∈ L(G, q) & P(s) = ω}.

The probability of generating observation ω ∈ Σ∗o from a state q is

Pro(q, ω) = ∑
s∈S(q,ω)

Prσ(q, s).

Example 2. Consider the probabilistic automaton structure in Figure 1 with initial state q0. Suppose
Σo = {α, β, λ, γ, µ} and Σuo = {τ}. Given a string s = βγβτ, the probability of generating s from
q0 is denoted as Prσ(q0, βγβτ) = ρ(q0, β)× ρ(q2, γ)× ρ(q2, β)× ρ(q4, τ) = 0.06. Let ω = αβγ.
S(q0, ω) = {αβγ, αβγτ} and Pro(q0, ω) = Prσ(q0, αβγ) + Prσ(q0, αβγτ) = 0.072 hold.

Given a probabilistic automaton G = (Q, Σ, δ, q0, ρ), the set of states reached by
generating any string that is consistent with observation ω ∈ Σ∗o from a state q is denoted by

ϕ(q, ω) = {q′ ∈ Q | ∃s ∈ S(q, ω) : δ(q, s) = q′}.

Let q ∈ ϕ(q0, ω) be a reachable state after the system generates an observation ω ∈ Σ∗o
from initial state q0. The probability of generating s ∈ Σ∗ from q is defined as

Prσ(q0, ω, q, s) = Pr(q|ϕ(q0, ω))× Prσ(q, s)

where Pr(q|ϕ(q0, ω)) is the probability of choosing q from ϕ(q0, ω), defined as

Pr(q|ϕ(q0, ω)) =


∑

s∈S(q0,ω)&δ(q0,s)=q
Prσ(q0,s)

∑
s∈S(q0,ω)

Prσ(q0,s) , q ∈ ϕ(q0, ω)

0, q /∈ ϕ(q0, ω)

In conclusion, ∑q∈Q Pr(q|ϕ(q0, ω)) = 1 holds.
The probability of choosing q from ϕ(q0, ω), denoted by Pr(q|ϕ(q0, ω)), is the ratio of

the sum of probabilities of the strings that are, consistent with an observation ω, generated
from q0, reaching state q, with the sum of probabilities of the strings that are, consistent
with ω, generated from q0. In brief, Pr(q|ϕ(q0, ω)) is the probability that the system reaches
state q (from q0) under the premise of generating an observation ω.

Example 3. Consider the probabilistic automaton structure in Figure 1 with initial state q1. Suppose
that Σo = {α, β, λ, γ, µ} and Σuo = {τ}. We have ϕ(q1, β) = {q3, q5} and S(q1, β) = {β, βτ}.
For s ∈ S(q1, β) and δ(q1, s) = q3, it holds ∑s Prσ(q1, s) = ρ(q1, β) = 0.4. For s ∈ S(q1, β)
and δ(q1, s) = q5, it holds that ∑s Prσ(q1, s) = ρ(q1, β)× ρ(q3, τ) = 0.32. The probabilities
of choosing states q3 and q5 from ϕ(q1, β) are Pr(q3|ϕ(q1, β)) = 0.4/(0.4 + 0.32) = 5/9 and
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Pr(q5|ϕ(q1, β)) = 0.32/(0.4 + 0.32) = 4/9, respectively. We obtain Prσ(q1, β, q3, τµα) =
5/9× 0.8× 1× 0.5 = 2/9 and Prσ(q1, β, q5, µαβ) = 4/9× 1× 0.5× 0.4 = 4/45.

Let N be the set of natural numbers and N+ = {x > 0|x ∈ N}. Given an observation
ω ∈ Σ∗o , the set of all observations generated from a state q ∈ ϕ(q0, ω) with k ∈ N+ steps is
defined as

Lo(q0, ω, q, k) = {ω′ ∈ Σ∗o | ω′ ∈ Lo(G, q) & |ω′| = k}.

The set of all observations due to k ∈ N+-step observation extensions in a system after
generating an observation ω from q0, is defined as

Lo(q0, ω, k) =
⋃

q∈ϕ(q0,ω)

Lo(q0, ω, q, k).

The probability of generating ω′ ∈ Lo(q0, ω, k) after the system generates an observa-
tion ω from q0 is

Pro(q0, ω, k, ω′) = ∑
q∈ϕ(q0,ω)

∑
s∈S(q,ω′)

Prσ(q0, ω, q, s).

Note that Pro(q0, ω, k, ω′) is the probability of generating an observation ω′ due to
a k-step observation extension, under the premise that an observation ω from q0 has
been generated.

Example 4. Let us consider the probabilistic automaton structure in Figure 1 with initial state q1.
Suppose Σo = {α, β, λ, γ, µ}, Σuo = {τ} and k = 2. We have Lo(q1, β, q3, 2) = {γγ, γµ, µα,
µβ} and Lo(q1, β, q5, 2) = {µα, µβ}. Due to Lo(q1, β, 2) = Lo(q1, β, q3, 2)∪Lo(q1, β, q5, 2) =
{γγ, γµ, µα, µβ}, the probabilities of generating ω′ ∈ Lo(q1, β, 2) after the system generates an
observation ω = β from state q1 is

For ω′ = γγ : Pro(q1, β, 2, γγ) = Prσ(q1, β, q3, γγ) = 5/9× 0.2× 0.2 = 1/45;

For ω′ = γµ : Pro(q1, β, 2, γµ) = Prσ(q1, β, q3, γτµ) = 5/9× 0.2× 0.8× 1 = 4/45;

For ω′ = µα : Pro(q1, β, 2, µα) = Prσ(q1, β, q3, τµα) + Prσ(q1, β, q5, µα)

= 5/9× 0.8× 1× 0.5 + 4/9× 1× 0.5 = 4/9;

For ω′ = µβ : Pro(q1, β, 2, µβ) = Prσ(q1, β, q3, τµβ) + Prσ(q1, β, q5, µβ)

= 5/9× 0.8× 1× 0.5 + 4/9× 1× 0.5 = 4/9.

Definition 2 (Adjacent states). Given a probabilistic automaton structure Gs = (Q, Σ, δ, ρ) and
two initial states q0 ∈ Q and q′0 ∈ Q, q0 and q′0 are said to be adjacent if there exists an observation
ω ∈ Σ∗o \ {ε} such that Pro(q0, ω) > 0 and Pro(q′0, ω) > 0 hold.

Two initial states q0 and q′0 are adjacent if an observation that is not the empty string can
be generated from both q0 and q′0. The concept of state differential privacy in probabilistic
automata is presented to conceal two adjacent initial states of a system.

Definition 3 (State differential privacy). Given a probabilistic automaton structure Gs =
(Q, Σ, δ, ρ) and two adjacent initial states q0, q′0 (leading to two probabilistic automata G(q0)
and G(q′0)), G(q0) and G(q′0) are said to satisfy ε-state differential privacy, within a given k-step
observation extension if, after G(q0) and G(q′0) generate an observation ω ∈ Σ∗o from q0 and q′0,
respectively, for all k′ ≤ k, for all ω′ ∈ Lo(q0, ω, k′) ∪ Lo(q′0, ω, k′), it holds

|Pro(q0, ω, k′, ω′)− Pro(q′0, ω, k′, ω′)| ≤ ε,
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where the parameter ε is a positive real number between zero and one, which stipulates the level of
privacy protection for adjacent initial states.

3.2. Problems

In this subsection, we formulate two problems involving the pre-defined state differ-
ential privacy in probabilistic automata. First, this work focuses on step-based verification
for state differential privacy to protect the initial state.

Problem 1. Given two probabilistic automata G(q0) = (Q, Σ, δ, q0, ρ) and G(q′0) = (Q, Σ, δ, q′0, ρ),
and an observation ω ∈ Σ∗o , construct a verifier Vω = (Qv, Σo, δv,Q0) that is a finite state automa-
ton to verify whether G(q0) and G(q′0) satisfy ε-state differential privacy, within k-step observation
extensions, after G(q0) and G(q′0) generate the given observation ω from two adjacent initial states
q0 and q′0, respectively.

Next, we propose a supervisory control method to supervise the behavior of two
probabilistic automata such that the controlled systems satisfy state differential privacy.

Problem 2. Given a verifier Vω = (Qv, Σo, δv, Q0) for two probabilistic automata G(q0) and
G(q′0), find a supervisor such that the controlled systems satisfy ε-state differential privacy while
the supervisory control is maximally permissive.

A solution to Problem 2 would ensure that an attacker is unlikely to infer the initial
states of the two probabilistic automata within a given k-step observation extension.

4. Step-Based Verification for State Differential Privacy

This section provides a step-based verification method for state differential privacy
in DESs modeled with probabilistic automata. The information of similar initial resource
configurations of two probabilistic automata is protected if the two systems satisfy state dif-
ferential privacy, within a finite step observation extension, after the two systems generate
a given observation from two given adjacent initial states.

The set of post-states of a state q in a probabilistic automaton G = (Q, Σ, δ, q0, ρ) is
defined as

q] = {q′ ∈ Q | (∃e ∈ Σ) δ(q, e) = q′}.

Given a probabilistic automaton G = (Q, Σ, δ, q0, ρ), for a state q ∈ Q and an observ-
able event e ∈ Σo, we define

σ(q, e) = {s ∈ Σ∗ | (∃t ∈ Σ∗uo)s = te, Prσ(q, s) > 0}

as the set of extended strings of e generated at q.
All extended strings of an observable event generated at a state are the concatenation

of an unobservable string or the empty string with the observable event, and must end
with the observable event. Given a positive integer k, suppose that an observation ω has
been generated from two adjacent initial states. When a new observation ω′ occurs, whose
length is less than or equal to k, ωω′ is observed. A verifier needs to be defined to check
whether two systems with two adjacent initial states satisfy state differential privacy.

Definition 4 (Verifier). Given two probabilistic automata G(q0) = (Q, Σ, δ, q0, ρ) and G(q′0) =
(Q, Σ, δ, q′0, ρ), and an observation ω ∈ Σ∗o , a verifier is a four-tuple Vω = (Qv, Σo, δv, Q0),
where Qv is a finite set of all states S1 × S2 with S1,S2 ∈ 2Q, Q0 = ϕ(q0, ω)× ϕ(q′0, ω) is an
initial state, Σo is a set of observable events, and δv : Qv × Σo → Qv is a state transition function
such that, ∀S1 ∈ 2Q, ∀S2 ∈ 2Q with S1 6= S2, ∀e ∈ Σo, for Q = S1 × S2 ∈ Qv with Q 6= ∅,⋃

q∈S1∪S2
ϕ(q, e) 6= ∅⇒ ⋃

q∈S1
ϕ(q, e)× ⋃

q∈S2
ϕ(q, e)= δv(Q, e) ∈ Qv. Write δv(Q, e)! if δv

is defined for an observable event e ∈ Σo at state Q ∈ Qv.
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Given two probabilistic automata G(q0) = (Q, Σ, δ, q0, ρ) and G(q′0) = (Q, Σ, δ, q′0, ρ),
and an observation ω, a verifier Vω = (Qv, Σo, δv,Q0) is constructed by Algorithm 1. For two
adjacent initial states q0 and q′0, lines 1–15 compute ϕ(q0, ω), ϕ(q′0, ω) and take their Cartesian
product as an initial stateQ0 (Qv is initialized to {Q0}). ForQ = S1×S2 ∈ Qn (Qn is initialized
to {Q0}), if S1 6= S2 and Q 6= ∅, for any observable event e ∈ Σo, we obtain the sets of all
reachable states by generating e from all states in S1 and S2, denoted by S ′1 and S ′2, respectively.
δv(Q, e) = S ′1 × S ′2 is defined, S ′1 × S ′2 is inserted into Qn and Qv, and Q is removed from
Qn. Recursively execute what is stated as above until Qn is the empty set. The complexity of
Algorithm 1 isO(2|Q|).

Algorithm 1: Construction of a verifier

Input: Two probabilistic automata G(q0) = (Q, Σ, δ, q0, ρ) and G(q′0) = (Q, Σ, δ,
q′0, ρ), and an observation ω

Output: A verifier Vω = (Qv, Σo, δv,Q0)
1 foreach q ∈ {q0, q′0} do
2 e← ω[1]; ϕ(q, e)← ∅; Sq ← {q};
3 foreach q′ ∈ Sq do
4 Sq ← Sq \ {q′};
5 foreach e′ ∈ {e} ∪ Σuo do
6 if δ(q′, e′) = q′′ & e′ = e then
7 ϕ(q, e)← ϕ(q, e) ∪ {q′′};
8 if δ(q′, e′) = q′′ & e′ ∈ Σuo then
9 Sq ← Sq ∪ {q′′};

10 for i = 2, i ≤ |ω|; i ++ do
11 ω′ ← ω[1] · · ·ω[i− 1]; ω′′ ← ω′ω[i]; ϕ(q, ω′′)← ∅;
12 foreach q′ ∈ ϕ(q, ω′) do
13 e← ω[i]; ϕ(q′, e)← ∅; Sq ← {q′};
14 compute ϕ(q′, ω[i]) by lines 3–9;
15 ϕ(q, ω′′)← ϕ(q, ω′′) ∪ ϕ(q′, ω[i]);

16 Q0 ← ϕ(q0, ω)× ϕ(q′0, ω); Qv ← {Q0}; Qn ← {Q0};
17 foreach Q = S1 × S2 ∈ Qn do
18 if S1 6= S2 & Q 6= ∅ then
19 foreach e ∈ Σo do
20 foreach q ∈ S1 ∪ S2 do
21 ϕ(q, e)← ∅; Sq ← {q};
22 compute ϕ(q, e) by lines 3–9;

23 S ′1 ←
⋃

q∈S1
ϕ(q, e); S ′2 ←

⋃
q∈S2

ϕ(q, e);
24 Q′ ← S ′1 × S ′2; Q′ ← δv(Q, e);
25 Qv ← Qv ∪ {Q′}; Qn ← Qn ∪ {Q′};

26 Qn ← Qn \ {Q};

Example 5. Let us consider the probabilistic automaton structure in Figure 1 with two adja-
cent initial states q1 and q2. Suppose Σo = {α, β, λ, γ, µ} and Σuo = {τ}. If two systems
G(q1) and G(q2) generate an observation β, ϕ(q1, β) = {q3, q5} and ϕ(q2, β) = {q4, q5} hold.
Q0 = {q3, q5} × {q4, q5} is an initial state in a verifier Vβ. For state Q0 and observable event γ,⋃

q∈{q3,q5} ϕ(q, γ) = {q3},
⋃

q′∈{q4,q5} ϕ(q′, γ) = ∅ and δv(Q0, γ) = {q3} ×∅ hold. For state
Q0 and observable event µ, it holds

⋃
q∈{q3,q5} ϕ(q, µ) = {q0},

⋃
q′∈{q4,q5} ϕ(q′, µ) = {q0} and

δv(Q0, µ) = {q0}× {q0}. A verifier Vβ is shown in Figure 2a. If G(q1) and G(q2) do not generate
any observation before verifying state differential privacy, a verifier Vε is shown in Figure 2b.
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Q0 : {q3, q5} × {q4, q5}start

Q2 : {q0} × {q0}Q1 : {q3} ×∅

γ
µ

(a) Verifier Vβ.

Q0 : {q1} × {q2}start

Q1 : {q3} × {q4} Q2 : ∅× {q2}

Q3 : {q3} ×∅ Q4 : {q0} × {q0}

β, λ
γ

γ
µ

(b) Verifier Vε

Figure 2. Verifiers Vβ and Vε for G(q1) and G(q2).

Given a verifier Vω = (Qv, Σo, δv,Q0), a sequence of states and observable events
Qi0ei1Qi1 · · · Qij−1eijQij generates an observation ei1 · · · eij for h = {0, 1, . . . , j} and eih ∈ Σo,
δv(Qih−1, eih) = Qih for h = {1, 2, . . . , j}. The state transition function δv is extended to
δv : Qv × Σ∗o → Qv by defining δv(Q, ε) = Q and δv(Q, se) = δv(δv(Q, s), e) for Q ∈ Qv,
s ∈ Σ∗o and e ∈ Σo.

For state Q ∈ Qv, ]Q and Q] are the sets of pre- and post-states of Q, respectively,
defined as

]Q = {Q′ ∈ Qv | (∃e ∈ Σo) δv(Q′, e) = Q};
Q] = {Q′ ∈ Qv | (∃e ∈ Σo) δv(Q, e) = Q′}.

Proposition 1. Given a probabilistic automaton structure Gs = (Q, Σ, δ, ρ), two adjacent initial
states q0 and q′0, and an observation ω ∈ Σ∗o , let Vω = (Qv, Σo, δv,Q0) be the verifier due to
Algorithm 1. Given S1 ∈ 2Q, S2 ∈ 2Q, and a positive real number ε, for Q = S1 × S2 ∈ Qv
with Q] = ∅, if |Pro(q0, ωω′)− Pro(q′0, ωω′)| ≤ ε where δv(Q0, ω′) = Q and ω′ ∈ Σ∗o , then
|Pro(q0, ωω′ω′′)− Pro(q′0, ωω′ω′′)| ≤ ε where ∀ω′′ ∈ Σ∗o .

Proof. For Q = S1 × S2 ∈ Qv in verifier Vω, if Q] = ∅, it holds that S1 = ∅, S2 = ∅
or S1 = S2. If S1 = ∅ and |Pro(q0, ωω′) − Pro(q′0, ωω′)| ≤ ε, then Pro(q0, ωω′) = 0
and Pro(q′0, ωω′) ≤ ε hold. For any observation ω′′ ∈ Σ∗o generated from q ∈ S2,
0 ≤ Pro(q, ω′′) ≤ 1 and Pro(q0, ωω′ω′′) = 0 hold. We have Pro(q′0, ωω′)× Pro(q, ω′′) ≤ ε,
that is, Pro(q′0, ωω′ω′′) ≤ ε. |Pro(q0, ωω′ω′′)− Pro(q′0, ωω′ω′′)| ≤ ε holds. If S2 = ∅, we
have Pro(q0, ωω′ω′′) ≤ ε, Pro(q′0, ωω′ω′′) = 0 and |Pro(q0, ωω′ω′′)− Pro(q′0, ωω′ω′′)| ≤
ε for any observation ω′′ ∈ Σ∗o by the similar way. If S1 = S2 and |Pro(q0, ωω′) −
Pro(q′0, ωω′)| ≤ ε, for any observation ω′′ ∈ Σ∗o generated from q ∈ S1 (or q ∈ S2), since
0 ≤ Pro(q, ω′′) ≤ 1, it holds that |Pro(q0, ωω′)× Pro(q, ω′′)− Pro(q′0, ωω′)× Pro(q, ω′′)| ≤
ε, that is, |Pro(q0, ωω′ω′′)− Pro(q′0, ωω′ω′′)| ≤ ε.

In Proposition 1, for all states Q ∈ Qv without post-states in verifier Vω, given a
positive real number ε, if the difference between the probabilities of generating ωω′ from
q0 and q′0 is less than or equal to ε, where δv(Q0, ω′) = Q, then the difference between the
probabilities of generating observation ωω′ω′′ for all ω′′ ∈ Σ∗o from q0 and q′0 is less than
or equal to ε. The two systems with adjacent initial states verified by the verifier satisfy
state differential privacy within any finite step observation extension.

Step-based verification for state differential privacy is implemented by Algorithm 2.
Given a verifier Vω = (Qv, Σo, δv,Q0) for G(q0) = (Q, Σ, δ, q0, ρ) and G(q′0) = (Q, Σ, δ, q′0,
ρ), a finite step k ∈ N+ and a parameter ε, for any k′ ≤ k with k′ ∈ N+, for a state Q ∈ Qn
(Qn is initialized to {Q0}), and for any observable event e with δv(Q, e)!, we obtain the
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probabilities of generating ω′e with δv(Q0, ω′) = Q after the systems generate ω from q0
and q′0, respectively, denoted by Pr1(Q0, ω′e) and Pr2(Q0, ω′e). If the difference between
Pr1(Q0, ω′e) and Pr2(Q0, ω′e) is larger than ε, the two systems with adjacent initial states
do not satisfy ε-state differential privacy; otherwise,Q is deleted from Qn and all post-states
of Q are inserted into Qn. Its complexity is O(k× |Qv|2 × |Σo| × 2|Q|).

Algorithm 2: Step-based verification for state differential privacy

Input: A verifier Vω = (Qv, Σo, δv,Q0), a finite step k and a positive parameter ε
Output: True or False

1 Qn ← {Q0}; Pr1(Q0, ε)← 1; Pr2(Q0, ε)← 1;
2 for k′ = 1, k′ ≤ k; k′ ++ do
3 foreach Q = S1 × S2 ∈ Qn & δv(Q0, ω′) = Q do
4 obtain ϕ(q0, ωω′), ϕ(q′0, ωω′) by Algorithm 1;
5 foreach e ∈ Σo & δv(Q, e)! do
6 foreach q ∈ S1 ∪ S2 do
7 σ(q, e)← ∅; ωa ← ε; Sq ← {(ωa, q)};
8 foreach (ωa, qa) ∈ Sq do
9 Sq ← Sq \ {(ωa, qa)};

10 foreach e′ ∈ {e} ∪ Σuo do
11 ωa ← ωae′;
12 if δ(qa, e′) = qb & e′ = e then
13 σ(q, e)← σ(q, e) ∪ {ωa};
14 if δ(qa, e′) = qb & e′ ∈ Σuo then
15 Sq ← Sq ∪ {(ωa, qb)};

16 P1 ← 0; P2 ← 0; q1 ← q0; q2 ← q′0;
17 foreach q ∈ Si & s ∈ σ(q, e) & i∈{1, 2} do
18 Pi ← Pi + Pr(q|ϕ(qi, ωω′))× Prσ(q, s);

19 foreach i∈{1, 2} do
20 Pri(Q0, ω′e)← Pri(Q0, ω′)× Pi;

21 if |Pr1(Q0, ω′e)− Pr2(Q0, ω′e)| > ε then
22 return false;

23 Q] ← ∅;
24 foreach e ∈ Σo do
25 Q] ← Q] ∪ {δv(Q, e)};
26 Qn ← (Qn \ {Q}) ∪Q];

27 return true;

Example 6. Let us consider the verifier Vβ in Figure 2a. Suppose k = 3 and ε = 0.12. After the two
probabilistic automata G(q1) and G(q2) generate an observation β from two adjacent initial states
q1 and q2, ϕ(q1, β) = {q3, q5} and ϕ(q2, β) = {q4, q5} hold. The probabilities of choosing states
q3 and q5 from ϕ(q1, β) are Pr(q3|ϕ(q1, β)) = 5/9 and Pr(q5|ϕ(q1, β)) = 4/9, respectively.
The probabilities of choosing states q4 and q5 from ϕ(q2, β) are Pr(q4|ϕ(q2, β)) = 1/2 and
Pr(q5|ϕ(q2, β)) = 1/2, respectively.

For initial state Q0 and k′ = 1, it holds that

|Pr1(Q0, γ)− Pr2(Q0, γ)| = Pr(q3|{q3, q5})× Prσ(q3, γ) = 1/9 ≤ ε;

|Pr1(Q0, µ)− Pr2(Q0, µ)| = |Pr(q5|{q3, q5})× Prσ(q5, µ) + Pr(q3|{q3, q5})× Prσ(q3, τµ)

− Pr(q5|{q4, q5})× Prσ(q5, µ)− Pr(q4|{q4, q5})× Prσ(q4, τµ)| = 1/9 ≤ ε.
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For k′ = 2 and k′ = 3, there is no state transition with k′-step observation extensions in Vβ.
Two systems G(q1) and G(q2) satisfy ε-state differential privacy with ε = 0.12, within three-step
observation extensions, after the systems generate β from q1 and q2.

Consider the verifier Vε in Figure 2b. For initial state Q0 and k′ = 1, it holds that

|Pr1(Q0, β)− Pr2(Q0, β)| = |Pr(q1|{q1})× Prσ(q1, β)− Pr(q2|{q2})× Prσ(q2, β)|
= 0.1 ≤ ε;

|Pr1(Q0, λ)− Pr2(Q0, λ)| = |Pr(q1|{q1})× Prσ(q1, λ)− Pr(q2|{q2})× Prσ(q2, λ)|
= 0.3 > ε;

|Pr1(Q0, γ)− Pr2(Q0, γ)| = |Pr(q2|{q2})× Prσ(q2, γ)| = 0.4 > ε.

Two systems G(q1) and G(q2) do not satisfy ε-state differential privacy with ε = 0.12, within three-
step observation extensions, after the systems generate the empty string from q1 and q2, respectively.

Theorem 1. Two systems satisfy ε-state differential privacy, within k ∈ N+-step observation
extensions, after the systems generate a given observation from two given adjacent initial states if,
and only if Algorithm 2 returns true.

Proof. (if) Given two probabilistic automata G(q0) = (Q, Σ, δ, q0, ρ) and G(q′0) = (Q, Σ,
δ, q′0, ρ), a positive real number ε, and an observation ω ∈ Σ∗o , let Vω = (Qv, Σo, δv,Q0)
be the verifier due to Algorithm 1. Given a positive integer k ∈ N+, for any k′ ≤ k with
k′ ∈ N+, and for any observation ω′ ∈ Σ∗o whose length is equal to k′ generated from
Q0, Pr1(Q0, ω′) and Pr2(Q0, ω′) in Algorithm 2 are the probabilities of generating ω′ after
the systems generate ω from q0 and q′0, respectively. For any ω′ ∈ Σ∗o generated within
k-step observation extensions after the systems generate ω from q0 and q′0, the difference
between Pr1(Q0, ω′) and Pr2(Q0, ω′) is less than or equal to ε if Algorithm 2 returns true,
that is, for all k′ ≤ k and all ω′ ∈ Lo(q0, ω, k′) ∪ Lo(q′0, ω, k′), it holds |Pro(q0, ω, k′, ω′)−
Pro(q′0, ω, k′, ω′)| ≤ ε. The two systems G(q0) and G(q′0) satisfy ε-state differential privacy,
within k-step observation extensions, after the systems generate a given observation ω from
two given adjacent initial states q0 and q′0.

(only if) If Algorithm 2 returns false, there exists an observation ω′ ∈ Σ∗o such that
the difference between Pr1(Q0, ω′) and Pr2(Q0, ω′) is larger than ε, that is, there exists a
positive integer k′ ≤ k such that |Pro(q0, ω, k′, ω′)− Pro(q′0, ω, k′, ω′)| > ε holds, where
ω′ ∈ Lo(q0, ω, k′) ∪ Lo(q′0, ω, k′). The two systems G(q0) and G(q′0) do not satisfy ε-state
differential privacy. This reveals that Algorithm 2 returns true if two systems G(q0) and
G(q′0) satisfy ε-state differential privacy, within k-step observation extensions, after G(q0)
and G(q′0) generate a given observation from two given adjacent initial states q0 and q′0.

5. Supervisory Control for Enforcing State Differential Privacy

As seen from Section 4, if the probability distributions of generating observations
within a given finite step observation extension, after two systems generating a given
observation from two adjacent initial states are approximate, then the two systems satisfy
state differential privacy. To ensure that the two systems satisfy state differential privacy
within a given finite step observation extension, we present a supervisory control strategy
for enforcing state differential privacy.

Given a matrix M, we use M[i][j] to describe the element in the i-th row and j-th
column of M, where i, j ∈ N+. The number of rows or columns in M is represented as
Nr(M) ∈ N+ or Nc(M) ∈ N+. Moreover, M[:][j] and M[i][:] are the j-th column and the
i-th row vectors of M, respectively. Moreover, if M is a row (column) vector, M[i] is the
element in the i-th column (row) of M. Given two m× n matrices M1 and M2, an m× 2n
matrix M = [M1|M2] is a horizontal extension of M1 and M2.

Given a verifier Vω = (Qv, Σo, δv, Q0) and a state Q ∈ Qv, the set C(Q) is defined as

C(Q) = {e ∈ Σo | (∃Q′ ∈ Q] \ {Q}) δv(Q, e) = Q′}.
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A mapping H : Σo → N+ assigns to an observable event a unique positive integer.
For a state Q ∈ Qv, we sort all events e ∈ C(Q) by H(e) from small to large, and then
give e an index value I(Q, e), where I : Qv × Σo → N+ is a mapping. For two states
Q = S1 × S2 ∈ Qv and Q′ = S ′1 × S ′2 ∈ ]Q, the set of all enabled events from Q′ to Q is
denoted as E(Q′,Q) = {e ∈ Σo | δv(Q′, e) = Q}. For any event e ∈ E(Q′,Q), X(Q′,Q, e)
is defined as a |C(Q′)|-dimensional column vector, which contains zeros and ones only. We
associate a binary scalar X(Q′,Q, e)[v] defined as follows:

X(Q′,Q, e)[v] =

{
1, v = I(Q′, e)
0, v 6= I(Q′, e)

where 1 ≤ v ≤ |C(Q′)| and v ∈ N+. X(Q′,Q) is a horizontal extension of X(Q′,Q, e) for
all e ∈ E(Q′,Q) sorted by increasing the value of I(Q′, e).

Example 7. A probabilistic automaton structure is shown in Figure 3. Given two adjacent initial
states q1 and q2, suppose that Σo = {α, β, γ, λ, µ} and Σuo = {τ}. A verifier Vε is shown in
Figure 4. Let H(α) = 1, H(β) = 2, H(γ) = 3, H(λ) = 4 and H(µ) = 5. For initial state Q0,
C(Q0) = {γ, β, λ} holds. Since I(Q0, β) = 1, I(Q0, γ) = 2 and I(Q0, λ) = 3, it holds that
E(Q0,Q2) = {β, λ} and X(Q0,Q2) = [Xβ|Xλ], where Xβ = (1, 0, 0)T and Xλ = (0, 0, 1)T .

q0 q1 q3 q5

q2 q4

α:0.35

β:0.65

β:0.45
λ:0.55

β:0.4
λ:0.4

γ:0.2

τ:0.8

γ:0.2

γ:0.3

τ:0.7

µ:1

Figure 3. A probabilistic automaton structure G′s.

Q0 : {q1} × {q2}start

Q1 : ∅× {q2} Q2 : {q3} × {q4}

Q3 : {q0} × {q0}

γ
β, λ

γ

µ

Figure 4. Verifier Vε for G′(q1) and G′(q2).

Given a probabilistic automaton structure Gs = (Q, Σ, δ, ρ) with two adjacent initial
states q0, q′0 and an observation ω ∈ Σ∗o , let Vω = (Qv, Σo, δv,Q0) be the verifier. For a
state Q = S1 × S2 ∈ Qv and δv(Q0, ω′) = Q, Zω′(S1|Q) and Zω′(S2|Q) are two |C(Q)|-
dimensional row vectors. For any e ∈ C(Q), I(Q, e) ∈ {1, 2, . . . , |C(Q)|} and i ∈ {1, 2},
it holds that

Zω′(S1|Q)[I(Q, e)] = ∑
q∈S1

∑
s∈σ(q,e)

[Pr(q|ϕ(q0, ωω′))× Prσ(q, s)];

Zω′(S2|Q)[I(Q, e)] = ∑
q∈S2

∑
s∈σ(q,e)

[Pr(q|ϕ(q′0, ωω′))× Prσ(q, s)].

Example 8. Consider the verifier in Figure 4. For state Q0, C(Q0) = {γ, β, λ} holds. Since
I(Q0, β) = 1, I(Q0, γ) = 2 and I(Q0, λ) = 3, we have Zε({q1}|Q0) = (0.45, 0, 0.55) and
Zε({q2}|Q0) = (0.4, 0.2, 0.4). For state Q2, C(Q2) = {µ} holds. We have Zω′({q3}|Q2)
= Prσ(q3, τµ) = 0.8 and Zω′({q4}|Q2) = Prσ(q4, τµ) = 0.7, where ω′ ∈ {β, λ}.
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Given a probabilistic automaton structure Gs = (Q, Σ, δ, ρ) with two adjacent initial
states q0, q′0 and an observation ω ∈ Σ∗o , let Vω = (Qv, Σo, δv,Q0) be the verifier. For a state
Q = S1 × S2 ∈ Qv with δv(Q0, ω′) = Q, Xω′(Si|Q) is called a probability matrix for Si, Q
and ω′, where i ∈ {1, 2}, respectively, defined by

1. if ]Q = ∅, it holds Xε(Si|Q) = Zε(Si|Q);
2. if ]Q 6= ∅, for Q′ = S ′1 × S ′2 ∈ ]Q with δv(Q0, ω′′) = Q′, δv(Q′, e) = Q, and

ω′′e = ω′, it holds that

Xω′
m (Si|Q) = [Xω′′(S ′i |Q′)× X(Q′,Q)]T [:][m]× Zω′(Si|Q).

Then

Xω′(Si|Q) = [Xω′
1 (Si|Q)T | . . . |Xω′

n (Si|Q)T ]T ,

where n = Nr(Xω′′(S ′i |Q′)) and m ∈ {1, 2, . . . , n}.
The computation of probability matrices for a state in a verifier is implemented by

Algorithm 3, whose complexity is O(|Qv| × 2|Q|).

Example 9. Consider the verifier in Figure 4. For initial state Q0, Xε({q1}|Q0) = (0.45, 0, 0.55)
and Xε({q2}|Q0) = (0.4, 0.2, 0.4) hold. Given state Q2, we have

Xε({q1}|Q0)× X(Q0,Q2) = (0.45, 0.55); Xε({q2}|Q0)× X(Q0,Q2) = (0.4, 0.4).

For ω′ ∈ {β, λ}, we have

Xω′({q3}|Q2) = (0.45, 0.55)T [:][1]× Zω′({q3}|Q2) = (0.36, 0.44)T ;

Xω′({q4}|Q2) = (0.4, 0.4)T [:][1]× Zω′({q4}|Q2) = (0.28, 0.28)T .

As in the classical supervisory control theory of DESs, the set Σ is partitioned into
Σc and Σuc (Σ = Σc∪̇Σuc), the sets of controllable and uncontrollable events, respectively.
Traditionally, we can only disable controllable events e ∈ Σc. This paper assumes that all
observable events are controllable and all unobservable events are uncontrollable.

For a probabilistic automaton G = (Q, Σ, δ, q0, ρ), the probabilities of the remaining
enabled events proportionally increase after a controllable event is disabled. If a controllable
event is disabled at state q ∈ Q, the set of all enabled events at q is updated. The firing
probability of a remaining enabled event e at q is equal to ρ(q, e) = ρ(q, e)/∑e′∈E(q) ρ(q, e′).

Example 10. Consider the probabilistic automaton structure in Figure 3. If event β is dis-
abled at state q2, the plant can choose between γ and λ to occur at q2. The firing probabili-
ties of γ and λ at q2 are ρ(q2, γ) = ρ(q2, γ)/(ρ(q2, γ) + ρ(q2, λ)) = 1/3 and ρ(q2, λ) =
ρ(q2, λ)/(ρ(q2, γ) + ρ(q2, λ)) = 2/3, respectively.
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Algorithm 3: Computation of probability matrices for a state in a verifier

Input: A verifier Vω = (Qv, Σo, δv, Q0) and a state Q = S1 × S2 with
δv(Q0, ω′) = Q

Output: Probability matrices Xω′(S1|Q) and Xω′(S2|Q)
1 ]Q ← ∅;
2 foreach Qa ∈ Qv do
3 if δv(Q0, ω′′) = Qa & δv(Qa, e) = Q & ω′′e = ω′ then
4 ]Q ← ]Q∪ {Qa};

5 foreach Q′ ← S ′1 × S ′2 ∈ ]Q do
6 X(Q′,Q)← []; C(Q′)← ∅; C(Q)← ∅;
7 foreach e ∈ Σo & Qa ∈ {Q′,Q} do
8 if δv(Qa, e)! & δv(Qa, e) 6= Qa then
9 C(Qa)← C(Qa) ∪ {e};

10 foreach e ∈ Σo & δv(Q′, e) = Q do
11 for a = 1, a ≤ |C(Q′)|; a ++ do
12 if a = I(Q′, e) then
13 X(Q′,Q, e)[a][1]← 1;

14 else
15 X(Q′,Q, e)[a][1]← 0;

16 X(Q′,Q)← [X(Q′,Q)|X(Q′,Q, e)];

17 foreach i ∈ {1, 2} do
18 Yi ← Xω′′(S ′i |Q′)× X(Q′,Q);
19 obtain ϕ(q0, ωω′), ϕ(q′0, ωω′) by Algorithm 1;
20 foreach e ∈ C(Q) do
21 foreach q ∈ S1 do
22 compute σ(q, e) by Algorithm 2;

23 Zω′(S1|Q)[1][I(Q, e)]← ∑
s∈σ(q,e)

∑
q∈S1

[Pr(q|ϕ(q0, ωω′))× Prσ(q, s)];

24 foreach q ∈ S2 do
25 compute σ(q, e) by Algorithm 2;

26 Zω′(S2|Q)[1][I(Q, e)]← ∑
s∈σ(q,e)

∑
q∈S2

[Pr(q|ϕ(q′0, ωω′))× Prσ(q, s)];

27 foreach i ∈ {1, 2} do
28 n← Nr(Xω′′(S ′i |Q′));
29 for m = 1, m ≤ n; m ++ do
30 Xω′

m (Si|Q)← YT
i [:][m]× Zω′(Si|Q);

31 Xω′(Si|Q) = [Xω′
1 (Si|Q)T | . . . |Xω′

n (Si|Q)T ]T ;

A functionD : Q→ 2Σ is a mapping that assigns to a state in a probabilistic automaton
G = (Q, Σ, δ, q0, ρ) a set of disabled events. Algorithm 4 computes a control specification,
which is to disable certain events at specific states. Given a probabilistic automaton
structure Gs = (Q, Σ, δ, ρ) with two adjacent initial states q0, q′0 and an observation ω ∈ Σ∗o ,
let Vω = (Qv, Σo, δv,Q0) be the verifier. Given a positive integer k ∈ N+, for any k′ ≤ k
with k′ ∈ N+, Qn is the set of reachable states with k′-step observation extensions. For any
state Q = S1 × S2 ∈ Qn with δv(Q0, ω′) = Q, and for any two numbers x1, x2 at the
same position in Xω′(S1|Q), Xω′(S2|Q), we need to decide whether |x1 − x2| is larger
than ε. If so, event e is disabled at all q ∈ S1 ∪ S2, where I(Q, e) = j and x1 is in the j-th
column of Xω′(S1|Q). Xω′(S1|Q) and Xω′(S2|Q) are then updated. Moreover, for any
observable event e with δv(Q, e) = Q, w1 and w2 are the probabilities of generating e from
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q ∈ S1 and q′ ∈ S2, respectively. For any two numbers x1, x2 at the same position in
Xω′(S1|Q), Xω′(S2|Q), and for any positive integer n ≤ k− k′ with n ∈ N+, we decide
whether |wn

1 × x1 − wn
2 × x2| ≤ ε holds until wn

1 × x1 and wn
2 × x2 are both less than or

equal to ε. If |wn
1 × x1 − wn

2 × x2| > ε, event e is disabled at all q ∈ S1 ∪ S2. Its complexity
is O(k× |Qv|2 × |Σo| × 2|Q|).

Algorithm 4: Computation of a control specification

Input: A verifier Vω = (Qv, Σo, δv, Q0) and a positive integer k
Output: The function D

1 Qn ← {Q0}; Qm ← ∅; ∀q ∈ Q : D(q)← ∅;
2 for k′ = 1, k′ ≤ k; k′ ++ do
3 foreach Q = S1 × S2 ∈ Qn & δv(Q0, ω′) = Q do
4 M← Xω′(S1|Q)− Xω′(S2|Q); Q] ← ∅;
5 foreach M[i][j] do
6 if |M[i][j]| > ε then
7 foreach q ∈ S1 ∪ S2 & I(Q, e) = j do
8 D(q)← D(q) ∪ {e};
9 update Xω′(S1|Q), Xω′(S2|Q);

10 go to line 5;

11 obtain ϕ(q0, ωω′), ϕ(q′0, ωω′) by Algorithm 1;
12 foreach e ∈ Σo & δv(Q, e) = Q do
13 w1 ← ∑q∈S1

[Pr(q|ϕ(q0, ωω′))× ρ(q, e)];
14 w2 ← ∑q∈S2

[Pr(q|ϕ(q′0, ωω′))× ρ(q, e)];
15 for n = 1, n ≤ k− k′; n ++ do
16 foreach x1 = Xω′(S1|Q)[i][j] & x2 = Xω′(S2|Q)[i][j] do
17 if wn

1 × x1 ≤ ε & wn
2 × x2 ≤ ε then

18 break;

19 if |wn
1 × x1 − wn

2 × x2| > ε then
20 foreach q ∈ S1 ∪ S2 do
21 D(q)← D(q) ∪ {e};
22 go to line 12;

23 foreach e ∈ Σo & δv(Q, e)! & δv(Q, e) 6= Q do
24 Q] ← Q] ∪ {δv(Q, e)};
25 Qn ← Qn \ {Q}; Qm ← Qm ∪ (Q] \ {Q});
26 Qn ← Qm; Qm ← ∅;

A supervisory control function for a probability automaton G = (Q, Σ, δ, q0, ρ) is
V : Q→ 2Σ that assigns to a state in G a set of enabled events, where V(q) = E(q) \ D(q)
for all q ∈ Q. The next event allowed to happen at q by supervisory control is e ∈ V(q).
A supervisor implementing the supervisory control function V can be constructed if⋃

q∈QD(q) ∩ Σuc = ∅ holds.

Example 11. Let us consider the verifier in Figure 4. Suppose Σc = {α, β, λ, γ, µ}, Σuc = {τ},
k = 10 and ε = 0.12. For k′ = 1, Xε({q1}|Q0) = (0.45, 0, 0.55) and Xε({q2}|Q0) =
(0.4, 0.2, 0.4) hold. Since |0− 0.2| > ε, disable event γ at state q2. We update Xε({q1}|Q0) =

(0.45, 0.55) and Xε({q2}|Q0) = (0.5, 0.5). For k′ = 2, Xω′({q3}|Q2) = (0.36, 0.44)T and
Xω′({q4}|Q2) = (0.35, 0.35)T hold, where ω′ ∈ {β, λ}. Since ρ(q3, γ) × Xω′({q3}|Q2) =

(0.072, 0.088)T and ρ(q4, γ)× Xω′({q4}|Q2) = (0.105, 0.105)T , event γ is not disabled at states
q3 and q4. For 2 ≤ k′ ≤ k and k′ ∈ N+, since Q]

3 = ∅, we do not need to do more analysis.
The control specification is that event γ is disabled at state q2, that is, D(q2) = {γ}. Due to
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⋃
q∈QD(q) ∩ Σuc = ∅, there exists a supervisor to control the system behavior such that G′(q1)

and G′(q2) satisfy ε-state differential privacy, within 10-step observation extensions, after G′(q1)
and G′(q2) generate the empty string from q1 and q2. The skeleton of a supervisor implementing V
is shown in Figure 5.

0 1 3 5

2 4

α

β

β, λ

β, λ
γ

τ

γ

τ

µ

Figure 5. The skeleton of a supervisor for G′(q1) and G′(q2).

Theorem 2. Given a probabilistic automaton structure Gs = (Q, Σ, δ, ρ) and two adjacent initial
states q0, q′0, G(q0) and G(q′0) controlled by the control specification due to Algorithm 4 satisfy
ε-state differential privacy, within a given k-step observation extension, after the systems generate a
given observation ω ∈ Σ∗o from q0 and q′0.

Proof. Given a probabilistic automaton structure Gs = (Q, Σ, δ, ρ) with two adjacent
initial states q0, q′0 and an observation ω ∈ Σ∗o , let Vω = (Qv, Σo, δv,Q0) be the verifier.
For Q = S1 × S2 ∈ Qv that can be reached with k′-step observation extensions and
δv(Q0, ω′) = Q, where k′ ≤ k and k′ ∈ N+, if there exists no observable event e ∈ Σo such
that δv(Q, e) = Q, and if |Xω′(S1|Q)[i][j] − Xω′(S2|Q)[i][j]| ≤ ε holds for all i, j ∈ N+,
then the difference between the probabilities of generating ωω′e for any e ∈ Σo from q0 and
q′0 is less than or equal to ε.

For Q = S1 × S2 ∈ Qv that can be reached with k′-step observation extensions and
δv(Q0, ω′) = Q, if there exists an observable event e ∈ Σo such that δv(Q, e) = Q, then
the relation |wn

1 × x1 − wn
2 × x2| ≤ ε is true until wn

1 × x1 ≤ ε and wn
2 × x2 ≤ ε hold for all

1 ≤ n ≤ k− k′ and n ∈ N+, where w1 and w2 are the probabilities of generating e from
q ∈ S1 and q′ ∈ S2, respectively, and x1, x2 are any two numbers at the same position in
Xω′(S1|Q), Xω′(S2|Q), respectively. The difference between the probabilities of generating
ωω′ωa for all ωa ∈ Σ∗o containing e from q0 and q′0 is less than or equal to ε. For all k′ ∈ N+

and ω′ ∈ Σ∗o , where k′ ≤ k and |ω′| = k′, it holds that |Pro(q0, ω, k, ω′)−Pro(q′0, ω, k, ω′)| ≤
ε. Two systems G(q0) and G(q′0) controlled by the control specification due to Algorithm 4
satisfy ε-state differential privacy, within a given k-step observation extension, after the
systems generate a given observation ω from q0 and q′0.

The supervisory control is maximally permissive for ε-state differential privacy en-
forcement if the number of enabled controllable events at any state in the probabilistic
automaton controlled via the supervisor is the largest compared with other supervisory
control methods. If a supervisor implementing the proposed supervisory control function
can be constructed, then the maximally permissive supervisory control exists.

Proposition 2. The supervisory control under the control specification due to Algorithm 4 is
maximally permissive.

Proof. Given a probabilistic automaton structure Gs = (Q, Σ, δ, ρ) with two adjacent initial
states q0, q′0 and an observation ω ∈ Σ∗o , let Vω = (Qv, Σo, δv,Q0) be the verifier. A su-
pervisor is constructed by the control specification due to Algorithm 4. The supervisory
control function for a probability automaton G = (Q, Σ, δ, q0, ρ) under the control spec-
ification is V : Q → 2Σ, where V(q) = E(q) \ D(q) for all q ∈ Q. Suppose that G(q0)
and G(q′0) reach states q and q′ by generating ωω′ ∈ Σ∗o from q0 and q′0 within k ∈ N+-
step observation extensions, respectively. For all e ∈ V(q) (or e ∈ V(q′)), it holds that
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|Pro(q0, ωω′e) − Pro(q′0, ωω′e)| ≤ ε. If any event e ∈ D(q) ∪ D(q′) occurs from q or q′,
we obtain |Pro(q0, ωω′e)− Pro(q′0, ωω′e)| > ε. Since D(q) ∪ D(q′) ⊆ Σo, there exists an
observation ωω′e such that the difference between firing probabilities of ωω′e at q0 and
q′0 is larger than ε. Two systems G(q0) and G(q′0) do not satisfy ε-state differential privacy,
within k-step observation extensions, after the systems generate ω from q0 and q′0. We
conclude that the supervisory control under the control specification due to Algorithm 4 is
maximally permissive.

6. Numerical Examples

To verify the correctness and effectiveness of the method in this paper, an experimental
study in the MATLAB environment is conducted to illustrate that the proposed method
achieves state differential privacy in the considered class of probabilistic automata and
protects the information of initial system resource configuration.

A probabilistic automaton structure Gs is shown in Figure 6. Suppose Σo = {α, β, λ, µ}
and Σuo = {τ}. Given two adjacent initial states q0 and q1, a verifier Vε for G(q0) and G(q1)
is shown in Figure 7. Let H(α) = 1, H(β) = 2, H(λ) = 3 and H(µ) = 4.

q0 q1

q2 q3

q4 q5

q6

β:0.09
λ:0.65

µ:0.26 µ:0.25

α:0.15
λ:0.6

τ:0.2

α:0.6
λ:0.2

α:0.88
β:0.12

τ:1

α:0.6
λ:0.4

β:1

Figure 6. A probabilistic automaton structure G′′s .

Q0 : {q0} × {q1}start

Q1 : {q2} × {q3}Q2 : {q2} ×∅ Q3 : ∅× {q3}

Q4 : {q4, q5} × {q5} Q5 : {q4} ×∅ Q6 : {q5} × {q5}

Q7 : {q6} × {q6}

µ

λ
β α

α
λ

β

α, λ

Figure 7. Verifier Vε for G′′(q0) and G′′(q1).

Suppose Σc = {α, β, λ, µ} and Σuc = {τ}. Let ε = 0.1 and k = 5. For k′ = 1
and initial state Q0, since I(Q0, α) = 1, I(Q0, β) = 2 and I(Q0, λ) = 3, Xε({q0}|Q0) =
(0, 0.09, 0.65) and Xε({q1}|Q0) = (0.15, 0, 0.6) hold. Since 0.15 > ε, event α is disabled
at states q0 and q1. Since ρ(q1, λ) = ρ(q1, λ)/(ρ(q1, λ) + ρ(q1, µ)) = 0.6/(0.6 + 0.25) ≈
0.7 and ρ(q1, µ) = ρ(q1, µ)/(ρ(q1, λ) + ρ(q1, µ)) = 0.25/(0.6 + 0.25) ≈ 0.3, we update
Xε({q0}|Q0) = (0.09, 0.65) and Xε({q1}|Q0) = (0, 0.7). Events β and λ are not disabled at
states q0 and q1. For event µ enabled at q0 and q1, it holds that

ρ(q0, µ)1 × Xε({q0}|Q0) = 0.26× (0.09, 0.65) = (0.0234, 0.169);

ρ(q1, µ)1 × Xε({q1}|Q0) = 0.3× (0, 0.7) = (0, 0.21);
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ρ(q0, µ)2 × Xε({q0}|Q0) = 0.262 × (0.09, 0.65) ≈ (0.006, 0.044) ≤ (0.1, 0.1);

ρ(q1, µ)2 × Xε({q1}|Q0) = 0.32 × (0, 0.7) = (0, 0.063) ≤ (0.1, 0.1).

Event µ is not disabled at states q0 and q1. For k′ = 2 and state Q1, it holds that

Xε({q0}|Q0)× X(Q0,Q1) = (0.09, 0.65)× (0, 1)T = 0.65;

Xε({q1}|Q0)× X(Q0,Q1) = (0, 0.7)× (0, 1)T = 0.7;

Xλ({q2}|Q1) = 0.65× Zλ({q2}|Q1) = 0.65× (0.6 + 0.2× 0.88, 0.2× 0.12, 0.2)

= (0.5044, 0.0156, 0.13);

Xλ({q3}|Q1) = 0.7× Zλ({q3}|Q1) = 0.7× (0.88, 0.12, 0) = (0.616, 0.084, 0).

Since 0.13 > ε, event λ is disabled at states q2 and q3. We update

ρ(q2, α) = ρ(q2, α)/(ρ(q2, α) + ρ(q2, τ)) = 0.6/(0.6 + 0.2) = 0.75;

ρ(q2, τ) = ρ(q2, τ)/(ρ(q2, α) + ρ(q2, τ)) = 0.2/(0.6 + 0.2) = 0.25;

Xλ({q2}|Q1) = 0.65× Zλ({q2}|Q1) = 0.65× (0.75 + 0.25× 0.88, 0.25× 0.12)

= (0.6305, 0.0195);

Xλ({q3}|Q1) = 0.7× Zλ({q3}|Q1) = 0.7× (0.88, 0.12) = (0.616, 0.084).

Events α and β are not disabled at states q2 and q3. For k′ = 3 and state Q4, it holds

Xλ({q2}|Q1)× X(Q1,Q4) = (0.6305, 0.0195)× (1, 0)T = 0.6305;

Xλ({q3}|Q1)× X(Q1,Q4) = (0.616, 0.084)× (1, 0)T = 0.616;

Pr({q4, q5}|ϕ(q0, λα)) = 0.65× 0.75/(0.65× 0.75 + 0.65× 0.25× 0.88) ≈ 0.773;

Pr({q5}|ϕ(q0, λα)) = 0.65× 0.25× 0.88/(0.65× 0.75 + 0.65× 0.25× 0.88) ≈ 0.227;

Xλα({q4, q5}|Q4) = 0.6305× Zλα({q4, q5}|Q4) = 0.6305×
(0.773× 1× 0.6 + 0.227× 0.6, 0.773× 1× 0.4 + 0.227× 0.4) = (0.3783, 0.2522);

Xλα({q5}|Q4) = 0.616× Zλα({q5}|Q4) = 0.616× (0.6, 0.4) = (0.3696, 0.2464).

Events α and λ are not disabled at states q4 and q5. For k′ > 3, there is no state transition
with k′-step observation extensions in Vε. The control specification is that event α is disabled
at state q1 and event λ is disabled at state q2. The skeleton of a supervisor is shown in
Figure 8. For two probabilistic automata G(q0) and G(q1) controlled via the supervisor,
the probability distributions of generating observations within five-step observation extensions
from two adjacent initial states q0 and q1 are shown in Figures 9a–d and 10.

q0 q1

q2 q3

q4 q5

q6

β,λ

µ µ

λ

τ

α α,β

τ

α,λ

β

Figure 8. The skeleton of a supervisor for G′′(q0) and G′′(q1).
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(a) (b)

(c) (d)

Figure 9. The probability distributions of generating observations within four-step observation
extensions from q0 and q1. (a) k = 1; (b) k = 2; (c) k = 3; (d) k = 4.

Figure 10. The probability distributions of generating observations with five-step observation exten-
sions from q0 and q1.

As shown in Figures 9a–d and 10, two systems G(q0) and G(q1) controlled via the
supervisor satisfy 0.1-state differential privacy, within five-step observation extensions,
after the systems generate the empty string from q0 and q1. The smaller the ε is, the more
events are disabled, and the fewer observations the systems generate. The supervisory con-
trol is maximally permissive. Two systems G(q0) and G(q1) controlled via the supervisor
satisfy 0.1-state differential privacy while generating the most observations.

These results indicate that our method solves the problems formulated in Section 3.
By constructing a verifier, we verify whether two probabilistic automata with two adjacent
initial states satisfy ε-state differential privacy, within finite step observation extensions.
Moreover, the obtained supervisor enables the two controlled systems to satisfy ε-state
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differential privacy, while the supervisory control is maximally permissive. The existing
differential privacy methods presented in probabilistic DESs cannot protect the initial state
information. Our proposed method achieves state differential privacy in the considered
class of probabilistic automata and protects the initial state information.

7. Conclusions

State differential privacy is defined to protect the initial state information of a DES
modeled by a probabilistic automaton. The initial state information of a system represents
its initial system resource configuration. Step-based state differential privacy verification
is proposed in the framework of probabilistic automata. If two probabilistic automata
satisfy state differential privacy, within a given finite step observation extension, after the
systems generate a given observation from two adjacent initial states, then an attacker is
unlikely to determine the initial states of the systems after observing the given observation;
otherwise, a maximally permissive supervisory control is designed for state differential
privacy enforcement. To this end, the probability distributions of generating observations
within the given finite step observation extension, after the systems generate the given
observation from the two adjacent initial states, are approximate. In the future, other
applications of differential privacy in DESs will be investigated.
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