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1. Introduction

For an efficient representation of non-transient signals, R.G. Stockwell [1] introduced
a hybrid time-frequency tool by combining the merits of the classical short-time Fourier
and wavelet transforms. For any finite energy signal f ∈ L2(R), the Stockwell transform
with respect to a window function ψ ∈ L2(R) is defined by

Sψ

[
f
]
(ω, b) = |ω|

∫
R

f (t)ψ
(
ω(t− b)

)
e−2πitω dt, b ∈ R, ω ∈ R \ {0}, (1)

where b and ω denote the time and spectral localization parameters, respectively. The Stock-
well transform (1) offers the absolutely referenced phase information of the given sig-
nal f by fixing the modulating sinusoids with respect to the time axis while translat-
ing and dilating the window function ψ. Thus, the Stockwell transform provides a
frequency-dependent resolution while maintaining a direct relationship with the Fourier
spectrum [2–5]. These unique features of the Stockwell transform are apt for diversified
applications to different branches of science and engineering, including geophysics, optics,
quantum mechanics, signal and image processing, and so on [5–12].

To harness the merits of the Stockwell transform in higher dimensions, we have
recently introduced the notion of non-isotropic angular Stockwell transform in [11].
The essence of such a non-isotropic Stockwell transform lies in the fact that the underlying
window functions are directionally tunable, which enhances the potency for resolving
geometric features in two-dimensional signals. For any f ∈ L2(R2), the non-isotropic
angular Stockwell transform with respect to the window function Ψ ∈ L2(R2) is defined as

SΨ

[
f
]
(w, b, θ) = |det Aw|

∫
R2

f (t)Ψ
(

Rθ Aw(t− b)
)

e−2πitTw dt, (2)
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where t = (t1, t2)
T ∈ R2, b = (b1, b2)

T ∈ R2, w = (ω1, ω2)
T ∈ R2 with ω1, ω2 6= 0 and

θ ∈ [0, 2π). The matrix Aw ∈ GL(2,R) and the rotation matrix Rθ appearing in (2) are
given by

Aw =

(
ω1 0
0 ω2

)
and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, (3)

respectively. Furthermore, in the same article [11], we have also presented a discrete
analogue of (2) by adopting the following procedure:

(i). The frequency variable w = (ω1, ω2)
T is discretized by choosing wj = (λj, λj)T ,

where λ > 1 and j ∈ Z. Consequently, the matrix Aw given by (3) takes the form:

Aj =

(
λj 0
0 λj

)
.

(ii). The angular parameter θ is discretized by sub-dividing the interval [0, 2π) into
L-equally spaced angles by taking θ` = ` θ0, where θ0 = 2π/L and ` ∈ ZL ={

0, 1, 2, . . . , L− 1
}

.
(iii). For m = (m0, m1)

T ∈ Z2 and α0, α1 > 0, the translation parameter b is discretized
by taking into consideration both of the preceding discretizations of w and θ and
choosing bj,`

m = A−jR−θ`

(
m0α0, m1α1

)
.

However, much to the dismay, the aforementioned discretization process suffers
from a couple of severe limitations: first, the discretization of the frequency variable w is
non-parabolic in nature; second, the discretization of the angular variable θ is completely
independent of the scale λ, which results in an uncontrollable angular expansion of the
grid at higher values of j (see Figure 1), thereby limiting the directional selectivity at
higher frequencies. In this communication, our goal is to circumvent these limitations
by proposing a new scale-dependent discretization scheme for the discrete non-isotropic
angular Stockwell transform. Under the new discretization scheme, the frequency di-
lation is always doubly effective in one fixed direction as in the orthogonal direction.
Moreover, at each higher level of resolution, the split in the angular region is increased
proportionally, thereby preventing the undesired angular expansion of the sampling grid
and enhancing the directional selectivity at high frequencies.

The rest of the article is organized as follows: Section 2 serves as the pedestal and
deals with the formal aspects of the novel discretization scheme. In Section 3, we derive a
sufficient condition for the non-isotropic Stockwell frames in L2(R2). Finally, a conclusion
together with an impetus to the future research work is extracted in Section 4.

2. Discourse on the New Discretization Scheme

This section is solely devoted to the formulation of a new discretization scheme for the
non-isotropic angular Stockwell transform (2). We reiterate that the proposed discretization
scheme is not only based on the parabolic scaling law but also prevents the undesired
angular expansion of the underlying sampling grid. A detailed exposition of the formal
discrete scheme is given below:

(i). The discretization of the frequency variable w = (ω1, ω2)
T is achieved via the

parabolic scaling law by choosing wj = (λj, λj/2)T , where λ > 1 is a fixed inte-
ger and j ∈ Z determines the level of resolution. Consequently, the anisotropy matrix
is given by

Aj =

(
λj 0
0 λj/2

)
, (4)
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and the discretized frequency variable wj can be expressed via the matrix Aj as

wj = (λj, λj/2)T = Aj(1, 1)T . (5)

(ii) For fixed L0 ∈ Z, the rotation parameter θ is sampled into L0 equi-spaced pieces as

θ` =
2π`

L0
, where ` ∈ ZL0 =

{
0, 1, 2, . . . , L0 − 1

}
. (6)

To prevent the expansion of the angular region at higher values of j, it is desirable to
make the spacing between the consecutive angles scale-dependent. As such, we choose
L0 = λbj/2c, where bj/2c denotes the integral part of j/2.
Consequently, the scale-dependent angular discretization is given below:

θ`j
=

2π`

λbj/2c , where ` ∈ Zλbj/2c =
{

0, 1, 2, . . . , λbj/2c − 1
}

. (7)

(iii) The discretization of the spatial variable b is carried out by taking into consider-
ation both the previous discretizations of frequency and angular variables. For
m = (m1, m2)

T ∈ Z2 and β > 0, the spatial variable b is sampled as

bj,`
m :=

(
A−jR−θ`j

)(
βm
)
. (8)

In view of the above discretization scheme, the novel sampling grid associated with the
discrete non-isotropic angular Stockwell transform takes the following form:

Λ =

{(
Aj(1, 1)T ,

(
A−jR−θ`j

)
(βm), θ`j

)
: j ∈ Z, m ∈ Z2, ` ∈ Zλbj/2c , θ`j

=
2π`

λbj/2c

}
. (9)

In order to appreciate the nuances between the existing and the newly proposed dis-
cretization schemes, we depict the respective sampling grids separately in Figures 1 and 2.
For plotting the sampling grid associated with the discretization scheme proposed in [11],
we choose λ = 2, m = (1, 1)T and then partition the angular variable θ = 2π`/L, ` ∈ Z`

in two ways by taking L = 8 and L = 16. Since the existing discretization is not scale-
dependent in the angular variable, with increased levels of resolution the angular expansion
is uncontrollable, as shown in Figure 1.

Figure 1. Basic discrete sampling grid for j = 0, 2, 4, 6, 8 with L = 8 (left) and L = 16 (right) [11].
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In contrast to this, the sampling grid (9) efficiently prevents the angular expansion at
higher scales because the new discretization scheme is completely scale-dependent, and
the split in the angular region is increased at each next level of resolution. For a pictorial
illustration of the aforementioned fact, we choose λ = 2, β = 1 in (9) and vary the level
of resolution j over the set {0, 2, 4, 6, 8, 10, . . . }. Then, we observe that for j = 0, there is
no partition in the angular region. Additionally, for j = 2 there are two partitions in the
angular region determined by the points θ02 = 0 and θ12 = π, and the corresponding
partition in the spatial variable is determined by the points b2,0

m = (A−2R−θ02
)m and

b2,1
m = (A−2R−θ12

)m. Furthermore, for j = 4 the angular region attains quadruple partition
at the points θ04 = 0, θ14 = π/2, θ24 = π, and θ34 = 3π/2, and consequently the spatial
region is partitioned at b4,0

m = (A−4R−θ04
)m, b4,1

m = (A−4R−θ14
)m, b4,2

m = (A−4R−θ24
)m

and b4,3
m = (A−4R−θ34

)m. In a similar fashion, we can show that for j = 6, 8, 10, . . . both
the angular and spatial regions are partitioned into 8, 16, 32, . . . equispaced regions. Thus,
we infer that at higher values of j, the partition points of the angular region are increased
proportionally; as such, the angular expansion of sampling grid (9) can be efficiently
controlled, as shown in Figure 2.

Figure 2. Refined discrete sampling grid (9) at j = 0, 2, 4, 6, 8, 10.

3. The Non-Isotropic Stockwell Frames

This section is completely devoted to demonstrating that the new discretization scheme
proposed in Section 2 is also helpful for the construction of Stockwell frames in L2(R2).
For

(
Aj(1, 1)T ,

(
A−jR−θ`j

)
(βm), θ`j

)
∈ Λ, we define a quadruple of fundamental op-

erators, viz, translation (T(A−jR−θ`j
)(βm)), dilation (DAj ), rotation (Rθ`j

), and modulation

(MAj(1,1)T ) operators acting on Ψ ∈ L2(R2) as :

T(A−jR−θ`j
)(βm)Ψ(t) = Ψ(t− (A−jR−θ`j

)(βm))

DAj Ψ(t) =
∣∣det Aj

∣∣Ψ(Ajt)

Rθ`j
Ψ(t) = Ψ`j

(t) := Ψ
(

Rθ`j
t
)

MAj(1,1)T Ψ(t) = Ψ(t) exp
{

2πi tT(Aj(1, 1)T)}


. (10)
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Upon joint application of the elementary operators defined in (10), we obtain a discrete
collection of analyzing functions Ψj,m,`(t) as

Ψj,m,`(t) =MAj(1,1)T Rθ`j
T(A−jR−θ`j

)(βm)DAj Ψ(t)

=
∣∣det Aj

∣∣Ψ`j

(
Aj
(
t− A−jR−θ`j

βm
))

exp
{

2πi tT(Aj(1, 1)T)} (11)

=
∣∣det Aj

∣∣Ψ`j

(
Ajt− R−θ`j

βm
)

exp
{

2πi tT(Aj(1, 1)T)}.

Moreover, the two-dimensional Fourier transform of the analyzing functions (11) can
be computed as follows:

F
[
Ψj,m,`

]
(w) =

∫
R2

Ψj,m,`(t) e−2πi tTw dt

=
∣∣det Aj

∣∣ ∫
R2

Ψ`j

(
Ajt− R−θ`j

βm
)

exp
{

2πi tT(Aj(1, 1)T)} e−2πitTw dt

=
∫
R2

Ψ`j
(z) exp

{
2πi

(
A−jz + A−jR−θ`j

βm
)T

Aj(1, 1)T
}

exp
{
− 2πi

(
A−jz + A−jR−θ`j

βm
)T

w
}

dz

= exp
{

2πi(βm)T Rθ`j

(
(1, 1)T − A−jw

)} ∫
R2

Ψ`j
(z) exp

{
2πi zT(1, 1)T

}
exp

{
−2πi zT(A−jw

)}
dz

= exp
{

2πi(βm)T Rθ`j

(
(1, 1)T − A−jw

)}
F
[
Φ`j

](
A−jw

)
,

where Φ is the modulated version of the given window function Ψ and is given by

Φ`j
(t) = Ψ`j

(t) exp
{

2πi tT(1, 1)T
}

. (12)

Based on the refined sampling grid (9) and the family of analyzing functions con-
structed in (11), we define the novel discrete non-isotropic Stockwell system Γ(Ψ, Λ) as

Γ(Ψ, Λ) :=
{

Ψj,m,`(t) =MAj(1,1)T Rθ`j
T(A−jR−θ`j

)(βm)DAj Ψ(t) : j ∈ Z, m ∈ Z2, ` ∈ Zλbj/2c

}
. (13)

Then, our main goal is to demonstrate that the system Γ(Ψ, Λ) constitutes a frame for
L2(R2). To facilitate the motive, below we recall the fundamental notion of a frame in a
separable Hilbert space [3]:

Definition 1. Given a separable Hilbert spaceH, a sequence of elements
{

fi
}

inH is said to be a
frame forH, if there exists constants 0 < C1 ≤ C2 < ∞, such that

C1

∥∥∥ f
∥∥∥
H
≤∑

i

∣∣∣〈 f , fi

〉
2

∣∣∣2 ≤ C2

∥∥∥ f
∥∥∥
H

, ∀ f ∈ H. (14)

The constants C1 and C2 appearing in (14) are called as the lower and upper frame bounds,
respectively. In case C1 = C2 = C > 1, the frame is said to be tight, and if C = 1, the frame is
called a Parseval’s frame.

In the following theorem, we shall derive a sufficient condition for the system Γ(Ψ, Λ)
to be a frame for L2(R2). Prior to that, for any Φ(t) as given by (12), we set

H(ξ1, ξ2) = ess. sup
ω1,ω2∈R

∑
j∈Z

∑
`∈Z

λbj/2c

∣∣∣F [Φ`j

](
λ−jω1, λ−j/2ω2

)∣∣∣∣∣∣F [Φ`j

](
λ−jω1 + ξ1, λ−j/2ω2 + ξ2

)∣∣∣
. (15)
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Theorem 1. Let Ψ ∈ L2(R2) be any window function and Φ be the corresponding modulated
version given by (12) such that

C1 ≤ ∑
j∈Z

∑
`∈Z

λbj/2c

∣∣∣F [Φ`j

](
λ−jω1, λ−j/2ω2

)∣∣∣2 ≤ C2, (16)

almost everywhere ω1, ω2 ∈ R, with 0 < C1 ≤ C2 < ∞. Then, for fixed β > 0 the system (13)
constitutes a frame for L2(R2) if the function H(x, y) given by (15) satisfies:

∑
0 6=r∈Z

∑
0 6=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
= C3 < C1. (17)

Moreover, in that case the lower and upper frame bounds are given by
(

C1−C3
β2

)
and

(
C2+C3

β2

)
,

respectively.

Proof. For any f ∈ L2(R2), the implication of Plancheral theorem for the two-dimensional
Fourier transform yields

∑
j∈Z

∑
m∈Z2

∑
`∈Z

λbj/2c

∣∣∣〈 f , Ψj,m,`

〉
2

∣∣∣2
= ∑

j∈Z
∑

m∈Z2
∑

`∈Z
λbj/2c

∣∣∣∣∫R2
F
[

f
]
(w)F

[
Ψj,m,`

]
(w) dw

∣∣∣∣2

= ∑
j∈Z

∑
m∈Z2

∑
`∈Z

λbj/2c

∣∣∣∣ ∫R2
F
[

f
]
(w)F

[
Φ`j

](
A−jw

)
exp

{
−2πi(βm)T Rθ`j

(
(1, 1)T − A−jw

)}
dw
∣∣∣∣2

= ∑
j∈Z

∑
m∈Z2

∑
`∈Z

λbj/2c

λ3j/2
∣∣∣∣ ∫ β−1λj

0

∫ β−1λj/2

0
exp

{
−2πi(βm)T Rθ`j

(
(1, 1)T − A−jw

)}

×
(

∑
n1∈Z

∑
n2∈Z

F
[

f
](

ω1 + β−1λjn1, ω2 + β−1λj/2n2
)
F
[
Φ`j

](
λ−jω1 + β−1n1, λ−j/2ω2 + β−1n2

))
dω1 dω2

∣∣∣∣2
=

1
β2 ∑

j∈Z
∑

`∈Z
λbj/2c

∫ β−1λj

0

∫ β−1λj/2

0

∣∣∣∣ ∑
n1∈Z

∑
n2∈Z

[
F
[

f
](

ω1 + β−1n1, ω2 + β−1n2
)

(18)

×F
[
Φ`j

](
λ−jω1 + β−1λjn1, λ−j/2ω2 + β−1λj/2n2

)]∣∣∣∣2dω1 dω2

=
1
β2 ∑

j∈Z
∑
r∈Z

∑
s∈Z

∑
`∈Z

λbj/2c

∫ ∞

−∞

∫ ∞

−∞

[
F
[

f
](

ω1, ω2
)
F
[

f
](

ω1 + β−1λjr, ω2 + β−1λj/2s
)

×F
[
Φ`j

](
λ−jω1, λ−j/2ω2

)
F
[
Φ`j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)]
dω1 dω2

=
1
β2

∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [ f
](

ω1, ω2
)∣∣∣2
∑

j∈Z
∑

`∈Z
λbj/2c

∣∣∣F [Φ`j

](
λ−jω1, λ−j/2ω2

)∣∣∣2
dω1 dω2

+
1
β2 ∑

j∈Z
∑

0 6=r∈Z
∑

0 6=s∈Z
∑

`∈Z
λbj/2c

∫ ∞

−∞

∫ ∞

−∞

[
F
[

f
](

ω1, ω2
)
F
[

f
](

ω1 + β−1λjr, ω2 + β−1λj/2s
)

×F
[
Φ`j

](
λ−jω1, λ−j/2ω2

)
F
[
Φ`j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)]
dω1 dω2

= P (principle term) + R (residue term).
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Note that the principle term is the product between the power of the input function
and the sum of the spectral powers of the analyzers. Therefore, in view of (16), it follows
that the lower and upper bounds for the principal term are given by(

C1

β2

)∥∥∥ f
∥∥∥2

2
≤ P ≤

(
C2

β2

)∥∥∥ f
∥∥∥2

2
. (19)

The residue term captures the interference effect among the analyzing functions and
can be computed by invoking the Cauchy–Schwarz inequality twice successively in the
following fashion:

R =

∣∣∣∣ 1
β2 ∑

j∈Z
∑

0 6=r∈Z
∑

0 6=s∈Z
∑

`∈Z
λbj/2c

∫ ∞

−∞

∫ ∞

−∞

[
F
[

f
](

ω1, ω2
)
F
[

f
](

ω1 + β−1λjr, ω2 + β−1λj/2s
)

×F
[
Φ`j

](
λ−jω1, λ−j/2ω2

)
F
[
Φ`j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)]
dω1 dω2

∣∣∣∣
≤ 1

β2 ∑
j∈Z

∑
0 6=r∈Z

∑
0 6=s∈Z

∑
`∈Z

λbj/2c

[ ∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [ f
](

ω1, ω2
)∣∣∣2∣∣∣F [Φ`j

](
λ−jω1, λ−j/2ω2

)∣∣∣ (20)

×
∣∣∣F [Φ`j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)∣∣∣dω1 dω2

]1/2

[ ∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [ f
](

ω1 + β−1λjr, ω2 + β−1λj/2s
)∣∣∣2∣∣∣F [Φ`j

](
λ−jω1, λ−j/2ω2

)∣∣∣
×
∣∣∣F [Φ`j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)∣∣∣dω1 dω2

]1/2

.

Making use of the substitutions ω1 + β−1λjr = ξ1 and ω2 + β−1λj/2s = ξ2 in the
post-factor on the R.H.S of inequality (20), we obtain

R ≤ 1
β2 ∑

0 6=r∈Z
∑

0 6=s∈Z

[ ∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [ f
](

ω1, ω2
)∣∣∣2( ∑

j∈Z
∑

`∈Z
λbj/2c

∣∣∣F [Φ`j

](
λ−jω1, λ−j/2ω2

)∣∣∣
×
∣∣∣F [Φ`j

](
λ−jω1 + β−1r, λ−j/2ω2 + β−1s

)∣∣∣)dω1 dω2

]1/2

[ ∫ ∞

−∞

∫ ∞

−∞

∣∣∣F [ f
](

ξ1, ξ2
)∣∣∣2( ∑

j∈Z
∑

`∈Z
λbj/2c

∣∣∣F [Φ`j

](
λ−jξ1, λ−j/2ξ2

)∣∣∣ (21)

×
∣∣∣F [Φ`j

](
λ−jξ1 − β−1r, λ−j/2ξ2 − β−1s

)∣∣∣)dξ1 dξ2

]1/2

≤ 1
β2

∥∥∥ f
∥∥∥2

2

(
∑

0 6=r∈Z
∑

0 6=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
)

,

Consequently, the infimum and supremum of the power output are given by

inf
f∈L2(R2), f 6=0

∥∥∥ f
∥∥∥−2

2
∑
j∈Z

∑
m∈Z2

∑
`∈Z

λbj/2c

∣∣∣〈 f , Ψj,m,`

〉
2

∣∣∣2
 ≥ 1

β2

{
inf

ω1,ω2∈S

∑
j∈Z

∑
`∈Z

λbj/2c

∣∣∣F [Φ`j

](
λ−jω1, λ−j/2ω2

)∣∣∣2
 (22)

− ∑
0 6=r∈Z

∑
0 6=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
}

.

and
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sup
f∈L2(R2), f 6=0

∥∥∥ f
∥∥∥−2

2
∑
j∈Z

∑
m∈Z2

∑
`∈Z

λbj/2c

∣∣∣〈 f , Ψj,m,`

〉
2

∣∣∣2
 ≥ 1

β2

{
sup

ω1,ω2∈R

∑
j∈Z

∑
`∈Z

λbj/2c

∣∣∣F [Φ`j

](
λ−jω1, λ−j/2ω2

)∣∣∣2
 (23)

+ ∑
0 6=r∈Z

∑
0 6=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
}

.

By virtue of the estimates (22) and (23), it follows that(
C1 − C3

β2

)∥∥∥ f
∥∥∥2

2
≤ ∑

j∈Z
∑

m∈Z2
∑

`∈Z
λbj/2c

∣∣∣〈 f , Ψj,m,`

〉
2

∣∣∣2 ≤ (C2 + C3

β2

)∥∥∥ f
∥∥∥2

2
.

This completes the proof of Theorem 1.

Towards the end of the ongoing section, we aim to formulate a simple condition under
which the hypothesis (17) is satisfied. More explicitly, we shall demonstrate that if the
function (12) is band-limited to a certain closed ball B∞(t0, r) centered at t0 ∈ R2 with
radius r > 0, then the system (13) constitutes a frame for L2(R2) provided the sampling
constant β > 0 is chosen to be small enough.

Corollary 1. Let Φ ∈ L2(R2) be as given in (12) and 0 < β < 1/2r. If supp
(
F
[
Φ
]
(w)

)
⊂

B∞(0, r), the closed ball centered about 0 = (0, 0)T ∈ R2 having radius r, and

C1 ≤ ∑
j∈Z

∑
`∈Z

λbj/2c

∣∣∣F [Φ`j

](
λ−jω1, λ−j/2ω2

)∣∣∣2 ≤ C2, (24)

almost everywhere ω1, ω2 ∈ R, with 0 < C1 ≤ C2 < ∞, then the system (13) constitutes a frame
for L2(R2) with the lower and upper frame bounds as β−2C1 and β−2C2, respectively. In particular,
if C1 = C2 = C, then the system (13) turns to be a tight frame with the frame bound as β−2C.

Proof. According to the hypothesis, the window function Ψ is so chosen that the corre-
sponding modulated version Φ given by (12) is band-limited in the sense that F

[
Φ
]
(w) ⊂

B∞(0, r). Therefore, we have F
[
Φ
](

Rθ`j
A−jw

)
6= 0 if and only if Rθ`j

A−jw ∈ B∞(0, r).

Consequently, for ξ = (ξ1, ξ2)
T ∈ R2 we obtain∣∣∣∣F [Φ](Rθ`j

A−jw + ξ
)∣∣∣∣ 6= 0⇐⇒ Rθ`j

A−jw ∈ B∞(−ξ, r). (25)

Clearly, if ξ ∈ R2 is such that B∞(0, r) ∩B∞(−ξ, r) = ϕ, then in view of (15) we have
H(ξ) = 0. Indeed, this is the case if

∥∥ξ
∥∥

∞ > 2r. Hence, we conclude that

∑
0 6=r∈Z

∑
0 6=s∈Z

[
H
(

β−1r, β−1s
)

H
(
− β−1r,−β−1s

)]1/2
= 0, ∀ β < 1/2r. (26)

This evidently completes the proof of Corollary 1.

Remark 1. Since modulation in the spatial domain corresponds to a simple shift in the frequency
domain; therefore, in view of (12) it suffices to verify the conditions (16) and (17) for the function
Ψ`j

(t) instead of the modulated version Φ`j
(t) = Ψ`j

(t) exp
{

2πi tT(1, 1)T}. Moreover, it is also
quite conspicuous that the argument of Corollary 1 holds in case the function Ψ is band-limited to the
closed ball centered about 1 = (1, 1)T ∈ R2 and having radius r; that is, F

[
Ψ
]
(w) ⊂ B∞(1, r).



Mathematics 2023, 11, 1839 9 of 9

4. Conclusions and Future Work

In this communication, we introduced a scale-dependent discretization scheme for the
non-isotropic Stockwell transform. Under the refined discretization procedure, one can effi-
ciently control both the radial and angular expansions simultaneously. As an endorsement
to the undertaken problem, we also demonstrated that the novel discretization scheme
allows for the construction of Stockwell frames in L2(R2). Nevertheless, as a future re-
search aspect, it is lucrative to numerically compute the frame bounds for several classes of
two-dimensional functions, particularly the Gabor functions, so that general results can be
made regarding tightness of the frame with an increase in the number of frequency, spatial,
and orientation sampling steps. Based on the numerical outcomes, certain experimental
results concerning the image representation and reconstruction processes can be executed.
Moreover, in view of the fact that the two-dimensional Gabor functions play an important
role in many computer vision applications and modelling biological vision, the study can
further be extended in that direction.
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