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Abstract: Fluids have played and still play a vital role in attaining an optimized output from industrial
processes. However, due to technological advancement, fluids with high hydrothermal characteristics
are required. In order to overcome these challenges, researchers have developed fluids with dispersed
nanoparticles, which are recognized as nanofluids. Various types of nanoparticles can be added to
base fluids to produce thermally enhanced liquids. Among these, the addition of multi-walled carbon
nanotubes (MWCNTs) is considered the best due to the considerable enhancement of thermophysical
properties and the stability of the solution. Thus, in the present investigation, an analysis of the heat
transfer characteristics of an MWCNT–water nanofluid included in a star-shaped cavity equipped
with a hot rectangular baffle is conducted. In addition, a uniform magnetic field is applied along
the x-direction to oppose the convective flow generated by variations in density. Mathematical
formulations under assumed boundary conditions and physical assumptions are established in the
form of dimensionless PDEs. The finite-element-method-based software “COMSOL” is used to
execute the numerical simulations. PARADISO is employed to resolve the developed non-linear
system of equations. The effects of the governing parameters on the velocity and temperature fields
are presented through streamlines and isotherms. The Nusselt number is evaluated to depict the
impact of the addition of nanoparticles (MWCNTs) on the heat transfer enhancement. Changes in the
horizontal and vertical components of velocity are also evaluated against the Rayleigh number and
nanoparticle volume fraction via cutline representation.

Keywords: heat transfer; natural convection; nanofluid; star corrugated enclosure; FEM

MSC: 76R10

1. Introduction

Over the last twenty years, improving the thermophysical properties of fluids has
been one of the prime concerns in the fields of industry, technology, and engineering.
Industries related to food storage, the manufacture of electronic devices, nuclear reactors,
solar collector storage, the maintenance of air conditioning systems, biomedicine, heat
exchangers and many more are examples which require highly capable liquids that have
enhanced thermal capabilities. Most of the available literature mentions that the augmenta-
tion of the heat transfer rate is effectively increased through the dispersion of nanoparticles.
Choi [1] considered this problem by dispersing different types of nanoparticles (metals,
metal oxides, etc.) in base fluids. He stated the heat transfer characteristics of the nanofluid
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were considerably enhanced. Due to the pervasive utilization of nanofluids in diversified
fields, nanofluids have emerged as an innovative field for researchers in recent years. After
the proposition of the idea to add nanoparticles to conventional fluids, experiments related
to the characterization and stability of nanofluids were performed and shown that particles
composed of copper, aluminum, gold, silver, silica, graphene, and many others can be
added to conventional fluids, leading to enhanced thermophysical properties [2]. Chen
et al. [3] explored the significant improvement of the thermal properties of nanofluids
compared to conventional fluids. Based on a computational approach, Khanafer et al. [4]
studied the free convective heat transfer of water-based copper nanoparticles contained in
a square enclosure. The addition of copper nanoparticles to improve the heat transfer rate
in a partially heated 2D cavity was investigated by Oztop and Nada [5]. They mentioned
that adding nanoparticles to the fluid mixtures caused the Nusselt number to increase.
Bouchoucha et al. [6] analyzed the heat transfer and fluid flow a Cu–water-nanofluid-filled
square enclosure. Duangthongsuk and Wongwises [7] explored the thermal performances
of a double-pipe heat exchanger working with a TiO2–water nanofluid. They revealed
that heat transfer coefficient was considerably enhanced by increasing the nanoparticles
volume fraction. Tasnim and Collins [8] performed numerical simulations to investigate the
two-phase nanofluid flow in a square enclosure equipped with a baffle on the hot wall. A
study on the buoyancy-driven flow of a nanofluid under the effect of an external magnetic
field was performed by Sheikholeslami et al. [9] using the finite method. Boulahia et al. [10]
studied the hydrothermal characteristics of a convective nanofluid flow in a lid-driven
cavity equipped with triangular hot inserts. A numerical investigation of the MHD natural
convection of a 2D nanofluid-filled enclosure was investigated by Mejri et al. [11]. It was
found that the application of an external magnetic field and the addition of nanoparticles
have opposite effects on the heat transfer rate. In fact, the increase in the nanoparticle
volume fraction led to the enhancement of the heat transfer, and the opposite occurred
when the intensity of the magnetic field was increased. A comprehensive report on natural
convective thermal transport in 2D cavities, including internal coolers and heaters, was
documented by Garoosi et al. [12]. The authors considered several cases related to the
shapes and positions of the coolers and heaters with the aim of optimizing the heat transfer
rate. The effect of the use of a nanofluid on the natural convection and entropy generation
in a 2D L-shaped cavity was studied by Armaghani et al. [13]. Motlagh et al. [14] considered
a two-phase model to investigate the heat and mass transfer during natural convection in a
2D porous cavity filled with a nanofluid.

From the above-described literature review, it can be observed that the study of
hydrothermal behavior in confined spaces with the use of metallic/non-metallic nanometric
size particles has been extensively considered. Due to their distinct electrical, thermal,
mechanical, and optical properties, the authors recently began to consider carbon nanotubes
(CNTs) for enhancing heat transfer. The concept of the arrangement of nanoparticles in
cylindrical tubes comprising carbon atoms in a hexagonal pattern was first revealed in 1991
by Lijima [15]. Due to the remarkable and unique characteristics of CNTs, their potential
applications in diversified fields have been manifested, such as in raising the efficiency
of heat exchangers and microchannels and for the reduction of friction in pumps and
engines, sensing, filtration, and so forth. On the basis of structural characterization, CNTs
are classified into single- and multi-walled carbon nanotubes. Jafari et al. [16] used the
LBM to investigate the effect of dispersing single-wall carbon nanotubes (SWNTs) in water
on thermal behavior in an open cavity. They exhibited that the use of SWNTs led to a
considerable enhancement of the heat transfer. Numerical simulations were performed
by Arani et al. [17], using finite element approach, to explore the flow and heat transfer
of an SWCNT–water nanofluid in a microchannel. They proved that higher heat transfer
rate occurred with the addition of SWCNTs compared to metallic nanoparticles. Ben Said
et al. [18] investigated the effect of the use of a CNT on the fluid structure interaction in
a microchannel under periodic inlet conditions. It was found that the use of an elastic
fin and CNT led to an increase in the Nusselt number. Farooq et al. [19] performed
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simulations using the Keller Box method to study the thermal behavior of BNNT and
MWCNT nanofluids’ convective flow.

The use of external magnetic fields during nanofluid flow processes have promising
applications, such as in cancer treatment by hyperthermia, magnetic drug delivery, and
magnetic separation. Furthermore, magnetic fields are employed to manipulate the pressure
gradient in the flow, which assists in raising efficiency of electronic devices (chips, air
conditioners, electric geysers, refrigerators, etc.). Cao et al. [20] studied the convective
heat transfer of a nanofluid flow in a heat exchanger under the influence of an external
magnetic field. It was found that the application of the magnetic field led to the control of
the flow. Haritha et al. [21] investigated the heat transfer characteristics of the MHD natural
convective flow of a nanofluid contained in a porous square enclosure. Redouane et al. [22]
used the FEM to depict the effect of a variable magnetic field on the convective heat transfer
of a hybrid nanofluid flow in a complex shape enclosure. Sannad et al. [23] used non-
homogenous dynamic modeling to simulate the 3D MHD convective heat transfer of a
Cu–water nanofluid. Chamkha et al. [24] studied the influence of the magnetic field and
the shape factor of nanoparticles and thermal radiation on the heat transfer characteristics
of a nanofluid flow using the control-volume finite element approach. Hussam et al. [25]
considered the MHD convective flow of a nanofluid in a square enclosure while applying
a periodically varying wall temperature. They concluded that applying the magnetic
field caused a decrease in the heat transfer rate due to the suppression of the buoyancy
forces. Vijay and Sharma [26] studied the MHD flow of a hybrid nanofluid caused by a
rotating disk under the simultaneous effects of Ohmic heating and the Soret and Dufour
effects. Sharma [27] performed computational simulations to identify the characteristics
of a magnetically influenced flow past a porous rotating disc with viscous dissipation
and radiative heat flux. Ram and Kumar [28] investigated the incompressible, electrically
non-conducting ferrofluid flow in a porous media over a rotating disk.

The incorporation of thermally active objects in enclosures can be used to attain wide-
range objectives, such as generating flow patterns (HVAC systems; chemical processing
plants), enhancing mixing (bioreactors), controlling temperature (heat exchangers), and
producing turbulence (chemical reactors). A numerical study on the laminar free convective
flow in a square enclosure with a heat source placed in an internal circular hot obstacle
was performed by Hussain and Hussein [29]. The hydrodynamical and thermal behaviors
of a convective flow between an external circular cylinder and a heated elliptical cylinder
were investigated numerically by Bararnia et al. [30] using the lattice Boltzmann technique.
The impact of the aspect ratio and rotation of a heated square cylinder placed in a square
enclosure on the convective flow was studied by De and Dalal [31]. The effect of the
heated inner cylinder location on density-dependent convection for wide range of Rayleigh
numbers was addressed by Lee et al. [32]. Thermal and flow structures developed in a
square enclosure equipped with an internal heated circular cylinder were investigated by
Kim et al. [33,34].

The present investigation aims to study the hydrothermal aspects of a MWCNT–water
nanofluid’s convective flow in a star-shaped enclosure, which have not been provided thus
far as per the authors’ knowledge. In the available literature, few studies are available
(e.g., ref. [35]) relating to the currently considered physical configuration (a star-shaped
corrugated enclosure). Specifically in reference [35], Ghalambaz investigated heat transfer
in the hybrid nanofluid flow of ethylene glycol (EG) with the addition of MgO and MWCNT
particles in a similar complex domain (a star-shaped corrugated cavity) under the effect
of an inclined magnetic field and radiation aspects. However, the distinction between
the two studies is that in study conducted in Ref. [35] did not involve the impact of a
heated baffle in raising the heat transfer rate. Secondly, in addition to the consideration
of a baffle, a uniform magnetic field is applied to control the flow. For this purpose,
formulations involving the thermophysical properties of MWCNTs and a base fluid (water)
are established in the dimensionless form. The associated boundary conditions are defined
by imposing hot and cold temperatures on the baffle and the corrugated walls, respectively.
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The set of governing equations is solved by implementing the finite element technique
using COMSOL Multiphysics software. Before obtaining the results, grid generation is
performed by subdividing the domain into triangular elements, and a grid independence
test is conducted to ensure the accuracy of the simulations. The impacts of the governing
parameters on the flow structure and temperature field are revealed by presenting the
streamlines and isotherms. In addition, the heat transfer is investigated by evaluating the
Nusselt number.

2. Problem Formulation

A two-dimensional, steady, incompressible, and laminar-free convective flow in a
star-shaped enclosure equipped with a rectangular hot plate is considered (Figure 1). A
uniform temperature (Th) is imposed at the internal plate, whereas the external wall is
maintained at a cold temperature (Tc). No-slip momentum constraints are assumed at
all boundaries. The cavity is filled with an MWCNT–water nanofluid, and an external
magnetic field with a uniform magnitude (B0) is applied toward the x-direction. The
thermophysical properties of the MWCNT and the base fluid (water) are presented in
Table 1.
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Table 1. Thermophysical characteristics of water and nanoparticles [36].

ρ
(

kg
m3

)
Cp

(
J

kg K

)
k
(

W
m K

)
β
(

1
K

)
σ(Ω.m)−1

Pure water 997.1 4179 0.613 21× 10−5 5.5× 10−6

MWCNT 2100 711 3000 4.2× 10−5 107

Mathematical Formulation

After applying the Boussinesq approximation, the nondimensional forms of the con-
tinuity and momentum and energy equations for the laminar and steady-state natural
convection of the nanofluid in the presence of a magnetic field are as follows [25,37].

u
∂u
∂x

+
∂v
∂y

= 0, (1)

qu
∂u
∂x

+ v
∂u
∂y

= − 1
ρn f

∂p
∂x

+
µn f

ρn f

(
∂2u
∂x2 +

∂2u
∂y2

)
, (2)
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u.
∂v
∂x

+ v
∂v
∂y

= − 1
ρn f

∂p
∂y

+
µn f

ρn f

(
∂2v.
∂x2 +

∂2v.
∂y2

)
+ g

(ρβ)n f

ρn f
(T − Tc)−

σn f

ρn f
B2

0v, (3)

qu
∂T
∂x

+ v
∂T
∂y

= αn f q
(

∂2T
∂x2 +

∂2T
∂y2

)
. (4)

Here, (u, v) represent the velocity components along (x, y) , while T, p, g, ρn f ,
andµn f are the temperature, pressure, gravity acceleration, density, and dynamic viscosity,
respectively. The effect of the magnetic field is introduced into the momentum equation
by adding the Lorentz force term J × B, which represents the vector product of the electric
current density and the magnetic f ield. The combination of Ohm’s law (Equation (5)) and
electric current conservation (Equation (6)) results in the equation of the electrical potential,
as presented in Equation (7) [38].

J = σ(−∇Φ + V × B), (5)

∇J = 0, (6)

which results in

∇2Φ = B0

(
∂U
∂Y
− ∂V

∂X

)
. (7)

Here, Φ, V, and J are the electric potential, velocity vector, and electric current density,
respectively.

The nanofluid’s density is evaluated as follows [39,40]:

ρn f = (1− φ)ρ f + φρp. (8)

Here, φ is the nanofluid volume/fraction, ρ f is the fluid density, and ρp is the density
of the nanoparticles.

The heat capacitance o f the nano f luid is provided by:

(ρCP)n f = (1− φ)(ρCP) f + φ(ρCP)P. (9)

The nanofluid’s thermal expansion coefficient is calculated by:

(ρβ)n f = q(1− φ)(ρβ) f + φ(ρβ)p. (10)

Here, β f and βp are the coefficients of the fluid and induced solid nanoparticle thermal
expansion, respectively. The definition of the nanofluid thermal diffusivity (αn f ), as referred
to in [40], is:

αn f =
kn f

(ρCP)n f
. (11)

The thermal conductivity (kn f ) of the spherical nanoparticles, the electrical conduc-

tivity
(

σn f

)
of the nanofluid, modeled by Maxwell [41], and the dynamic viscosity of the

nanofluid
(

µn f

)
, determined by Brinkman [42] are:

kn f

k f
=

 ks + (m− 1)k f .− (m− 1)φ
(

k f − ks

)
ks + (m− 1)k f + φ

(
k f − ks

)
, (12)

σn f

σf
=

1 +
3
(

σs
σf
− 1
)

φ(
σs
σf

+ 2
)
−
(

σs
σf
− 1
)

φ

, (13)



Mathematics 2023, 11, 1849 6 of 18

µn f =
µ f

(1− φ)2.5 . (14)

The boundary constraints in dimensional form are as follows.

u = 10, v = 10, T = Th, (Hot side)
u = 10, v = 10, T = Tc, (Cold side)

(15)

The following similarity variables are used for the transformation:

(X∗, Y∗) =
(x, y)

L
, (U∗, V∗) =

(u, v)L
α f

, P∗ =
pL2

ρn f α f
2 , θ∗ =

T − Tc

Th − Tc
. (16)

The non-dimensional PDEs are as follows:

q
∂U∗

∂X∗
+

∂V∗

∂Y∗
= 0, (17)

(
U∗

∂U∗

∂X∗
+ V∗

∂U∗

∂Y∗

)
= − ∂P∗

∂X∗
+

µn f

ρn f α f

(
∂2U∗

∂2X∗
+

∂2U∗

∂2Y∗

)
, (18)

(
U∗ ∂V∗

∂X∗ + V∗ ∂V∗
∂Y∗

)
=

− ∂P∗
∂Y∗ +

µn f
ρn f α f

(
∂2V∗
∂2X∗ +

∂2V∗
∂2Y∗

)
+

(ρβ)n f
ρn f β f

Ra Pr θ∗ − Ha2PrV∗,
(19)

U∗
∂θ∗

∂X∗
+ V∗

∂θ∗

∂Y∗
=

αn f

α f

(
∂2θ∗

∂X∗2 +
∂2θ∗

∂Y∗2

)
. (20)

The associated boundary constraints, in dimensionless f orm, are as below:

U∗ = 0, V∗ = 0, θ∗ = 1, (Hotiside) (21)

U∗ = 0, V∗ = 0, θ∗ = 0, (coldiside) (22)

The involved physical parameters appearing in Equations (17)–(20) are defined as
follows:

Ra =
gβ f (Th − Tc)L3

α f v f
, Ha = B0L

√
σn f

ρn f v f
, Pr =

v f

α f
. (23)

The local and average heat flux at the heated wall are stated as follows, respectively:

Nulocal = −
kn f

k f

∂θ∗

∂n

∣∣∣∣∣inner wall , (24)

Nuavg =
1
L

∫ 1

L
Nulocal dL. (25)

3. Solution Methodology

The enhancement of the heat transfer rate is highly valuable for the performance of
several industrial, technological, and real-life phenomena. Mathematically, these types
of complex problems are modeled in the form of partial differential equation system.
Computational techniques are more accurate compared to analytical methods. In the
literature, various numerical approaches (finite difference, finite element, finite. Volume,
LBM, etc.), are proposed. Among these approaches, the most widely utilized numerical
technique for solving complex engineering problems in various fields (mechanical, civil,
aerospace and biomedical engineering) is the finite element method (FEM). The advantage
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of the FEM compared to other computational methods is that it is flexible in handling a
wide range of problems with complexity in boundary conditions or geometry. Subsequently,
it easily analyzes structures with irregular geometries and nonlinear material properties.
The finite element method is more accurate than other computational schemes due to
the option of refining the solution by increasing the number of elements with a change
in the refinement level. It also saves time and memory cost compared to experimental
methods and enables the visualization of the structures in comprehensive way, helping
to make decisions about the design and optimization of the configurations. In view of
the above-mentioned characteristics of FEM, the current problem, in which a complex
domain (a star-shaped corrugated enclosure) is filled with an MWCNT–water nanofluid,
is investigated. Firstly, the domain is subdivided into tetrahedral elements. The accuracy
of the solution is examined by varying the refinement level. Quadratic shape functions
depicting the behavior of the field variables (velocity and temperature) at nodal structures
are specified using the Lagrange interpolation method. Linear interpolation functions are
opted to approximate the pressure field in the domain. Afterwards, the discretization of
equations is manifested by employing a weak formulation, and element-level equations are
formed in the form of a local stiffness matrix. Associated boundary conditions are applied,
and an assemblance of the equations in global form is also attained. Since the finalized
version of the equations is non-linear in nature, linearization is achieved using Newton’s
method, and the resulting system is solved by an elimination-based method with a unique
arrangement of the unknowns. The following convergence criterion is considered:∣∣∣∣χn+1 − χn

χn+1

∣∣∣∣ < 10−6

The COMSOL Multiphysics software, based on FEM, is used, and all the above-
mentioned procedural steps are applied to find the solution of the problem.

3.1. Discretization of Modeled Equations

In the present study, the equations governing the considered configuration are estab-
lished in the form of partial differential equations, comprising continuity, momentum (x-
and y-directions), and energy equations. Since the obtained set of equations is complex
in nature, the finite element approach is selected. For this purpose, an essential step is
the discretization of the equations at the element level through a weak formulation to
perceive information about the field variables through the formation of a local stiffness
matrix. These element-level equations are then integrated over complete domain, and the
global stiffness matrix is formed.

3.2. Weak Formulation

Let W =
[
H1(Ω)

]3 be the test. Subspaces exist for U∗, V∗, and θ∗, and Q = L2(Ω) is
the test space for pressure. The weak form of the governing equations [17–20] is provided as:∫

Ω

(
∂U∗

∂X∗
+

∂V∗

∂Y∗

)
qdΩ = 0, (26)

∫
Ω

(
U∗

∂U∗

∂X∗
+ V∗

∂U∗

∂Y∗

)
wdΩ +

∫
Ω

∂P∗

∂X∗
wdΩ−

∫
Ω

(
∂2U∗

∂2X∗
+

∂2U∗

∂2Y∗

)
wdΩ = 0, (27)

∫
Ω

(
U∗ ∂V∗

∂X∗ + V∗ ∂V∗
∂Y∗

)
wdΩ +

∫
Ω

∂P∗
∂Y∗wdΩ−

∫
Ω

(
∂2V∗
∂2X∗ +

∂2V∗
∂2Y∗

)
wdΩ

− (ρβ)n f
ρn f β f

Ra Pr
∫

Ω θ∗wdΩ− Ha2Pr
∫

Ω V∗wdΩ = 0,
(28)

∫
Ω

(
U∗

∂θ∗

∂X∗
+ V∗

∂θ∗

∂Y∗

)
wdΩ−

αn f

α f

∫
Ω

(
∂2θ∗

∂X∗2 +
∂2θ∗

∂Y∗2

)
wdΩ = 0. (29)
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An approximation of continuous solutions with the discrete ones in the finite-dimensional
sub-spaces is required for numerical simulations.

U∗ ≈ U∗h ∈WhV∗ ≈ V∗h ∈Whθ∗ ≈ θ∗h ∈WhP∗ ≈ P∗h ∈ Qh (30)

By implementing Equation (30) in Equations (26)–(29), the discrete form is attained as
follows: ∫

Ω

(
∂U∗h
∂X∗

+
∂V∗h
∂Y∗

)
qhdΩ = 0, (31)

∫
Ω

(
U∗h

∂U∗h
∂X∗

+ V∗h
∂U∗h
∂Y∗

)
whdΩ +

∫
Ω

∂P∗h
∂X∗

whdΩ−
∫

Ω

(
∂2U∗h
∂2X∗

+
∂2U∗h
∂2Y∗

)
whdΩ = 0, (32)

∫
Ω

(
U∗h

∂V∗h
∂X∗ + V∗h

∂V∗h
∂Y∗

)
whdΩ +

∫
Ω

∂P∗h
∂Y∗ whdΩ−

∫
Ω

(
∂2V∗h
∂2X∗ + ∂2V∗h

∂2Y∗

)
whdΩ

− (ρβ)n f
ρn f β f

Ra Pr
∫

Ω θ∗hwhdΩ− Ha2Pr
∫

Ω V∗hwhdΩ = 0,
(33)

∫
Ω

(
U∗h

∂θ∗h
∂X∗

+ V∗h
∂θ∗h
∂Y∗

)
whdΩ−

αn f

α f

∫
Ω

(
∂2θ∗h
∂X∗2 +

∂2θ∗h
∂Y∗2

)
whdΩ = 0. (34)

The discrete solution in terms of basic functions is defined as under:

U∗h ≈
ndo f

∑
k=1

U∗k ϕk, V∗h ≈
ndo f

∑
k=1

V∗k ϕk, P∗h ≈
ndo f

∑
k=1

P∗k ϕk, θ∗h ≈
ndo f

∑
k=1

θ∗k ϕk. (35)

Here, ndo f signifies the degrees of freedom. Equations (31)–(34) provide:∫
Ω

(
∂U∗h
∂X∗

+
∂V∗h
∂Y∗

)
qhdΩ = 0, (36)

∫
Ω

(
U∗h

∂U∗h
∂X∗ + V∗h

∂U∗h
∂Y∗

)
whdΩ +

∫
Ω

∂P∗h
∂X∗ whdΩ

−
∫

Ω

(
∂U∗h
∂X∗

∂wh
∂X∗ +

∂U∗h
∂Y∗

∂wh
∂Y∗

)
dΩ = 0,

(37)

∫
Ω

(
U∗h

∂V∗h
∂X∗ + V∗h

∂V∗h
∂Y∗

)
whdΩ +

∫
Ω

∂P∗h
∂Y∗ whdΩ

−
∫

Ω

(
∂V∗h
∂X∗

∂wh
∂X∗ +

∂V∗h
∂Y∗

∂wh
∂Y∗

)
dΩ− (ρβ)n f

ρn f β f
Ra Pr

∫
Ω θ∗hwhdΩ

−Ha2Pr
∫

Ω V∗hwhdΩ = 0,

(38)

∫
Ω

(
U∗h

∂θ∗h
∂X∗

+ V∗h
∂θ∗h
∂Y∗

)
whdΩ−

αn f

α f

∫
Ω

(
∂θ∗h
∂X∗

∂wh
∂X∗

+
∂θ∗h
∂Y∗

∂wh
∂Y∗

)
dΩ = 0. (39)

In the matrix form:[
BT

1 BT
2 0 0 Lh + N(U∗h, V∗h) 0 B1 0 0 Lh + N(U∗h, V∗h) B2 −

(ρβ)n f
ρn f β f

Ra PrMh

−Ha2PrMh 0 0 0 Lh + Nh(U∗h, V∗h)

]
[U V P θ ] = [F1 F2 F3 F4 ].

(40)

This can be represented as: Aξ = F.

3.3. Grid Generation

The concept of grid generation originated in the early 1990s, when numerous gigabits
and testbeds, such as CASA [43], were developed to connect supercomputing facilities.
Since then, the modeling of continuum mechanics problems is in the form of a set of partial
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differential equations. Only the simplest cases of these equations may usually be solved
analytically. In most cases, the equations must be solved numerically. A discrete collection
of points covering the physical region is required for numerical methods of solving partial
differential equations. A well-structured grid can considerably simplify the solution of
a system of partial differential equations. Therefore, grid generation is thus one of the
most significant phases in calculating numerical solutions to a partial differential system.
Since the presently considered phenomenon is regulated by flow and heat transfer, which
are complex coupled equations, it is highly essential to discretize the domain into small
portions, called elements. To attain an accurate solution for the involved field variables,
structured and unstructured meshing are considered. Hybrid meshing, which is the
combination of both structured and unstructured meshes, is selected in the present analysis.
Meshes have a well-defined structure in terms of alignment with square and triangular
elements in the 2D domain. Mesh generation is the process of creating an appropriate grid
to approximate a solution inside various parts. This provides a comprehensive picture
of fluid flow not only on boundaries but also in the domain. In addition, field variables
describing the nature of the problem are required at the boundaries, and intermediate
nodes and degrees of freedom are computed as shown in Table 2. Meshing at an extra-fine
grid level is opted for to compute simulations for the problem, as illustrated in Figure 2a.

Table 2. Comparison of the average Nusselt number
(

Nuavg
)

with the results of Khanafer et al. [4]
for various nanoparticles’ volume fractions at Pr = 6.2 and Ra = 6.2 × 104.

Nuavg

Present Work Khanafer et al. [4]

φ = 0 4.0921 4.0975
φ = 0.04 4.4598 4.4634
φ = 0.08 4.6938 4.6829
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Grid Independence Test

This test provides the sensitivity of the solution to the mesh refinement. By performing
this test, it can be seen that by making the size of the elements smaller, the computed
solution becomes less sensitive. Figure 2b is exhibited to show the grid dependency test
for φ = 0.02, Ra = 105, Pr = 6.8, and Ha = 20, with the Nusselt number as a sensitive
variable. It is observed that when the number of elements reaches 22,728, the average
Nusselt number does not significantly vary. Therefore, all computations are performed at
this element number, which is finer level of meshing.

3.4. Verification of the Numerical Model

To ensure the accuracy and credibility of the established numerical model, a quanti-
tative verification is performed by comparing the obtained values of the Nusselt number
with the findings of Khanafer et al. [4]. In addition, a qualitative verification is performed
by comparing the isotherms (Figure 3) for (φ = 0.16), Pr = 6.2, and Ra = 104 with the
results of Khanafer et al. [4]. The comparisons presented in Table 2 and Figure 3 show a
very good concordance between the results.
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4. Results and Discussions

In this paper, a numerical work is presented to study the flow structure, temperature
field, and heat transfer rate for various values of the Rayleigh number (104 ≤ Ra ≤ 106),
Hartmann number (0 ≤ Ha ≤ 100), and nanoparticle volume fraction (0.0 ≤ φ ≤ 0.05). The
Prandtl number (Pr = 6.2) is fixed throughout the numerical calculations.

Figure 4 illustrates the flow structures and temperature fields for Pr = 6.2, Ha = 25,
φ = 0.04, and various Rayleigh number (Ra) values. From Figure 4a–c, it can be noted that
when increasing the Rayleigh number (Ra), the magnitude of velocity increases. This in-
crease is due to the enhancement of the buoyancy force generated by the density variations,
especially close to the active hot and cold walls.

It should also be noted that the flow structure is symmetric for low Ra values. This
symmetry disappears for Ra = 106 due to the dominance of the convective heat transfer
mode compared to the conductive mode. The right column in Figure 4d–f depicts the
temperature fields for various Rayleigh number (Ra) values. It is observed that by increasing
(Ra), a vertical stratification of the isotherm is encountered, especially in the central region
of the cavity. This fact indicates the enhancement of the convective heat transfer. It can
also be seen that the thermal boundary layer thickness reduces around the heated plate with
increases in the (Ra). The reason for this behavior is that increasing the (Ra) leads to an
increase in the temperature gradient.

Figure 5 illustrates the effect of the Hartman number of temperature and the velocity
distributions for Ra = 105 and φ = 0.04. Higher values of the Hartman number indicate a
higher magnitude of the applied magnetic field. Figure 5a–c describe the nanofluid flow
behavior for various Hartmann numbers (Ha). The velocity magnitude decreases with the
increase in the Ha. This is due to the generated Lorentz forces, which oppose the fluid
motion and reduce the flow intensity. Figure 5d–f describe the effect of the application of
the external magnetic field on the temperature field. As previously mentioned, the applied
magnetic field opposed the convective flow; thus, by increasing the Hartman number, the
temperature gradients are reduced, especially close to the active walls.

The impacts of the volume fraction of the MWCNTs on the flow structure and
isotherms are shown in Figure 6. Figure 6a–c show the effect of the solid volume fraction (φ)
on the streamlines. For all the considered values of the volume fraction, the flow structure
is characterized by two counter rotative cells. When the nanoparticle volume fraction is
increased, the magnitude of the velocity increases. This increase is due to the intensification
of the buoyancy force, which is caused by the enhancement of the thermophysical prop-
erties. Figure 6d–f present the temperature fields for various φ values. When the volume
fraction is increased, the isotherms become more stuck to the active walls, indicating an
increase in the temperature gradients and thus a higher heat transfer rate.

Figure 7a exhibits the profile of the horizontal velocity, components (U∗) against the
solid volume fraction (φ) by sketching the cutline at y = 0 and varying x from −1 ≤ x ≤ 1.
The velocity profile is discontinued due to the presence of the plate at −0.5 ≤ x ≤ 0.5. The
velocity increases by increasing the nanoparticle volume fraction (φ) due the enhancement
of the buoyancy force. Figure 7b presents of the profile of the vertical velocity component
(V∗) against the solid volume fraction (φ) by sketching the cutline at x = 0 and varying
y from −0.8 ≤ y ≤ 1.2. Figure 7c displays the variation in the temperature distribution
against (φ) by drawing a cut line at y = 0 and varying x from −1 to 1. 5. It is obvious
that when the volume fraction of multiple walled carbon nanotube parameter rises, the
temperature of fluid also increases. Figure 7d shows the local heat transfer around the
rectangular heated plate. The local Nusselt number rises as the volume fraction of the
MWCNT–water nanofluid increases. As the Nusselt number is the ratio of the convective
to conductive heat transport in a fluid, the use of the MWCNTs increases the convective
heat transfer in the fluid through the enhancement of the thermophysical properties. The
highest heat transfer rate occurs for (φ = 0.04).
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Figure 5. Flow structures (a–c) and temperature fields (d–f) for Ra = 105, φ = 0.04, and various
Hartman number (Ha) values. (a) Ha = 0; (b) Ha = 40; (c) Ha = 80; (d) Ha = 0; (e) Ha = 40; (f) Ha = 80.
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Figure 6. Flow structures (a)–(c) and temperature fields (d)–(f) for Ra = 105, 𝐻𝑎 = 25, and 
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Figure 6. Flow structures (a–c) and temperature fields (d–f) for Ra = 105, Ha = 25, and various
volume fraction values. (a) φ = 0.01; (b) φ = 0.02; (c) φ = 0.04; (d) φ = 0.0; (e) φ = 0.02; (f) φ = 0.04.
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Nusselt number with/respect to solid volume fraction (φ).

Figure 8a presents the effect of the Rayleigh number on the average Nusselt number
for various nanoparticle volume fractions (0.0 ≤ φ ≤ 0.05) for Pr = 6.2 and Ha = 25. The
increase in Ra values leads to the intensification of the convective recirculation flows, which
causes the enhancement of the heat transfer rate. Similarly, the average Nusselt number
is increased by the increase in the nanoparticle volume fraction due to the enhancement
of the thermophysical properties. Figure 8b depicts the impact of the Hartmann number
(20 ≤ Ha ≤ 80) at various Rayleigh numbers

(
104 ≤ Ra ≤ 106) on the average Nusselt

number for Pr = 6.2 and φ = 0.04.
The increase in the magnitude of the magnetic field causes the reduction of the heat

transfer rate. This reduction is due to the decrease in the flow intensity caused by the gen-
erated Lorentz force. It should also be noted is that the magnetic field is more effective for
higher Ra values. In fact, for low Ra values, the heat transfer regime is mainly conductive,
and the fluid velocity is low; thus, the Lorentz force generated by the interaction between
the fluid motion and the magnetic field is low.
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Figure 8. (a). Effect of Rayleigh number on the average Nusselt number for Ha = 25 and various
nanoparticles volume fractions. (b) Effect of Hartman number on the average Nusselt number for
φ = 0.04 and various Rayleigh numbers.

Table 3 shows the variation in the average Nusselt number, and its percentage increase
caused the addition of MWCNTs. It can be noted that the maximum heat transfer rate
occurs when the nanoparticle volume fraction is 5%.

Table 3. Impact of volume fraction on Nusselt number with percentage enhancement.

φ Nuavg %

0 4.8425 —
0.01 5.3400 10.27%
0.03 7.0387 31.81%
0.04 9.6903 37.45%
0.05 14.2643 47.85%

5. Conclusions

The current study is presented to investigate the convective heat transfer in a star-
shaped cavity filled with an MWCNT–water nanofluid in the presence of an external
uniform magnetic field and a heated installed plate. The problem is mathematically formu-
lated as a dimensionless partial differential system. Finite-element-based computations
are performed to find the solutions of the established governing equations. The results
are presented in terms of temperature fields, flow structures, and variations of the average
Nusselt number. The main results can be summarized as follows:

• An intensification in flow circulation occurs when increasing the Rayleigh number
due to the enhancement of the convective heat transfer.

• The increase in the magnitude of the magnetic field causes a reduction in the velocity
of the fluid due to the generated Lorentz force, which opposes the convective flow.

• The addition of nanoparticles augments the heat transfer rate due to the enhancement
of the thermophysical properties, and the highest value of the average Nusselt number
occurs for φ = 0.05.

• The use of the MWCNTs increases the flow intensity due to the enhancement of the
buoyancy force.
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