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Abstract: This paper discusses the development of two different bi-phase flows. Fourth-grade fluid
exhibiting the non-Newtonian fluid nature is taken as the base liquid. Two-phase suspension is
obtained by using the spherically homogeneous metallic particle. Owing to the intense application
of mechanical and chemical multiphase flows through curved and bent configurations effectively
transforms the flow dynamics of the fluid. Differential equations for electro-osmotically driven fluid
are modeled and solved with the help of the regular perturbation method. The obtained theoretical
solution is further compared with the ones obtained by using two different numerical techniques and
found to be in full agreement.
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1. Introduction

In various applications, the flow of non-Newtonian fluids (such as blood, greases,
drilling muds, and suspension, etc.) cannot be expressed by the classical Navier–Stokes
theory, and these fluids are categorized as tangent hyperbolic fluids, power-law fluids,
generalized Newtonian fluids, Ellis fluids, Williamson fluids, Burgers fluids, Johnson–
Segalman fluids, Sisko fluid model, Eyring–Powell fluid, third grade fluid, etc. Due to
complex rheological properties and behavior, the fourth-grade fluid [1] is a special type of
non-Newtonian fluid that describe the shear thinning and shear thickening phenomena
which cannot be expressed by the classical Navier–Stokes equations. The applications
of fourth-grade fluids in industry, petroleum and food manufacturing, etc., have signifi-
cant involvement of diffusion reaction [2] and thermal transports in parallel flows. The
constitutive relation [3] of fourth-grade fluid is more complex as compared to second-
and third-grade fluids due to more material parameters. So, the study of such highly
viscous fluids is hard to model and predict the flow properties, due to scores of parameters.
Salawu et al. [4] reported important results on fourth-grade fluid. The investigation is
carried out for a parallel flow that obeys the fundamentals of Couette flow mechanism. The
numerical results are reached via finite semi-discretization difference method.

Fourth-grade fluid is treated as biological flow in [5] in the curved artery channel
by Khan et al. with the help of numerical technique. An approximate study of circular
flows with temperature-dependent viscosity of fourth-grade fluid through is the focal
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point of different authors in [6,7]. Aziz and Mahomed [8] present a theoretical analysis of
fourth-grade fluid over a porous plate.

The flow of bulk fluids through the membrane, porous channel, capillary tube, mi-
crochannel, or any other fluid channel under the action of the electric field applied at the
end of the conduit is termed electro-osmosis flow. The electroosmotic flow getting the
attention of researchers and authors due to its wider applications in medical science, natural
chemistry, industrial processes [9], etc. The electro-osmotic flow in non-Newtonian fluids,
namely, colloidal suspension, blood, polymeric and protein arrangements, have significant
usages. Currently, various studies on the electro-osmotic flow of non-Newtonian fluids
have been reported by researchers by considering different constitutive models such as
Eyring–Powell fluid [10], Williamson fluid [11], Casson fluid [12], Sutterby fluid [13], gener-
alized Newtonian fluid [14], fractional Maxwell fluid [15], Walters’-B fluid [16], Phan Thien
Tanner fluid [17], Power-law fluid [18], Oldroyd-B fluid [19] and third-grade fluid [20], etc.

In addition to the above literature, close analysis of some recent studies on the mul-
tiphase flow of fourth-grade fluid under the action of the electric field in two complex
configurations, namely, convergent and divergent channels, is worthful investigation. The
analysis of this study is a significant contribution to understanding the behavior of the
multiphase flow of fourth-grade fluid in terms of physical and mathematical point of view.
The modeled highly nonlinear differential equations are dealt with “Perturbation technique”
to achieve an approximate solution.

2. Development of a Mathematical Model of Multiphase Flow of Non-Newtonian
Fluid with Electro-Osmotic Phenomena

Consider a two-phase flow of fourth-grade fluid through channels as shown in
Figures 1 and 2, respectively. The configuration of convergent [21] and divergent [22]
channels can be defined as:

Geometry 1:

H(x) =

{
a− b

√
1− cos

(
πx
λ

)
; When 11λ

7 < x < 33λ
7

0.5a; Othwewise
, (1)

Geometry 2:

H(x) =
{

a− b sin2(πx
λ

)
When 11λ

7 < x < 33λ
7 ,

0.5a; Othwewise.
(2)

If Vv f =
[
uv f (x, y), 0, 0

]
and Vvp =

[
uvp(x, y), 0, 0

]
denote the velocity of fluid and

particle phase, respectively. The governing equations for this dissemination of fluid and
particle phases are:
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2.1. Flow Equations for Fluid Phase

The equation of continuity which governs the conservation of mass of the flow is

∇.Vv f = 0, (3)

similarly, the conservation of momentum [23,24] for the fluid phase of the considered
problem is given as

ρ f (1−C)
D Vv f

D t
= −(1−C)∇.p + (1−C)∇.T− SC

(
Vvp −Vv f

)
+ J× B + gρ f . (4)

The mathematical expression of “T” is defined as [2]

T = S1 + S2 + S3 + S4, (5)

S1 = µA1, (6)

S2 = α1A2 + α1A2
1, (7)

S3 = β1A3 + β2(A2A1 + A1A2) + β3(trA2
1)A1, (8)

S4 = γ1A4 + γ2(A3A1 + A1A3) + γ3A2
2 + γ4(A2A2

1 + A2
1A2)

+γ5(trA2)A2 + γ6(trA2)A2
1 + γ7(trA3) + γ8(tr(A2A1))A1,

(9)

A1 = L + LT, (10)

An =
dAn−1

dt
+ An−1L + LTAn−1, n>2, (11)

L = ∇Vv f . (12)

In the above one can identify

J = σ(E + Vv f × B), (13)

The equation of continuity and momentum equations are defined in the following manner

∇.Vvp = 0, (14)
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ρpC
D Vvp

D t
= −C∇.p +−SC

(
Vvp −Vv f

)
. (15)

It is presumed that the velocity of the bi-phase fluid is zero and the particle concen-
tration remains the same during the study, so the Equations (3), (4), (13) and (15) in the
component’s forms can be written as

∂uv f

∂y
= 0. (16)

The momentum of the fluid phase can be obtained as

ρ f (1−C)
(

∂uv f
∂t + uv f

∂uv f

∂
_
x

+ vv f
∂uv f
∂y

)
= −(1−C) ∂p

∂x+

(1−C)

{
µ

∂2uv f
∂y2 + 6β

(
∂uv f
∂y

)2
(

∂2uv f
∂y2

)}
− SC

(
uvp − uv f

)
+
(

∂2φ

∂x2 + ∂2φ

∂y2

)→
E x, where β = β2 + β3.

(17)

The overhead expression has a lot of significance because if β3 is zero, the Equation (17)
turns into a momentum equation for third-grade fluid and if both are equal to zero, then
the resulting equation is also a momentum equation of second-grade Newtonian fluids and
if both are not turned into zero the result will be momentum equation of four grade.

ρ f (1−C)
(

∂vv f
∂t + uv f

∂vv f
∂x + vv f

∂vv f
∂y

)
= −(1−C) ∂p

∂y + (1−C){
α
(

∂uv f
∂y

)(
∂2uv f
∂y2

)
+ γ

(
∂uv f
∂y

)3
(

∂2uv f
∂y2

)}
− SC

(
vvp − vv f

)
.

(18)

where α = 4α1 + 2α2 and γ = 16(γ3 + γ4 + γ5 + 0.5γ6).

2.2. Governing Equations (Particle Phase)

The Equations (14) and (15) can be expressed in the following form as

∂uvp

∂y
= 0. (19)

ρ f C
(

∂uvp

∂t
+ uvp

∂uvp

∂x
+ vvp

∂uvp

∂y

)
= −C

∂p
∂x

+ SC
(

uvp − uv f

)
. (20)

ρ f C
(

∂vvp

∂t
+ uvp

∂vvp

∂x
+ vvp

∂vvp

∂y

)
= −C

∂p
∂y

+ SC
(

vvp − vv f

)
. (21)

For steady flow Equations (17), (18), (20) and (21) gained the shape{
µ

∂2uv f

∂y2 + 6β

(
∂uv f

∂y

)2
(

∂2uv f

∂y2

)}
− 1

(1−C)

∂p
∂x

+
1

(1−C)

(
∂2φ

∂x2 +
∂2φ

∂y2

)→
E x = 0, (22)

∂p
∂y
−
{

α

(
∂uv f

∂y

)(
∂2uv f

∂y2

)
+ γ

(
∂uv f

∂y

)3
(

∂2uv f

∂y2

)}
= 0, (23)

C
∂p
∂x

= SC
(

uvp − uv f

)
. (24)

Equation (23), is solved for modified pressure, which gives

∂p
∂y

= 0. (25)



Mathematics 2023, 11, 1832 5 of 18

The boundary conditions are given as

uv f (y) = uv fat wall
; When y = −H(x), (26)

uv f (y) = uv fat wall
; When y = H(x). (27)

3. Dimensionalization of the Problem

To predict the contribution of the most significant variables and parameters, it is
mandatory to reduce or accumulate certain quantities which are of the least importance.
Therefore, the following dimensionless transformation is of effective use.

x = x
L , y = y

L , uv f =
uv f
u∗ , uvp =

uvp
u∗ , ρrel =

ρ f
ρp

,

p = pL
µsu∗ , v = βu∗2

µL2 , M = BoL
√

σ
µ .

. (28)

The dimensionless form of Equations (20)–(27) is achieved by using the expression
defined in Equation (28) in the following form as (bars are omitted)

∂2uv f

∂y2 + 6v

(
∂uv f

∂y

)2
(

∂2uv f

∂y2

)
− M2

(1− C)
uv f −

1
(1− C)

∂p
∂x

+

(
m2UHS
(1− C)

)
cosh(mx)
cosh(mh)

= 0, (29)

uvp = uv f −m2
∂p
∂x

, (30)

uv f (y) = 0; When y = −h(x), (31)

uv f (y) = 0; When y = h(x). (32)

Similarly, the dimensionless form of the relations described in Equations (1) and (2)
are narrated as

h(x) =
{

a− β
√

1− cos(πx); When 0.5 < x < 4.5,
0.5; Othwewise.

(33)

h(x) =
{

1− β sin2(πx) When 0.5 < x < 4.5,
0.5; Othwewise.

(34)

We assume that
dp
dx

= P. (35)

Then, Equations (29) and (30) become,

∂2uv f

∂y2 + 6v

(
∂uv f

∂y

)2
(

∂2uv f

∂y2

)
− M2

(1−C)
uv f −

1
(1−C)

P +

(
m2UHS
(1− C)

)
cosh(mx)
cosh(mh)

= 0, (36)

uvp = uv f −m2P. (37)

4. Perturbation Solution

To find the approximate analytical solution to Equation (36) can easily be achieved
due to the nonlinear term. Therefore, the most effective and reliable solution with the least
margin of error can be obtained if the perturbation technique is applied. For this purpose,
we assume that:

uv f = uv f0 + εuv f1 + ε2uv f2 + o(ε3), (38)
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and more suppose that,
v = λε. (39)

The above equation ε is known as the perturbation parameter. In view of Equations (38)
and (39), Equation (36) becomes

∂2
(

uv f0
+εuv f1

+ε2uv f2
)

∂y2 + 6λε

(
∂(uv f0

+εuv f1
+ε2uv f2

)

∂y

)2(
∂2(uv f0

+εuv f1
+ε2uv f2

)

∂y2

)
−M2(uv f0

+εuv f1
+ε2uv f2

)

(1−C)
− 1

(1−C)
P +

(
m2UHS
(1−C)

)
cosh(mx)
cosh(mh) = 0.

(40)

Equating and determining the equation of each order of ε0, ε1 and ε2:

ε0 :
∂2uv f0

∂(y)2 −
M2

(1−C)
uv f0 −

1
(1−C)

P +

(
m2UHS
(1− C)

)
cosh(mx)
cosh(mh)

= 0, (41)

uv f0(±h(x)) = 0. (42)

Similarly,

ε1 :
∂2uv f1

∂y2 + 6λ

(
∂uv f0

∂y

)2
(

∂2uv f0

∂y2

)
−

M2uv f1

(1−C)
= 0, (43)

uv f1(±h(x)) = 0, (44)

ε2 :
∂2uv f1

∂y2 + 6λ

(
∂uv f0

∂y

)[(
∂uv f0

∂y

)(
∂2uv f1

∂y2

)
+ 2

(
∂2uv f0

∂y2

)(
∂uv f1

∂y

)]
−

M2uv f2

(1−C)
= 0, (45)

uv f2(±h(x)) = 0. (46)

The solution to Equation (41) is given below

uv f0 = (a4 cosh[my] + P(a5 − a6 cosh[ya1]) + a7 cosh[ya1]). (47)

The solution to Equation (43) is given below

uv f1 =

(
a34 + a35P+
a36P2 + a37P3

)(
cosh[a1y]−
sinh[a1y]

)
+

(
a38 + a39P+
a40P2 + a41P3

)(
cosh[a1y]+
sinh[a1y]

)
+ a8ysinh[ya1] + a9 cosh[ya1] + a10 cosh[3ya1] + a11sinh[2ya1]

sinh[my] + a12 cosh[my](9− 5 cosh[2ya1]) + a13 cosh[my]
sinh[ya1]

2 + a14sinh[2my]sinh[ya1] + a15 cosh[my]2 cosh[ya1]


+P

 a16ysinh[ya1] + a17 cosh[ya1] + a18 cosh[3ya1] + a19sinh[my]
sinh[2ya1] + a20 cosh[my](9− 5 cosh[2ya1]) + a21 cosh[my]
sinh[ya1]

2 + a22sinh[2my]sinh[ya1] + a23 cosh[my]2 cosh[ya1]


+P2

 a24ysinh[ya1] + a25 cosh[3ya1] + a26 cosh[ya1] + a27sinh[my]
sinh[2ya1] + a28 cosh[my] cosh[2ya1] + a29 cosh[my] + a30 cosh
[my]sinh[ya1]

2


+P3(a31ysinh[ya1] + a32 cosh[ya1] + a33 cosh[3ya1]).



. (48)
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The solution of Equation (45) is not presented here due to lengthy expressions
that appeared after solving it. The final expression of the velocity can be obtained from
Equation (48), i.e.,

A11 = (a4 cosh[my] + P(a5 − a6 cosh[ya1]) + a7 cosh[ya1])+

v



(
a34 + a35P + a36P2 + a37P3)(cosh[a1y]− sinh[a1y])
+
(
a38 + a39P + a40P2 + a41P3)(cosh[a1y] + sinh[a1y])

+(a8ysinh[ya1] + a9 cosh[ya1] + a10 cosh[3ya1] + a11
sinh[2ya1]sinh[my] + a12 cosh[my](9− 5 cosh[2ya1])

+a13 cosh[my]sinh[ya1]
2 + a14sinh[2my]sinh[ya1]+

a15 cosh[my]2 cosh[ya1]




(49)

A12 = P


a16ysinh[ya1] + a17 cosh[ya1] + a18 cosh[3ya1] + a19
sinh[my]sinh[2ya1] + a20 cosh[my](9− 5 cosh[2ya1])

+a21 cosh[my]sinh[ya1]
2 + a22sinh[2my]sinh[ya1]+

a23 cosh[my]2 cosh[ya1]

+

P2

 a24ysinh[ya1] + a25 cosh[3ya1] + a26 cosh[ya1] + a27
sinh[my]sinh[2ya1] + a28 cosh[my] cosh[2ya1] + a29

cosh[my] + a30 cosh[my]sinh[ya1]
2

+

P3(a31ysinh[ya1] + a32 cosh[ya1] + a33 cosh[3ya1])


. (50)

uv f = A + B+ . . . (51)

Similarly, we can get the expression for the velocity of the particulate phase uvp.

up = (a4 cosh[my] + P(a5 − a6 cosh[ya1]) + a7 cosh[ya1])+

v



(
a34 + a35P + a36P2 + a37P3)(cosh[a1y]− sinh[a1y])
+
(
a38 + a39P + a40P2 + a41P3)(cosh[a1y] + sinh[a1y])

+(a8ysinh[ya1] + a9 cosh[ya1] + a10 cosh[3ya1] + a11
sinh[2ya1]sinh[my] + a12 cosh[my](9− 5 cosh[2ya1])

+a13 cosh[my]sinh[ya1]
2 + a14sinh[2my]sinh[ya1]+

a15 cosh[my]2 cosh[ya1]


+

P


a16ysinh[ya1] + a17 cosh[ya1] + a18 cosh[3ya1] + a19
sinh[my]sinh[2ya1] + a20 cosh[my](9− 5 cosh[2ya1])

+a21 cosh[my]sinh[ya1]
2 + a22sinh[2my]sinh[ya1]+

a23 cosh[my]2 cosh[ya1]

+

P2

 a24ysinh[ya1] + a25 cosh[3ya1] + a26 cosh[ya1] + a27
sinh[my]sinh[2ya1] + a28 cosh[my] cosh[2ya1] + a29

cosh[my] + a30 cosh[my]sinh[ya1]
2

+

P3(a31ysinh[ya1] + a32 cosh[ya1] + a33 cosh[3ya1])−
( µs

aδλS
)

P + . . .



(52)

The volumetric flow rates (fluid and particle phases) can be determined from the
following expressions:

Q f =
∫ h

0
u f dy, (53)

Qp =
∫ h

0
updy. (54)

The mathematical expression for the total volumetric flow rate is defined as

Q = Q f + Qp. (55)

The expression for pressure P can be obtained by solving the above Equation (55).
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5. Comparative Analysis

The comparison between numerical and perturbation solutions is displayed in Table 1.
The perturbation solution is obtained in second order while the numerical solution is obtained
through the spectral collocation method. In this method, we discretize the derivatives by
using the Jacobi orthogonal polynomials or Chebyshev. The nonlinearity is handled through
the Newton–Raphson method and finite difference approximation of the Jacobean (discrete
Jacobean). Both solutions are obtained in convergent geometry. For this comparison, we
obtained the numerical values of fluid velocity and particle velocity against the variation of
the Hartmann number. From Table 1, it can be observed that both solutions are well-matched
with each other. To validate the numerical results, we used another scheme, namely, the
shooting method, and noted that both numerical results are accurate, as listed in Table 2.

Table 1. Absolute error between perturbation and numerical solutions.

Perturbation Solution Numerical Solution Absolute Error

M uvf uvp uvf uvp uvf uvp

1.0 1.45064 1.45089 1.45198 1.45001 0.134% 0.088%

2.0 1.35730 1.35744 1.35598 1.35671 0.132% 0.073%

3.0 1.21666 1.21680 1.21549 1.21612 0.117% 0.068%

4.0 1.04626 1.04638 1.04519 1.04590 0.107% 0.048%

5.0 0.86436 0.86446 0.86332 0.86399 0.104% 0.047%

Table 2. Absolute error between shooting method and pseudo-spectral collocation method.

Pseudo-Spectral Collocation Method Shooting Method

C uvf uvp uvf uvp

0.1 1.41085 1.41110 1.41090 1.41001

0.2 1.33491 1.33506 1.33231 1.33325

0.3 1.23917 1.23932 1.23523 1.23567

6. Results and Discussion

A comprehensive parametric study is carried out in this section. The momentum of the
particulate flow is predicted via the change in the numerical values of fourth-grade parameter
“v”, electro-osmotic “m”, particle concentration “C” and volumetric flow rate “Q”. Because
of the diverse shapes and layout, the velocity acts entirely differently. In Figures 3 and 4, the
graphs of the most significant parameter v, the fourth-grade parameter are drawn against
the different values v in both channels. It is of great interest that the velocity of both phases
inclines with the respect to the variation in the dimensionless quantity. However, both
geometries affect the flow quite differently. This opposite impression of the geometry of the
multiphase flow can easily be apprehended due to Bernoulli’s principle of fluid dynamics.

The variation of the electro-osmotic parameter “m” on fluid and particle phases is shown
in Figures 5 and 6. It can be viewed from the plotted graphs that the electro-osmotic parameter
inversely impacts the velocity profile of the fluid and particle phases, respectively. This inverse
relationship introduces a force of hindrance across the flow. Therefore, the momentum of the
fluid and particles diminishes gradually. Variation in the concentration of metallic particles
is depicted in Figures 7 and 8. Unlike previous graphs, the impact of C is quite different, all
depending on the configuration of the geometry through which the bi-phase suspension is
transported. The momentum of both phases declines by opting for the convergent channel.
On the other hand, there is a tremendous enhancement in the velocity of fluid and particle
phases when the channel is considered to be the divergent one.

The volumetric flow rate is also a pivotal parameter of this analytic study. In the most
recent decade, when every appliance has reduced in size, the need of the hour is to conduct
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such research where micro-size geometries and channels are considered; so, in this regard,
the volumetric flow rate is especially important to measure. The volumetric flow rate is also
known as the rate of fluid flow or volume velocity. This is the volume of the fluid which is
passing through the considered geometry per unit of time. Its units in system international
(SI) are cubic meter/second; however, cubic centimeters per minute is also in practice. The
volumetric flow rate is mathematically defined as

Q =

.

V = Lim
∆t→→0

∆V
∆t

=
dV
dt

(56)

and this is the scalar quantity. In Figures 9 and 10, the graphs of the volumetric flow rate are
plotted against the different values of the parameters Q for both the phases in convergent and
divergent channels. As the values of Q enhanced, the velocity profile of fluidic and particulate
phases increased in convergent and divergent channels. The same behavior of the graph
has been seen in both phases and the simultaneous effect is observed for diversely shaped
convergent and divergent channels. This is because when the volumetric flow rate is increased,
the velocity in the geometries experienced pressure and the velocity is enhanced due to extra
pressure of the flowing fluid, the fluid entering the channel and gaining high velocity.Mathematics 2023, 11, x FOR PEER REVIEW 12 of 21 
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Figure 3. Impact of fourth-grade parameter on fluid velocity.
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Figure 5. Impact of electro-osmotic parameters on fluid velocity.
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Figure 6. Impact of electro-osmotic parameters on particle velocity.
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Figure 7. Impact of particle concentration on fluid velocity. 

C 0.1
C 0.2

C 0.3
C 0.4

0.0 0.5 1.0 1.5 2.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

x

u
f
l
u
i
d

Convergent Geometry

C 0.1
C 0.2
C 0.3
C 0.4

0.0 0.5 1.0 1.5 2.0

2.5

3.0

3.5

4.0

4.5

x

u
F
l
u
i
d

Divergent Geometry

Figure 7. Impact of particle concentration on fluid velocity.
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Figure 8. Impact of particle concentration on particle velocity.
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Figure 9. Impact of volumetric flow rate on fluid velocity. 
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Figure 9. Impact of volumetric flow rate on fluid velocity.
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Figure 10. Impact of volumetric flow rate on particle velocity.
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7. Concluding Remarks

A closed-form pronouncement for the velocity dispersal of utterly evolve flow of
hafnium particles and fourth-grade base fluid adjournment via two different geometries
diverse in shape are dispensed. The impact of germane parameters such as fourth-grade
parameters, electro-osmotic parameter, the concentration of nanoparticles and volumetric
flow rate in a couple of channels such as convergent and divergent flow has been exhibited
and inspected graphically. The most noteworthy remarks itemized are:

v An increase in the behavior of both particle and fluid phase velocities is viewed in conver-
gent and divergent geometries when enhancement is made in the fourth-grade parameter;

v A remarkable decrease in the velocity profiles of fluid and particle phases in both
channels is noted when the value of the electro-osmotic parameter is enhanced;

v The credible incline is measured in the velocity profile of both phases in the divergent
channel when the value of particle concentration is increased, and a very dubious
decline has been seen in the velocities of both phases in the convergent channel;

v When the volumetric flow rate upraised in both channels the velocity profile of fluid
and particle phases improved as the volumetric flow rate more in velocities.
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