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Abstract: This paper discusses the application of the orthogonal collocation on finite elements
(OCFE) method using quadratic and cubic B-spline basis functions on partial differential equations.
Collocation is performed at Gaussian points to obtain an optimal solution, hence the name orthogonal
collocation. The method is used to solve various cases of Burgers’ equations, including the modified
Burgers’ equation. The KdV–Burgers’ equation is considered as a test case for the OCFE method using
cubic splines. The results compare favourably with existing results. The stability and convergence
of the method are also given consideration. The method is unconditionally stable and second-order
accurate in time and space.
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1. Introduction

Collocation methods have been preferred to other numerical methods, such as the
finite difference and Galerkin methods, because they are simple and easy to implement, the
evaluation of integrals is not required, their collocation matrix has a small band width [1]
and they yield global approximations. Spline collocation employs a linear combination of
piecewise polynomials called spline basis functions to solve differential equations. Using a
B-spline representation, the basis functions do not show spurious oscillations as do higher-
order polynomial approximations [2]. Improvements on approximations with B-splines
have been made through partitioning the required intervals into smaller intervals called
finite elements [3]. A unique property of orthogonal collocation on finite elements (OCFE)
is that the nodes are roots of orthogonal polynomials [4]. OCFE often yields optimal
approximate solutions; hence, the application of spline collocation on each element taking
Gaussian points as nodes is an example of OCFE. This method has been used to solve
various problems in the literature, e.g., Burgers’ equation, the KdV equation and so on.

Burgers’ equation is a popular nonlinear time-dependent partial differential equation
which describes different physical phenomena. It is the simplified form of the famous
Navier–Stokes equation in fluid dynamics [1]. It is an important mathematical model that
has applications in fluid dynamics, the theory of shock waves, elasticity, heat conduction
and traffic flow [1]. It has known exact solutions in the literature. Many numerical
methods have been applied to solve Burgers’ equation. The list includes the homotopy
perturbation method [5], the homotopy analysis method [6], finite difference [7], the
Adomian decomposition method [8,9], spline collocation [1] and the variational iteration
method [10], just to mention a few.

The authors in [11] examined optimal error bounds for cubic spline interpolation.
In [12], a cubic B-spline collocation method to solve convection–diffusion equations with
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different Dirichlet boundary conditions was discussed. The authors concluded that their
method was unconditionally stable and compared favourably with earlier results in the
literature. A detailed analysis and application of orthogonal spline collocation (OSC) to
partial differential equations and initial-boundary value problems (IBVPs) was presented
in [13]. A numerical scheme to solve Burgers’ equation using quintic Hermite spline collo-
cation on finite elements was proposed in [1]. Cubic B-spline collocation on finite elements
was used to obtain the solution of Burgers’ equation in [14]. A modified cubic spline
quadrature method was used to solve Burgers’ equation in [15]. The modification produced
a diagonally dominant coefficient matrix, which is also tridiagonal and easily solved using
the Thomas algorithm. Reference [16] discussed the convergence analysis of orthogonal
spline collocation for Burgers’ equation using the extrapolated Crank–Nicholson method
for discretization in time. It was found that the error at every time step is of order two in
time and s + 1 in space for splines whose degree is s ≥ 3. In [17], a Dirichlet biharmonic
problem was approximated via the quadratic spline collocation method. An extensive
review of the properties and application of B-splines to fluid dynamics was discussed in [2].
Similarly, the author of [4] reviewed the development of the method of weighted residuals
and showed the equivalence of orthogonal collocation, the pseudospectral method and
the differential quadrature method. Paper [18] discussed the approximate solutions of
ordinary differential equations of any order using collocation at Gaussian points together
with the global error associated with the solution. It was shown in [19] that the quadratic
spline collocation method performed better than cubic splines in terms of the accuracy of
the numerical solution of two-point boundary value problems when collocating at equally
spaced points. Based on the quadratic spline basis, [20] solved the regularized long-wave
equation. In addition, [3] applied collocation based on quintic Hermite basis functions on
finite elements at Gaussian points to solve third-order ordinary differential equations and
time-dependent partial differential equations.

Burgers’ equation has received much attention to the extent that the generalized
form of Burgers’ equation is now being considered. The modified Burgers’ equation has
applications in ion reflection at quasi-perpendicular shocks, transport of pollutants and
nonlinear waves in a medium with low-frequency absorption [21]. It has been studied by
many researchers applying different methods to obtain its numerical solutions. Burgers’
equation and the modified Burgers’ equation were examined in [22] using the sextic B-spline
collocation approach. The authors in [21] provided error bounds for septic Hermite splines
with orthogonal collocation. They applied quasilinearization and the Crank–Nicolson
method for time integration to achieve an unconditionally stable scheme. A second-order
exponential time differencing scheme was used by [23] to solve Burgers’ equation and
its modified form. A discussion on quintic spline collocation for the modified Burgers’
equation was carried out in [24], while [25] examined the modified Burgers’ equation using
the quintic B-spline collocation method.

Of great interest is the Korteweg–de Vries–Burgers’ (KdVB) equation, which consists
of both KdV and Burgers’ equations. It has applications in modelling shallow water waves
and nonlinear systems due to the presence of dispersion and damping terms [26]. The He’s
variational iteration method was used in [27] to obtain the solution of the KdVB equation.
Among others who have worked on the KdVB equation are [26,28], who applied quintic B-
spline collocation and the Adomian decomposition (ADM) method, respectively. The work
by the authors of [29] compared the solutions of KdVB using the finite difference and
Adomian decomposition methods. In [30], the exact travelling wave solution of the KdVB
equation was studied, and that of a compound KdV–Burgers’ equation was presented
in [31] using the homogeneous balanced method. It was suggested in [31] that some
particular variations of the KdV–Burgers’ equation can be solved using the homogeneous
balance method. Exact solutions to the KdV–Burgers’ equation were constructed in [32]
using two different methods, one of which is based on the series approach and is typically an
extension of Hirota’s method. In [33], both KdV and KdV–Burgers’ equations were solved
using the modified tanh–coth method, and new multiple travelling wave solutions were
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obtained. The work in paper [34] showed that the new multiple solutions obtained in [33]
were actually not new but transformed known solutions of the KdV and KdV–Burgers’
equations. A new approach to solve the extended KdV equation was discussed in [35] via
the Galerkin finite element method with quintic B-spline functions as weight functions.

In this paper, we propose the OCFE method using quadratic and cubic B-splines and
quasilinearization. Subsequently, the OCFE method is applied to solve Burgers’ equation
and the modified Burgers’ and KdV–Burgers’ equations. The main advantages of the
proposed method as compared to other methods mentioned above are as follows: (1) there
is no need to solve large nonlinear systems of equations; (2) the boundary conditions are
enforced strongly, so there is no need to introduce fictional points (knots) or additional
equations; (3) the solution values are readily available at the grid points; (4) the OCFE
method yields better convergence rates than the classical B-spline collocation method;
and (5) the OCFE method can be adapted to dynamically track the profile of rapidly
varying transients using an adaptive grid (placing more elements) where the solution is
changing rapidly. However, we do not pursue the latter here.

The arrangement of the remaining sections of this paper are as follows: we describe
quadratic spline collocation in Sections 2 and 3 ; application of quadratic B-spline collocation
to Burgers’ equation is discussed in Section 4; a linearization approach to fix errors arising
from temporal variations and nonlinearity of Burgers’ equation is presented in Section 5;
stability of the method is considered in Section 6; convergence of the method is discussed
in Section 7; and numerical examples and simulations for Burgers’ equation are given in
Section 8. In Section 9, the OCFE method is applied to the modified Burgers’ equation,
and the numerical results are reported in Section 10. Sections 11–13 are dedicated to using
the OCFE method, employing cubic B-splines to solve the KdV–Burgers’ equation. In
Section 14, we treat a special case of Kdv–Burgers’ equation that has no exact solution.
Finally, Section 15 concludes the paper.

2. B-Spline Basis

Consider a non-decreasing sequence of knots,

z1 ≤ z2 ≤ · · · ≤ zk ≤ zk+1 · · · ≤ zN+1

Each B-spline curve has the form p(z) =
N+1
∑

i=1
βiBi,k(z) where βi is the constant and

Bi,k(z) is a normalized basis function. The order of the basis function is k, and the degree of
the polynomial is k− 1. Some properties of B-spline curves are listed below

1. p(z) is a polynomial of degree k− 1 on zi ≤ z < zi+1.
2. p(z) ∈ Ck−2(z1, zN+1).

3. The sum of the basis functions are identical unity or
k
∑

i=1
Bi,k(z) = 1.

4. Each Bi,k(z) > 0 on (zi, zi+k).
5. Each basis function has one maximum value, except in the case of k = 1.

In order to calculate the basis functions, we need the knot vectors, which are usually
written as [zi, zi+1, · · · , zi+p] where p + 1 denotes the number of knots. There are three
types of knot vectors: (1) uniform knots, which are evenly spaced; (2) non-uniform knots,
which are irregularly spaced; and (3) open uniform knots. The multiplicities of the knots
at the ends are equal to the order of the basis, and the knots are equally spaced. We shall
consider only the third type and only two distinct knots. Once the knots have been chosen,
the basis is calculated using the Cox–de Boor recursion formula [18],

Bi,1(z) =

{
1, [zi, zi+1),
0, otherwise,

(1)
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Bi,k(z) =
z− zi

zi+k−1 − zi
Bi,k−1(z)−

z− zi+k
zi+k − zi+1

Bi+1,k−1(z). (2)

Here, for the recursion to work, we adopt the notation 0/0 = 0.

3. Quadratic Basis and Orthogonal Collocation on Finite Elements

In this case, k = 3, and we use the knots [z1, z2, z3, z4, z5, z6] = [0, 0, 0, 1, 1, 1]. The mul-
tiplicity at the end points 0 and 1 is three, and there are two distinct knots.

From the recursion Formula (2), it is evident that in order to determine Bi,3(z), i =
1, 2, 3, we require Bi,2(z), i = 1, 2, 3, 4 as well as Bi,1(z), i = 1, 2, 3, 4, 5. From the definition
of Bi,1(z), it follows that B1,1(z) = B2,1(z) = B4,1(z) = B5,1(z) = 0 and B3,1(z) = 1 in
[z3, z4] = [0, 1]. One can also confirm from the recurrence relation that B1,2(z) = B4,2(z) =
0, B2,2(z) = 1− z and B3,2(z) = z2. Hence, the recurrence relation gives

B1,3(z) = (1− z)2, B2,3 = 2z(1− z) and B3,3(z) = z2.

We observed that if we expand [z + (1− z)]k−1 using the binomial theorem, then
we can recover the quadratic basis Bi,k, i = 1, 2, 3, where k is the order of the spline. Let
B1(z) = (1− z)2, B2(z) = 2z(1− z), B3(z) = z2, where we have dropped the subscript.

For ease of explanation of the OCFE method, we solve a second-order ODE given via

a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = f (x), x ∈ (a, b), (3)

with the boundary conditions

y(a) = θ, y(b) = Θ. (4)

Suppose we partition the interval [a, b] into N elements with nodes given via xi =
a + (i− 1)h, i = 1, 2, . . . , N + 1, where h = b−a

N is the uniform step size. The transformation
z = x−xi

xi+1−xi
= x−xi

h maps the ith interval [xi xi+1] to [0, 1]. The collocation solution

in interval i and interval (i + 1) is respectively assumed to be Yi(x) =
3
∑

k=1
bi

kBk(x) and

Yi+1(x) =
3
∑

k=1
bi+1

k Bk(x). To enforce continuity at internal boundaries, we write

Yi+1(xi+1) = Yi(xi+1),
dYi+1

dx

∣∣∣∣
xi+1

=
dYi

dx

∣∣∣∣
xi+1

. (5)

=⇒ Yi+1(0) = Yi(1),
dYi+1

dz

∣∣∣∣
z=0

=
dYi

dz

∣∣∣∣
z=1

, i = 1, 2, . . . , N − 1. (6)

=⇒ bi+1
1 = bi

3, bi+1
2 = 2bi

3 − bi
2. (7)

Then, for each element i, we may write

Y(z) =
3

∑
k=1

bk+2(i−1)Bk(z), i = 1, 2, . . . , N., (8)

Discretization of (3) into finite elements, and substitution of (8) in (3) together with (4),
yields

3

∑
k=1

[
a2(z)

h2 B′′k (z) +
a1(z)

h
B′k(z) + a0(z)Bk(z)

]
bk+2(i−1) = f (xi + hz), i = 1, 2, . . . , N (9)



Mathematics 2023, 11, 1847 5 of 21

and
y(0) = b1 = θ, y(1) = b2N+1 = Θ. (10)

Equation (9) contains 2N + 1 unknowns; hence, we require 2N + 1 conditions. In order
to achieve this, we use one collocation point per element, namely z = 0.5 in (9) , which,
together with the two boundary conditions and N− 1 continuity equations from (7), results
in a closed linear system of the form Ab = g. The coefficient matrix A has the form

A =



M1 M2 M3 0 0 0 0 0 0 · · · 0 0 0

0 0 M1 M2 M3 0 0 0 0 · · · 0 0 0

0 0 0 0 M1 M2 M3 0 0 · · · 0 0 0

0 0 0 0 0 0 M1 M2 M3 · · · 0 0 0

...
...

...
...

...
...

...
...

... · · ·
...

...
...

0 0 0 0 0 0 0 0 0 · · · M1 M2 M3

0 −1 2 −1 0 0 0 0 0 · · · 0 0 0

0 0 0 −1 2 −1 0 0 0 · · · 0 0 0

0 0 0 0 0 −1 2 −1 0 · · · 0 0 0

...
...

...
...

...
...

...
...

... · · ·
...

...
...

0 0 0 0 0 0 0 0 0 · · · 2 −1 0

1 0 0 0 0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 0 0 0 0 · · · 0 0 1



, (11)

Mj =
a2(0.5)

h2 B′′j (0.5) +
a1(0.5)

h
B′j(0.5) + a0(0.5)Bj(0.5), j = 1, 2, 3 (12)

and vector of unknowns b = [b1, b2, b3, · · · , b2N+1]
T , where T represents the transpose and

gi =


f (xi + 0.5h) i = 1, . . . , N,
0 i = N + 1, . . . , 2N − 1,
θ i = 2N,
Θ i = 2N + 1.

(13)

Numerical Example

As a test case of (3) and (4), we consider the following BVP [19]:

y′′ − 100y = 0, y(0) = y(1) = 1.

The exact solution is given via

y = cosh(10x− 5)/ cosh(5).

Table 1 belowshows the order of convergence using the OCFE method and the classical
collocation method using quadratic splines studied in [19]. As expected, the OCFE method
converges faster than the classical quadratic spline collocation method.
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Table 1. Orderof Convergence.

h Khalifa [19] OCFE
1
20 1.76 2.12
1
40 1.93 2.03
1
80 1.96 2.00

Here, the order of convergence is given via log2
||ei ||h∞
||ei ||h/2

∞
where ei = y(xi)− Y(xi) is the

error vector at the nodes.
We study the OCFE method in greater detail in the following sections. We begin with

the application of the OCFE method to Burgers’ equation.

4. Application to Burgers’ Equation

Consider Burgers’ equation

ut = νuxx − uux, a < x < b, t ≥ t0, (14)

with the boundary conditions

u(a, t) = θ, u(b, t) = Θ (15)

and initial condition
u0(x) = u(x, t0). (16)

For a partial differential equation (PDE) in space and time, we write the trial solution as

u(z, t) =
3

∑
k=1

bk+2(i−1)(t) Bk(z). (17)

Discretization of (14) into finite elements and substitution of (17) in (14) yields

3

∑
k=1

b′k+2(i−1)(t) Bk(z) =
ν

h2

3

∑
k=1

bk+2(i−1)(t) B′′k (z)

− 1
h

(
3

∑
k=1

bk+2(i−1)(t) Bk(z)

)(
3

∑
k=1

bk+2(i−1)(t) B′k(z)

)
, i = 1, 2, . . . , N.

(18)

The boundary conditions (15) (for simplicity, choosing a = 0, b = 1) yield

b1(t) = θ, b2N+1(t) = Θ. (19)

Equations (18) and (19) give a system of differential-algebraic equations (DAEs) which
has to be solved in time. Unfortunately, for large N, solving this system could prove
to be computationally challenging. A common alternative used in the literature, which
avoids dealing with DAEs, is to use the Crank–Nicolson method with quasi-linearization
to accomplish time integration. Furthermore, the stability and convergence of the method
is easily established. In the next section, we apply the quasilinearization method to Burg-
ers’ equation.

5. Application of Quazilinearization to Burgers’ Equation

Applying linearization and the trapezoid rule to Burgers’ equation yields[
1 +

∆t
2

ux(x, tj)

]
u(x, tj+1)−

ν∆t
2

uxx(x, tj+1) +
∆t
2

u(x, tj)ux(x, tj+1)

= u(x, tj) +
ν∆t

2
uxx(x, tj).

(20)
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Since

u(x, tj) =
3

∑
k=1

bk+2(i−1)(tj)Bk(x), (21)

using the transformation z = x−xi
h in (20), we have

3

∑
k=1

([
1 +

∆t
2h

3

∑
k=1

bk+2(i−1)(tj) B′k(z)

]
Bk(z)−

∆t
2h2 ν B′′k (z)

+
∆t
2h

[
3

∑
k=1

bk+2(i−1)(tj)Bk(z)

]
B′k(z)

)
bk+2(i−1)(tj+1)

=
3

∑
k=1

[
Bk(z) +

∆t
2h2 ν B′′k (z)

]
bk+2(i−1)(tj), i = 1, 2, . . . , N.

(22)

Substituting one collocation point per interval for z in Equation (22) and using the
boundary conditions will give a system of equations of the form Q b(tj+1) = P b(tj).

6. Stability of the Quadratic B-Spline Collocation Method

The von Neumann analysis technique is used to determine the stability of a numerical
method for linear initial value problems and linearized nonlinear boundary value problems.
Let K = max {u} be a local constant representing u in the nonlinear term of Equation (14),
and use the Crank–Nicolson method for discretization. We have

un+1 +
∆tK

2
un+1

x − ∆t
2

un+1
xx = un − ∆tK

2
un

x +
∆t
2

un
xx, (23)

where ∆t is the time step. Suppose α = ∆tK
h and β = ∆tν

h2 . We have

un+1 +
α

2
un+1

z − β

2
un+1

zz = un − α

2
un

z +
β

2
un

zz. (24)

Since

un(z) =
3

∑
l=1

bn
l+2(m−1)Bl(z), (25)

Equation (24) can be written as
3

∑
l=1

bn+1
l+2(m−1)

[
Bl(z) +

α

2
B′l(z)−

β

2
B′′l (z)

]
=

3

∑
l=1

bn
l+2(m−1)

[
Bl(z)−

α

2
B′l(z) +

β

2
B′′l (z)

]
. (26)

Then, at the collocation point z = 1
2 ,

bn+1
2m−1σ1 + bn+1

2m σ2 + bn+1
2m+1σ3 = bn

2m−1ρ1 + bn
2mρ2 + bn

2m+1ρ3, (27)

where

ρ1 = 1
4 −

α
2 + β, σ1 = 1

4 + α
2 − β,

ρ2 = 1
2 − 2β, σ2 = 1

2 + 2β,
ρ3 = 1

4 + α
2 + β, σ3 = 1

4 −
α
2 − β.

Let bn
l = λneilhk, k= mode and i =

√
−1, then (27) gives

λn+1
[
ei(2m−1)hkσ1 + ei2mhkσ2 + ei(2m+1)hkσ3

]
= λn

[
ei(2m−1)hkρ1 + ei2mhkρ2 + ei(2m+1)hkρ3

]
, (28)

=⇒ λ =
E1 + iF1

E2 + iF2
, (29)
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where E1 = 2ρ1 cos hk + ρ2 + α cos(hk), E2 = 2σ1 cos hk + σ2 − α cos(hk), F1 = α sin(hk),
and F2 = −α sin(hk). It is easy to show that |λ| ≤ 1. This shows that orthogonal quadratic
spline collocation on finite elements using Gauss points for Burgers’ equation is uncondi-
tionally stable.

7. Convergence of the Method

We assume that the exact solution of Equation (14) is ū(x, t) ∈ C4[a, b] × C2[t0, t f ],
where t0 and t f are initial and final times, respectively. From the trapezoid rule, the local

error is given using ∆t3

12 utt(x, ξ j), ξ j ∈ [tj, tj+1].
Let uL(x, tj+1) be the exact solution of (20), and assume that uL(x, tj+1) ∈ C4[a, b]. At

time tj+1, the global error is tj+1K′∆t2 for constant K′. Hence

||ū(x, tj+1)− uL(x, tj+1)||∞ ≤ K∆t2 (30)

for some constants K.
We let u(x, tj) = uj(x), then Equation (20) becomes

uj+1
xx (x)− a1(x)uj+1

x (x)− a0(x)uj+1(x) = f (x). (31)

We assume that a0(x), a1(x) ∈ C2[a, b]. Let uc(x, t) ∈ P3 ∩ C1[a, b] be the collocation
solution to (31), where P3 denotes polynomials of degree < 3. From de Boor [18],

|D(i)(uj+1
L − uj+1

c )(xp)| ≤ C1h2, (32)

and
||D(i)(uj+1

L − uj+1
c )(xp)||∞ ≤ C1h1+min(1,2−i), i = 0, 1, 2. (33)

Inequalities (30) and (32) imply

||ū(x, tj+1)− uc(x, tj+1)||∞ ≤ K∆t2 + C1h2. (34)

We now show that the collocation matrix system of Equation (31) has a unique solution
for any number of finite elements N. The resulting coefficient matrix is a square matrix of
the order 2N + 1. It may be shown using elementary row and column operations that the
coefficient matrix is equivalent to a block upper triangular matrix. Hence the determinant
∆N can be deduced to be given via (see Appendix A).

∆N =
−M2

2N
√

α2 − 4M1M3

[(
α +

√
α2 − 4M1M3

)N
−
(

α−
√

α2 − 4M1M3

)N
]

, (35)

where α = 2M2 + M1 + M3.
The matrix is non-singular if M2 6= 0 and α2 6= 4M1M3. In this case, a unique solution

to the system of equations exists. Hence, the method converges to the solution.

8. Numerical Examples and Simulations for Burgers’ Equation

In this section, we consider various examples and present various numerical simula-
tions to demonstrate the efficiency of the OCFE method.

1. We compare the results of our method with the work of Raslan [36] on Burgers’
Equation (14). The exact solution to (14) is

u(x, t) =
x

t
(

1 +
√

t
τ e

x2
4νt

) , (36)
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where τ = exp( 1
8ν ), and the initial condition is

u0(x) = u(x, 1). (37)

The boundary conditions are u(0, t) = 0 and u(1, t) = 0. Results of our method are
presented in Tables 2–4 when the number of partitions of the space interval [0, 1] is N = 50,
the number of time steps is NT = 50 and the final time is T f = 2.

In Table 2, the present results performed better than those of Raslan [36], since both
the L∞ and the L2 norm values are better. It is also clear from the table that the L∞ norm of
the present work is better than that of the Crank–Nicolson method (CN) based on [36].

The CN based on [36] performed better than Raslan [36], as shown in the table. Hence,
both CN and the present method, quadratic B-spline collocation using Gauss points on
finite elements, compare favourably.

Table 2. Error norms at N = NT = 50, T f = 2.

L∞ L2

t Present Raslan [36] CN Present Raslan [36] CN

1.2 0.002389 0.009445 0.002455 0.003594 0.014613 0.003630
1.4 0.002140 0.009192 0.002201 0.003779 0.019857 0.003762
1.6 0.001868 0.008531 0.001905 0.003589 0.024209 0.003546
1.8 0.001653 0.010477 0.001667 0.003310 0.027808 0.003258
2 0.001431 0.012058 0.001426 0.003025 0.030687 0.002972

In Table 3, the invariants for the present work, Raslan [36] and CN based on [36] are
compared and found to agree with one another.

Table 3. Invariant at N = NT = 50, T f = 2.

t Present Raslan [36] CN

1 0.124967 0.124817 0.124967
1.2 0.124059 0.124317 0.124059
1.4 0.123291 0.123954 0.123291
1.6 0.122626 0.123602 0.122626
1.8 0.122039 0.123264 0.122039
2 0.121513 0.122940 0.000000

Exact solutions of u(x, 2) for some values of x are compared in Table 4. The Table
shows that the present method converges to the exact solution faster than that of Raslan [36].

Table 4. Comparison of u(x, 2) at some points x.

x Present Exact Raslan [36]

0.365 0.182978 0.182473 0.185924
0.415 0.206938 0.207419 0.215954
0.465 0.232783 0.232227 0.235308
0.605 0.289358 0.288192 0.293358
0.645 0.274683 0.274869 0.279174
0.695 0.181949 0.180506 0.150321
0.725 0.095053 0.098406 0.096996
0.765 0.028298 0.029633 0.030028
0.805 0.006413 0.006911 0.007348
0.845 0.001254 0.001413 0.001598
0.915 6.11 × 10−5 7.05 × 10−5 0.000140
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In Figure 1, a 3D plot of the exact solution is overlaid onto that of the approximate
solution of Burgers’ equation in example 1. It is evident that the approximate and exact
solutions match perfectly on the computational domain. Furthermore, in Figure 2, the con-
vergence of the different methods and the CPU times for Raslan [36], the Crank–Nicolson
method based on Raslan, and quadratic spline collocation on Gauss points for computation
of this example are shown. It is clear that the OCFE method has order-two convergence,
and the present method is the fastest of the three methods and nearly five times faster than
Raslan [36] and four times faster than CN.

Figure 1. 3D Plot: N = NT = 50.

101 102

10−3

10−2

10−1

−2.14

N

‖E
rr

or
‖ L

∞

Raslan(19.13s)
CN(17.65s)

Gauss(4.04s)

Figure 2. Convergence plot.

2. A travelling wave solution of Burgers’ Equation (14), which is of the form

u(x, t) =
µ + α + (µ− α)e

α ξ
ν

1 + e
α ξ
ν

(38)

with the initial condition
u0(x) = u(x, 0) (39)

and the boundary conditions u(0, t) = 1, u(1, t) = 0.2, where ξ = x− µ t− β, µ and
α are constants, is considered. We compare the norms of the errors at various times
when the number of partitions of the space interval [0, 1] is N = 50, the number of
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time steps is NT = 50 and the final time is T f = 2. Figure 3 shows the profiles at
some values of t for all x. The graph of the exact solution is overlaid onto that of
the approximate solution in Figure 4. The exact and approximate solutions match
perfectly on the computational domain. It is clearly shown in Figure 5 that our method
has convergence order two and is three times faster than CN.

Figure 3. Final profiles at different times when N = NT = 50.

Figure 4. 3D plot: N = NT = 50.

101 102

10−2

10−1

−2.01

N

‖E
rr

or
‖ L

∞

CN(19.95s)
Gauss(6.36s)

Figure 5. Convergence plot.
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9. Modified Burgers’ Equation

We apply the OCFE method with a quadratic basis to the modified Burgers’
equation [21–23,25]

ut + uδux − νuxx = 0, δ ≥ 2. (40)

Consider the case of δ = 2, ν = 0.005 with the initial condition

u(x, 1) =
x

1 + 2 e
x2
4ν

(41)

and boundary conditions
u(0, t) = 0, u(1, t) = 0. (42)

The exact solution is
u(x, t) =

x

t
(

1 + 2
√

t e
x2
4νt

) . (43)

Substituting (17) into (40), we get the nonlinear system of equations

3

∑
k=1

b′k+2(i−1)(t) Bk(x) =
ν

h2

3

∑
k=1

bk+2(i−1)(t) B′′k (x)

− 1
h

(
3

∑
k=1

bk+2(i−1)(t) Bk(x)

)δ( 3

∑
k=1

bk+2(i−1)(t) B′k(x)

)
.

(44)

To simplify the work further, we apply the trapezoidal rule in time, linearize the
nonlinear term of Equation (40) and substitute (21) in (40):

3

∑
k=0

1 +
∆tδ
2h

(
3

∑
k=0

bk+2(i−1)(tj) Bk(z)

)δ−1 3

∑
k=0

bk+2(i−1)(tj) B′k(z)

Bk(z)

− ∆t
2h2 ν B′′k (z) +

∆t
2h

[
3

∑
k=0

bk+2(i−1)(tj)Hk(z)

]δ

B′k(z)

bk+2(i−1)(tj+1)

=
3

∑
k=0

Bk(z) +
∆t
2h2 ν B′′k (z) +

∆t
2h

(δ− 1)

(
3

∑
k=0

bk+2(i−1)(tj) Bk(z)

)δ

B′k(z)

bk+2(i−1)(tj).

(45)

The boundary conditions become{
u(0, t) = b1 = 0,
u(1, t) = b2N+1 = 0.

(46)

The system comprising (7), (45) and (46) can now be solved to obtain u(x, t). Clearly,
the stability and convergence analysis are very similar to the previous case of the classical
Burgers’ equation and are not repeated.

10. Numerical Simulations for the Modified Burgers’ Equation

A 3D plot of the numerical solution and error for N = 50 are given in Figures 6 and 7,
respectively. The orthogonal collocation of finite elements based on quadratic B-spline
basis functions gives good results when compared with the exact solution of the modified
Burgers’ equation as shown in Figure 7.
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Figure 6. 3D plot of approximated u(x, t).

Figure 7. 3D plot of error.

In Figures 8–10, time profiles of the solution are shown for various values of ν and N.
It is seen that the OCFE method is capable of tracking the shock propagation of the solution
for extremely small values of ν and moderate values of N.
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Figure 8. Shock propagation ν = 0.01 and N = 100.

Figure 9. Shock propagation ν = 0.005 and N = 100.

Figure 10. Shock propagation ν = 0.0005 and N = 400.

In the previous sections, we applied quadratic B-splines in conjunction with finite
elements (OCFE method) to solve second-order PDEs. It is seen that the OCFE method
using quasilinearization is optimal in efficiency for solving Burgers’ and modified Burgers’
equations. In particular, there is no need to impose additional boundary conditions, and
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the method matches the second-order method used for time integration. Hence, the overall
method is second-order in space and time. In the next section, we present the cubic splines
OCFE method and demonstrate it’s efficiency for solving third-order PDEs and focus on
the KdV–Burgers’ equation. Various numerical experiments are performed to demonstrate
the suitability of the cubic B-splines OCFE method.

11. Cubic B-Splines

A spline of order k = 4, which is a linear combination of third-degree polynomial
bases, is called a cubic B-spline. Hence, the required cubic B-spline basis are

B1 = (1− z)3, B2 = 3t(1− z)2, B3 = 3z2(1− z) and B4 = z3. (47)

Let

Yi(x) =
4

∑
j=1

bjBj(x) (48)

Consider solving a linear differential equation in one spatial variable x on (a, b).
Suppose the interval [a, b] is partitioned into N finite elements. For every element x ∈
[xi, xi+1], we transform x into z ∈ [0, 1] via

z =
x− xi

xi+1 − xi
=

x− xi
h

(49)

such that

Yi(x) = Yi(z) =
4

∑
j=1

bjBi
j(z), i = 1, 2, . . . , N + 1 (50)

on the ith element. We now require continuity at the internal boundaries such that

Yi(xi+1) = Yi+1(xi+1) (51)

dYi

dx

∣∣∣∣
xi+1

=
Yi+1

dx

∣∣∣∣
xi+1

(52)

d2Yi

dx2

∣∣∣∣
xi+1

=
d2Yi+1

dx2

∣∣∣∣
xi+1

(53)

Equations (51)–(53) lead to

g4(j−1) = g4j−3 (54)

g3j−1 = 2g3j−2 − g3j−3 (55)

g3j = g3j−4 − 4g3j−3 + 4g3j−2 (56)

where j = 2, 3, . . . , N. At the nodes i,

Y(xi) = Yi(z = 0) = g3i−2 (57)

This implies that the boundary conditions y(a) = α and y(b) = β become

g1 = α (58)

g3N+1 = β. (59)

Therefore, we can write

Y(z) =
4

∑
k=1

gk+3(i−1)Hk(z). (60)
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Substitute (60) into the differential equation, evaluate at the collocation point z = 0.5
together with Equations (55), (56), (58) and (59) to get a 3N + 1 linear system of equations
that contain 3N + 1 unknowns. The solution of this system will be used to compute the
solution to the differential equation. The solution at nodes xi is given via u(xi) = g3i−2.

12. Application of the Cubic B-Spline OCFE Method to KdV–Burgers’ Equation

The third-order KdV–Burgers’ equation [27] combines KdV [24] and Burgers’ equa-
tions. As an example, we consider

ut + εuux + µuxxx − νuxx = 0 (61)

with the exact solution

− 6 ν2

25 µ

(
1 + tanh

(
ν

10µ

(
x +

6 ν2t
25 µ

))
− 1

2

(
sech

(
ν

10µ

(
x +

6 ν2t
25 µ

)))2)
, (62)

the initial condition

u(x, 0) = − 6 ν2

25 µ

(
1 + tanh

(
ν x
10µ

)
− 1

2

(
sech

(
ν x
10µ

))2
)

(63)

and the boundary conditions

u(−50, t) = 0, u(50, t) = 0 and ux(50, t) = 0 (64)

obtained directly from the exact solution when ε = 1. Equation (61) becomes

4

∑
k=1

g′k+3(i−1)(t) Hk(z) +
µ

h3

4

∑
k=1

gk+3(i−1)(t) H′′′k (z)− ν

h2

4

∑
k=1

gk+3(i−1)(t) H′′k (z)

+
ε

h

(
4

∑
k=1

gk+3(i−1)(t) Hk(z)

)(
4

∑
k=1

gk+3(i−1)(t) H′k(z)

)
= 0, i = 1, 2, . . . , N.

(65)

The linearized version of (65) is

4

∑
k=1

([
1 +

ε∆t
2h

4

∑
k=1

gk+3(i−1)(tj) H′k(z)

]
Hk(z) +

µ∆t
2h3 H′′′k (z)

+
ε∆t
2h

[
4

∑
k=1

gk+3(i−1)(tj)Hk(z)

]
H′k(z)−

ν∆t
2h2 H′′k (z)

)
gk+3(i−1)(tj+1)

=
4

∑
k=1

[
Hk(z)−

µ∆t
2h3 H′′′k (z) +

ν∆t
2h2 H′′k (z)

]
gk+3(i−1)(tj), i = 1, 2, . . . , N.

(66)

13. Numerical Simulations for KdV–Burgers’ Equation

A 3D plot of the numerical solution is depicted in Figure 11. The error is shown for
various values of N = 50, 100, 200, 300, 400, 500. It is seen that the OCFE method using
cubic splines produces a highly accurate solution for moderate values of N. This shows
that this method gives a good approximation of the exact solution.



Mathematics 2023, 11, 1847 17 of 21

x

40 20 0 20 40

t

0
2

4
6

8
10

0.00020
0.00015
0.00010
0.00005

0.00000
0.00005
0.00010
0.00015

x

40 20 0 20 40

t

0
2

4
6

8
10

0.000015
0.000010

0.000005

0.000000

0.000005

0.000010

x

40 20 0 20 40

t

0
2

4
6

8
10

0.0000150
0.0000125
0.0000100
0.0000075
0.0000050
0.0000025

0.0000000
0.0000025

x

40 20 0 20 40

t

0
2

4
6

8
10

0.00004

0.00002

0.00000

0.00002

0.00004

x

40 20 0 20 40

t

0
2

4
6

8
10

0.0000150
0.0000125
0.0000100
0.0000075
0.0000050
0.0000025

0.0000000
0.0000025
0.0000050

x

40 20 0 20 40

t

0
2

4
6

8
10

0.0000150
0.0000125
0.0000100
0.0000075
0.0000050
0.0000025

0.0000000
0.0000025

Figure 11. 3D plot of error of KdV–Burgers when N = Nt = 50, 100 (top: left to right), N = Nt =
200, 300 (middle: left to right) and N = Nt = 400, 500 (bottom: left to right).

14. A Case of KdV–Burgers’ Equation That Does Not Have an Exact Solution

In this section, a case of the KdV–Burgers’ equation whose exact solution is not known
in the literature is considered. We use ε = 0.2, ν = 0.2 and µ = 0.1 with the initial
condition [28]

u(x, 0) =
1
2

(
1− tanh

(
|x| − x0

d

))
, (67)

and boundary conditions

ux(−50, t) = ux(150, t) = uxx(150, t) = 0. (68)

We solve the problem using the OCFE method with N = 300 and compare the solution
with the results obtained using the Mathematica v13.1 NDSolve built-in solver. We note
that the value of N = 300 is much smaller than the value of N = 4000 used in [28]. The
results are presented graphically in Figures 12 and 13.
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Figure 12. Comparison of OCFE solution (dots) and Mathematica built-in solver (solid line) at
different times.

Figure 13. 3D plot for N = 300, t = 800.

The results in Figure 12 demonstrate that the OCFE method produces results which
match the solution produced in Mathematica very closely.

15. Conclusions

We used the orthogonal collocation on finite elements method with quadratic B-spline
and cubic spline bases to solve partial differential equations. In particular, Burgers’ equation
was extensively explored to show the effectiveness of the method. It is easy to implement,
unconditionally stable and convergent. Our results performed better than earlier results
based on other forms of quadratic splines in the literature. We also demonstrated that the
OCFE method is suitable for solving modified Burgers’ and KdV–Burgers’ equations.

In addition, a travelling wave solution of Burgers’ equation was considered in order to
show the applicability of OCFE based on a quadratic B-spline basis. Velocity profiles were
examined at various times and found to be consistent with existing results in the literature.
Furthermore, we extended the OCFE method to cubic B-spline basis functions for solving
third-order PDEs. This required two extra sets of equations to ensure that our solution is
second-order continuously differentiable and requires three boundary conditions to solve
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the resulting system of linear equations. This method is suitable for differential equations
of orders one to three and was used to find the solution of the KdV–Burgers’ equation.
The approximate solution is highly accurate to second-order, both in time and space.

In conclusion, we found that orthogonal collocation based on quadratic and cubic
B-spline bases performed well and produced accurate results that are second-order in time
and space.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the anonymous referees and editor for their construc-
tive comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Expand the determinant det(A) about the last and second-to-last rows, successively,
to obtain det(A) = −det(A′), where A′ is the (2N − 1)× (2N − 1) submatrix with the first
column, last column and last two rows deleted. Let P be the even permutation matrix given
via P = [e1 e3 . . . e2N−1 e1 e2 . . . e2N−2], where ej are the standard basis vectors inR2N−1.

Let

A′′ =
[

IN 0
0 M2 IN−1

]
A′P,

where Ij is the j× j identity matrix.
Row reduce A′′ by letting RN+j → RN+j + Rj, j = 1, 2, . . . , N − 1 to obtain

A′′ =
[

IN E
0 T

]
,

where T is the (N − 1) × (N − 1) tridiagonal matrix with M3 on the super diagonal,
α = 2M2 + M1 + M3 on the diagonal, and M1 on the subdiagonal.

Let dN−1 = det(T); then, it is easy to show that

dk = αdk−1 −M1M3 dk−2, k = N − 1, N − 2, . . . , 4, 3, 2 (A1)

with d1 = α and d0 = 1.
Let dk = xk in (A1), then

xk − αxk−1 + M1M3 xk−2 = 0,

x2 − αx + M1M3 = 0,

x1 =
α +

√
α2 − 4M1M3

2
,

x2 =
α−

√
α2 − 4M1M3

2
.

Thus
dk = c1xk

1 + c2xk
2 (A2)

with

d0 = 1 = c1 + c2, (A3)

d1 = α = c1x1 + c2x2. (A4)
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Solution of (A3) and (A4) using Crammer’s rule yields

c1 =
x2 − α

(x2 − x1)
,

c2 =
α− x1

(x2 − x1)
.

Equation (A2) becomes

dk =
(x2 − α) xk

1 + (α− x1) xk
2

x2 − x1
. (A5)

Since x1 + x2 = α and x2 − x1 = −
√

α2 − 4M1M3, it follows from (A5) that

dk =
−xk+1

1 + xk+1
2

x2 − x1
,

=
(α +

√
α2 − 4M1M3)

k+1 − (α−
√

α2 − 4M1M3)
k+1

2k+1
√

α2 − 4M1M3
.

Thus det(T) = dN−1.
Now

det(A′′) = det(A′′′),

MN−1
2 det(A′) = MN

2 det(T),

det(A′) = M2det(T),

det(A) =

−M2

([
α +

√
α2 − 4M1M3

]N
−
[
α−

√
α2 − 4M1M3

]N
)

2N
√

α2 − 4M1M3
.
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