
Citation: Yang, Y.; Han, B.; Ran, Z.;

Gao, M.; Wei, Y. Attributed Graph

Embedding with Random Walk

Regularization and Centrality-Based

Attention. Mathematics 2023, 11, 1830.

https://doi.org/10.3390/

math11081830

Academic Editors: Dawei Cheng,

Zhibin Niu and Yiyi Zhang

Received: 23 March 2023

Revised: 9 April 2023

Accepted: 11 April 2023

Published: 12 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Attributed Graph Embedding with Random Walk
Regularization and Centrality-Based Attention
Yuxuan Yang, Beibei Han, Zanxi Ran, Min Gao and Yingmei Wei *

School of System Engineering, National University of Defense Technology, Changsha 410073, China;
yangyuxuan20@nudt.edu.cn (Y.Y.)
* Correspondence: weiyingmei@nudt.edu.cn

Abstract: Graph-embedding learning is the foundation of complex information network analysis,
aiming to represent nodes in a graph network as low-dimensional dense real-valued vectors for the
application in practical analysis tasks. In recent years, the study of graph network representation
learning has received increasing attention from researchers, and, among them, graph neural networks
(GNNs) based on deep learning are playing an increasingly important role in this field. However,
the fact that higher-order neighborhood information cannot be used effectively is a problem of most
existing graph neural networks. Moreover, it tends to ignore the influence of latent representation and
structural properties on graph embedding. In hopes of solving these issues, we introduce centrality
encoding to learn the node properties, add an attention mechanism consideration to better distinguish
the significance of neighboring nodes, and introduce random walk regularization to make sample
neighbors that consistently satisfy predetermined criteria. This allows us to learn a representation of a
potential node. We tested the performance of our model on node-clustering and link prediction tasks
using three widely recognized benchmark datasets. The outcomes of our experiments demonstrate
that our model significantly surpasses the baseline method in both tasks, indicating that the graph
embedding it generates is highly expressive.

Keywords: attributed graph embedding; attributed network; graph representation learning; graph
neural networks

MSC: 05C75; 05C62; 68-04

1. Introduction

As information technology has advanced, graph networks have become commonplace
in daily life. Since graph networks are frequently used to describe connections among
items, they can be further mined and analyzed, allowing for a deeper understanding of
the networks through data mining and network analysis. Graph data exist widely in
various scenarios, and they often feature a large scale, complex structure, and multiple
information [1]. The diverse entities and inter-entity associations in these data constitute a
series of different information networks [2–4]. For example, in social-networking platforms,
social networks are formed by friends or followers among users; citation networks are
formed between papers in academic websites; and the World Wide Web is formed by Web
pages. In addition, the network model has also contributed to the epidemiological study
of the global pandemic of COVID-19 [5]. Common network analysis tasks include social
recommendation, anomaly detection, node classification, node clustering, and community
discovery [6].

In the era of fast-paced information development, the scale of real-life networks is
often very large, with numerous nodes exhibiting complex attributes. Traditional network
analysis algorithms are therefore inadequate for deployment and application in such colos-
sal networks. Consequently, efficiently mining crucial knowledge from these information

Mathematics 2023, 11, 1830. https://doi.org/10.3390/math11081830 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11081830
https://doi.org/10.3390/math11081830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11081830
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11081830?type=check_update&version=2

Mathematics 2023, 11, 1830 2 of 14

networks has emerged as a recent research hotspot and critical research direction within the
artificial intelligence and data-mining domains, delivering significant societal worth. The
majority of deep-learning-based techniques are currently being utilized to learn potential
graph representations by fusing node attribute and graph topology data. For example, the
GNN-based model [4], which has excelled in graph embedding, is able to fuse topolog-
ical and feature information better. Gated graph sequence neural networks (GGNN) [7]
optimizes the previously proposed graph neural network, and the researchers introduce
the gated cycle GRU for neural network coding. Since GNNs are by nature vulnerable to
hostile attacks, or small intentional perturbations on inputs, there are also many studies
that introduce adversarial attack methods into graph data learning [8], using adversarial
training based on generators and discriminators to improve the model capabilities. The
graph autoencoder [9] is widely used in unsupervised network representation learning. The
basic idea is to learn low-dimensional network node representation by taking the adjacency
matrix or its variant as the original features of the nodes and using the autoencoder to
achieve dimension reduction. Both the encoder and decoder in the model are multi-layer
perceptron structures with multiple hidden layers; that is, they try to compress the graph
structure information into low-dimensional vectors and then reconstruct its original struc-
tural features. Deepening the number of layers in a deep-learning network can allow us to
learn multi-order neighbor information, but it often leads to over-smoothing [10], making
features less distinguishable between nodes, which results in the opposite effect.

To more effectively address the issues listed above, we introduce centrality encoding
in the node attributes and add its consideration to the attention mechanism to better dis-
tinguish the importance of neighboring nodes, while adding random walk regularization
makes it possible to sample neighbors that satisfy specific conditions each time in order to
learn a potential representation of the node. These improvements help to address these
problems more effectively. This will enable us to better capture neighborhood information
in the attribute network and learn a stronger graph-embedding representation. We employ
the features acquired by the model for node-clustering and link prediction tasks in order
to further demonstrate the efficacy of our proposed methodology. Experimental results
demonstrate that our technique performs better than other baseline methods, which sup-
ports both our hypothesis and the validity of the model. The following three main points
sum up our contribution in this work:

• We consider an attention-based convolutional layer with centrality encoding. In
order to effectively aggregate and identify the significance and influence of vari-
ous neighbor nodes, we apply a novel attention technique to integrate multi-hop
neighborhood information;

• We propose a novel attributed graph-embedding approach called RCAGE. An atten-
tion mechanism based on centrality encoding is employed for node attributes and
graph structure information, while random walk regularization is introduced to learn
the latent representation;

• With various datasets, we perform node-clustering and link prediction tasks while
utilizing the characteristics discovered by RCAGE. The experimental results indicate
that the model achieves good performance in the corresponding tasks, proving its
effectiveness and plausibility.

2. Related Works

The ubiquitous attribute graph network data are usually nonlinear, sparse, dynamic,
and heterogeneous, which brings many challenges to the problem of attribute-network-
related analysis. The aim of network representation learning is to obtain a reduced-
dimensional vector representation, which enables nodes with analogous structures in
the network to acquire comparable representations. Due to the impact of deep-learning
techniques on the excellent capability of low-dimensional representation learning from
data, the representation learning of attribute networks has recently attracted fresh attention
in the field of study.

Mathematics 2023, 11, 1830 3 of 14

Early network-representation-learning techniques concentrate on dimensionality re-
duction by calculating the eigenvectors of the network connection matrix, such as the
adjacency matrix and Laplacian matrix [11]. The typical techniques for spectral clustering
are Laplacian eigenmaps (LE) [12], locally linear embedding (LLE) [13], etc. It is challenging
to apply such techniques to bigger networks because the feature vector’s computational cost
is nonlinear compared to the eigenvectors of the matrix. Then, Perozzi et al. [14] proposed
the DeepWalk algorithm, which analogizes the sequence of nodes obtained by random wan-
dering to sentences in natural language processing, and then performs the representation
learning of nodes in the network by applying the SkipGram [15–17] model. Subsequent re-
searchers discovered that employing various random walk algorithms may result in various
node representations, which also led to the creation of classical models for learning graph
structure information, such as Node2vec [18] and Struc2vec [19]. LINE [20] compensates
for the sparse first-order proximity problem by defining the first-order and second-order
proximity among the nodes and modeling the probability separately. DNGR [6] learns
the low-dimensional vector representation of nodes with stacked denoising self-encoders.
SDNE [21] uses a deep self-encoder to model the similarity between nodes. The approaches
described above only take into account the network’s structural information, while actual
networks typically also contain a significant quantity of attribute information. To more ef-
fectively maintain the information in the network, which is a hot topic for future study, both
the attribute information and the structure information of nodes are required to be learned.

In recent years, with the development of deep learning, the emergence of graph
neural networks especially has efficiently solved the above problems. Initially, some
researchers [22,23] applied the CNN to analyze graph structure data, then employed
the Fourier transform to decompose the graph’s Laplacian matrix before using graph
convolution to extract features. Subsequently, Kipf et al. [4] simplified the prior approach by
proposing the graph convolutional network (GCN) algorithm. The graph attention network
(GAT) [24] extends the GCN with the introduction of the attention mechanism [25,26] and
it utilizes a masked self-attentive layer to assign different weights to different nodes based
on the features of their neighborhoods. SANE [27] uses the attention mechanism and
CBOW [16] model to weight the interaction strength between nodes while capturing the
similarity of the network topology and attribute information. DANE [28] employs two deep
models to capture and maintain a high level of nonlinearity as well as numerous similarities
in the topology and node attributes. There is also the more common graph adversarial
learning, whose various methods are still based on generators and discriminators that
improve the ability of the model by means of adversarial training. The discriminator in
GraphGAN [29] makes the node pairs in the original network graph more similar, and lets
the node pairs generated by the generator have less similarity. ANE [30] applies generative
adversarial networks as an additional regularization to existing network-representation-
learning methods by treating prior distributions as real data and node vectors as generative
samples. GraphSGAN [31] designs a new optimization objective with multiple complex
loss terms by means of semi-supervised learning to ensure that samples are generated in
the density difference when the generator is at equilibrium. NetGAN [8] instead treats
graph generation as learning a distribution with biased random wandering and proposes
a generative adversarial network framework for generating and distinguishing random
wandering using LSTM.

The autoencoder [32] is an unsupervised neural network model with two stages,
decoding and encoding, and it typically employs a deep neural network. The graph au-
toencoder (GAE) [9] invokes the idea of the autoencoder, using the GCN in the encoding
phase and using the form of inner product in the decoding part, which is suitable for
unsupervised learning. The graph auto-encoder aims to learn a condensed graph repre-
sentation by minimizing the difference between the reconstructed adjacency matrix and
the original matrix, which serves as the loss function to train the model and learn node
features. The graph variational autoencoder (VGAE) [9] introduces a Gaussian distribution
to constrain the distribution of low-dimensional vectors based on the GAE, and by sam-

Mathematics 2023, 11, 1830 4 of 14

pling in the low-dimensional vector distribution, it can obtain approximately real samples.
DNENC [33] employed a neighbor-aware GAE and an end-to-end learning approach to
gather neighbor information. Building on these models, numerous following models are
developed for encoders by incorporating regularization, higher-order neighbor informa-
tion, and so on. ARGA [34], DAEGC [35], AGC [36], GEC-CSD [37], and other common
approaches are listed below. In addition, several optimization methods such as the recon-
figuration loss optimizer [38] and the modularity optimizer [39] are given. Motivated by
these methodologies, we propose our approach in this paper.

3. Methodology

In this section, we focus on the model framework designed for attributed graph
embedding. The overall architecture of RCAGE is shown in Figure 1.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 14

and using the form of inner product in the decoding part, which is suitable for unsuper-

vised learning. The graph auto-encoder aims to learn a condensed graph representation

by minimizing the difference between the reconstructed adjacency matrix and the original

matrix, which serves as the loss function to train the model and learn node features. The

graph variational autoencoder (VGAE) [9] introduces a Gaussian distribution to constrain

the distribution of low-dimensional vectors based on the GAE, and by sampling in the

low-dimensional vector distribution, it can obtain approximately real samples. DNENC

[33] employed a neighbor-aware GAE and an end-to-end learning approach to gather

neighbor information. Building on these models, numerous following models are devel-

oped for encoders by incorporating regularization, higher-order neighbor information,

and so on. ARGA [34], DAEGC [35], AGC [36], GEC-CSD [37], and other common ap-

proaches are listed below. In addition, several optimization methods such as the reconfig-

uration loss optimizer [38] and the modularity optimizer [39] are given. Motivated by

these methodologies, we propose our approach in this paper.

3. Methodology

In this section, we focus on the model framework designed for attributed graph em-

bedding. The overall architecture of RCAGE is shown in Figure 1.

Figure 1. The RCAGE architecture. Our model takes in the graph structure and node attributes as

inputs on the left side. The following component is an encoder that utilizes an attention mechanism

to produce the embedding matrix Z, which is subject to random walk regularization. The last is the

decoder and the loss calculation method.

3.1. Problem Description

We define an attributed graph as 𝐺 = (𝑉, 𝐸, 𝑋) . V represents the nodes in the

graph 𝐺, which can be expressed as 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} (n is the number of nodes). 𝐸 =

{𝑒𝑖𝑗} is a set of edges, where 𝑒𝑖𝑗 denotes the edge between node 𝑖 and node 𝑗 . 𝑋 =

{𝑥1, 𝑥2, ⋯ , 𝑥𝑛} is the features of the nodes in the graph 𝐺, where 𝑥𝑖 ∈ R𝑚 represents the

feature of node 𝑖. We use an adjacency matrix 𝐴 ∈ R𝑛×𝑛 to represent the edges in order to

better express the graph topology, where 𝐴𝑖𝑗 = 1 if 𝑒𝑖𝑗 ∈ 𝐸; otherwise, 𝐴𝑖𝑗 = 0.

We want to obtain a d-dimensional vector for each node vi in the attributed graph

G by training it with a function F. This process can be expressed as F(A, X) → Z, where Z ∈

Rd×n (d << n) is the final learned embedding matrix. We want Z to retain as comprehensive

the information as possible about node attributes and graph topology in order to have

better performance in downstream tasks.

In this paper, we pick node clustering and link prediction as the graph downstream

tasks. The purpose of the node-clustering task is to partition all nodes into different classes

so that the similarity of node features within the same class is as large as possible. The link

Figure 1. The RCAGE architecture. Our model takes in the graph structure and node attributes as
inputs on the left side. The following component is an encoder that utilizes an attention mechanism
to produce the embedding matrix Z, which is subject to random walk regularization. The last is the
decoder and the loss calculation method.

3.1. Problem Description

We define an attributed graph as G = (V, E, X). V represents the nodes in the graph G,
which can be expressed as V = {v1, v2, · · · , vn}(n is the number of nodes). E =

{
eij
}

is a
set of edges, where eij denotes the edge between node i and node j. X = {x1, x2, · · · , xn} is
the features of the nodes in the graph G, where xi ∈ Rm represents the feature of node i.
We use an adjacency matrix A ∈ Rn×n to represent the edges in order to better express the
graph topology, where Aij = 1 if eij ∈ E; otherwise, Aij = 0.

We want to obtain a d-dimensional vector for each node vi in the attributed graph G
by training it with a function F. This process can be expressed as F(A, X)→ Z, where
Z ∈ Rd×n(d << n) is the final learned embedding matrix. We want Z to retain as compre-
hensive the information as possible about node attributes and graph topology in order to
have better performance in downstream tasks.

In this paper, we pick node clustering and link prediction as the graph downstream
tasks. The purpose of the node-clustering task is to partition all nodes into different
classes so that the similarity of node features within the same class is as large as possible.
The link prediction task determines whether a link exists between two nodes based on
their characteristics.

Mathematics 2023, 11, 1830 5 of 14

3.2. Graph Autoencoder
3.2.1. Centrality Encoding

Different nodes in a network may have varying degrees of significance. The self-
attention module, which primarily uses node semantic properties to determine similarities,
however, does not take into account this information. Node centrality, which gauges a
node’s importance in the network, is often a powerful indicator of graph comprehen-
sion [40]. For example, celebrities with enormous followings are a key component in
anticipating social-networking trends. Such content should be a useful signal for graph
learning, but it is ignored in the present attention computation. As an extra signal to the
neural network, we employ the degree centrality, one of the accepted centrality metrics in
the paper. We include it in the input node attributes when we apply the centrality encoding
to each node.

z(0)i = xi + z+
deg+(vi)

+ z−
deg−(vi)

(1)

In Equation (1), learnable embedding vectors z+, z− are determined by the outdegree
deg+(vi) and indegree deg−(vi). For undirected graphs, the above two can be unified as
deg(vi). In this way, the model can better capture the node importance during training
with the attention mechanism.

3.2.2. Graph Attentional Encoder

In this paper, we design a variation of the graph attention network as an encoder to
capture both node attributes and graph structure in a consolidated framework. Depending
on the node’s degree in a real graph network, the neighbors’ level of contribution to the
central node will vary. By introducing an attention mechanism, we may increase the
weights of neighbor nodes that are more pertinent to the central node when learning the
node representation in order to gauge the significance of various neighbors. The expression
is as follows:

zl+1
i = σ(∑

j∈Ni

αijWzl
j) (2)

In the Equation (2), zl+1
i depicts the output representation for node i, with Ni repre-

senting its neighbor set. The attention coefficient αij is used to measure the significance of
adjacent node j to node i. σ is a nonlinear function.

For the node attributes, a single-layer fully connected network is used to calculate the
similarity coefficients, and the weight vector is denoted as α1.

sij = α1
[
Whi

∣∣∣∣Whj
]

(3)

In terms of graph topology, the impact of various-order neighbor nodes must be
considered. We cannot take into consideration merely 1-hop neighbor information as in the
GAT model, due to the complexity of the graph structure relationship. Here, by setting a
parameter, we give consideration to multi-order neighbor information.

β+ =
(

λ1 + λ2
1 + · · ·+ λk

1

)
/k (4)

β− =
(

λ2 + λ2
2 + · · ·+ λk

2

)
/k (5)

where λ1ij =
1

d+ , λ2ij =
1

d− if eij ∈ E, and λ1ij = λ2ij = 0 otherwise. d+ and d− mean the
outdegree and indegree of node i, respectively. β stands for the topological correlation
between nodes j and i up to k-hops. k is a parameter that can be set to a value of your
choice for different datasets. For undirected graphs, β+ and β− may not be distinguished
and are uniformly defined as β.

Mathematics 2023, 11, 1830 6 of 14

To make the attention coefficients easily comparable across nodes, they are normalized
in the set Ni with the softmax function. The formula is as follows, where j ∈ Ni:

αij = so f tmaxj(sij) =
exp
(
sij
)

∑m∈Ni
exp(sim)

(6)

The following equation can be used to express the attention coefficient once the
activation function LeakyReLU and centrality parameter have been introduced to this base.

αij =
exp
(

LeakyReLU
(

β+
ijβ
−

ij
(
α1
[
Whi

∣∣∣∣Whj
])))

∑m∈Ni
exp(LeakyReLU(β+

imβ−im(α1[Whi||Whm])))
(7)

where hi = z(0)i is input to the model. It is then trained in two stacked graph attention
layers to integrate node attributes and graph structure, and finally output the embedding
results zi = z(2)i .

z(1)i = σ(∑
j∈NI

αijW(0)hj) (8)

z(2)i = σ(∑
j∈NI

αijW(1)z(1)j) (9)

3.3. Random Walk Regularization

In this section, we apply random walk regularization, drawing inspiration from Deep-
Walk and Word2vec, to improve the learning of potential node representation information.
We use random walk with restarts to sample and its neighbor nodes satisfying certain con-
ditions as a combination, and apply the SkipGram idea to learn the potential representation
of nodes.

Random walk with restarts [41] algorithm is an enhancement to the random walk
algorithm. Beginning with node vi in the graph, our approach presents two possibilities
at each step: selecting a neighboring node at random or going back to the origin. The
parameter p governs the likelihood of resuming from the original node, whereas 1− p
controls the chance of shifting to an adjacent node. According to this method, we can obtain
a set of context nodes Wvi , which can capture the multifaceted relationship between two
nodes and the overall structural information of the graph.

Analogous to the NLP tasks, we consider the sampled set Wvi as a sentence, and we
aim to maximize the co-occurrence probability of node vi with other nodes in this window.
This can be expressed as the following equation:

Lrw = log p(µi|Z(vi)) (10)

In Equation (10), µi ∈Wvi and Z(vi) denote the potential representation of the node vi
with encoder.

3.4. Decoder

Now, the graph decoder mainly includes three types: reconstructing attributes, recon-
structing graph topology, or both of the above. In this paper, the embedding matrix we
finally obtain already includes both node attributes and graph topology information, so we
directly adopt the form of inner product decoder:

Â = sigmoid
(

ZZT
)

(11)

Mathematics 2023, 11, 1830 7 of 14

3.5. Reconstruction Loss

We use the loss of decoder reconstructing attributes and graph topology as reconstruc-
tion loss, which is a flexible and efficient method. The specific formula can be expressed
as follows:

Lr = Eq(Z|X,A)

[
logp(A|Z)

]
(12)

4. Experiments
4.1. Datasets

We performed node-clustering and link prediction tasks on the Cora, Citeseer, and
Pubmed datasets, which are three commonly used citation network datasets. The link indi-
cates the citation relationship of the paper and the attribute is the word band model repre-
sentation of the corresponding paper [42]. Table 1 displays the specifics of the three datasets.

• Cora (https://paperswithcode.com/dataset/cora, accessed on 2 March 2023) consists
of 2708 papers in the field of machine learning. Case based, genetic algorithms, neural
networks, probabilistic techniques, reinforcement learning, rule learning, and theory
are the seven categories in which these studies fall [43].

• Citeseer (https://paperswithcode.com/dataset/citeseer, accessed on 2 March 2023)
comprises 3312 scientific and technical papers in the Citeseer network database, di-
vided into six areas: Agents, AI (Artificial Intelligence), DB (Database), IR (Information
Retrieval), ML (Machine Language), and HCI (Human Computer Interaction).

• Pubmed (https://paperswithcode.com/dataset/pubmed, accessed on 2 March 2023)
consists of 19,717 scientific publications on diabetes from the Pubmed database,
grouped into three categories. The three categories are “Diabetes Mellitus Exper-
imental”, “Diabetes Mellitus Type 1”, and “Diabetes Mellitus Type 2”.

Table 1. The details of datasets.

Datasets Nodes Edges Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4723 3703 6
Pubmed 19,717 44,338 500 3

4.2. Baseline Methods

We compare the method proposed in this paper with 11 other benchmark models.
These approaches are classified into three main groups:

(1) Methods depending on features only (F):

• K-means [44] automatically builds clusters according to node feature characteristics;
• Spectral-F [45] computes the cosine similarity between node attributes as an input.

(2) Methods depending on graph structure only (G):

• Spectral-G [45] is spectral clustering that uses the adjacency matrix as the similar-
ity matrix for calculation;

• DNGR [6] generates a low-dimensional vector representation of each node by
capturing the graph structure information and employing a stacked denoising;

• DeepWalk [14] learns the vector representation of nodes by exploiting node-to-
node co-occurrence relationships in the graph.

(3) Methods making use of both features and graph structure (F&G):

• GAE [9] is an unsupervised learning framework using an auto-encoder based on
node attributes and graph structure;

• VGAE [9] replaces the autoencoder with a variational graph autoencoder;
• ARGA & ARVGA [27] are adversarially regularized on the basis of GAE and VGAE;
• AGC [36] obtains node features by utilizing higher-order graph convolution;

https://paperswithcode.com/dataset/cora
https://paperswithcode.com/dataset/citeseer
https://paperswithcode.com/dataset/pubmed

Mathematics 2023, 11, 1830 8 of 14

• DAEGC [35] introduces a graph attention network to aggregate the features of
different hops neighbor nodes, and then it combines the loss of both the graph
reconstruction and clustering for model optimization.

4.3. Evaluation Metrics

For the node-clustering task, we use four metrics to measure the results. They are
Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and
macro F1-score (F1). For the link prediction task, we choose Area Under Curve (AUC) and
Average Precision (AP) to judge the performance.

4.4. Parameter Settings

We set the number of walks to 45, the window size to {25, 20}, and the walk length to
{25, 20} for the hyper-parameters associated with the random walk regularization network.
Our experiments reveal that, depending on the dataset, the best-performing model employs
45 walks with a window size and walk length of either 25 or 20. The initial learning rate
for the random walk regularization is 0.001. For the attention part, we consider two-hops
neighbor nodes on Cora and Citeseer and set k = 2. On Pubmed, we set k = 3. The number
of units in the hidden layer is set to 256 for all datasets. We use a 16-neuron embedding
layer for Cora and Citeseer and a 32-neuron embedding layer for Pubmed.

4.5. Experimental Results
4.5.1. Node Clustering

The clustering results of the three datasets are summarized in Table 2, Table 3, Table 4,
respectively. The greatest outcomes are shown by bold numbers, while the second-best
results are represented by underlined numbers. Overall, the results of our proposal method
generally yield the best in the three datasets in this paper. In comparison to the best baseline,
the clustering accuracy of our approach on Cora, Citeseer, and Pubmed increased by 0.4%,
2.5% and 3.2%, respectively. Among the three datasets, the NMI rose by 2%, 2.1% and 6.2%,
and the ARI improved by 4.4%, 3.0% and 5.7%, accordingly. The F1 improved on Citeseer
and Pubmed by 0.2% and 3.2%, respectively, but still scored 2.4% below the top baseline
results on Cora.

By integrating the properties of the various datasets and comparing the experimental
results on various datasets, we discover that the proposed approach performs better on
Pubmed. We speculate that the reason for this may be that datasets with a larger data
density are more sensitive to the node indegree and outdegree. This makes them more
sensitive to attention parameters, so we finally obtain a correspondingly higher ultimate
effect improvement.

Table 2. Node-clustering performance on Cora.

Methods Input ACC NMI ARI F1

K-means F 0.347 0.167 0.239 0.254
Spectral-F F 0.363 0.151 0.071 0.256

Spectral-G G 0.342 0.195 0.045 0.302
DNGR G 0.492 0.373 0.142 0.373

DeepWalk G 0.467 0.318 0.291 0.381

GAE F&G 0.533 0.407 0.302 0.420
VGAE F&G 0.560 0.385 0.347 0.415
ARGA F&G 0.640 0.449 0.352 0.619

ARVGA F&G 0.638 0.450 0.374 0.627
AGC F&G 0.689 0.537 0.486 0.656

DAEGC F&G 0.704 0.528 0.496 0.682

RCAGE F&G 0.708 0.557 0.540 0.658

Mathematics 2023, 11, 1830 9 of 14

Table 3. Node-clustering performance on Citeseer.

Methods Input ACC NMI ARI F1

K-means F 0.385 0.170 0.285 0.305
Spectral-F F 0.462 0.212 0.183 0.337

Spectral-G G 0.259 0.118 0.013 0.295
DNGR G 0.326 0.180 0.043 0.442

DeepWalk G 0.362 0.097 0.137 0.267

GAE F&G 0.413 0.183 0.191 0.291
VGAE F&G 0.444 0.227 0.206 0.319
ARGA F&G 0.573 0.350 0.341 0.546

ARVGA F&G 0.544 0.261 0.245 0.529
AGC F&G 0.670 0.411 0.419 0.625

DAEGC F&G 0.672 0.397 0.410 0.636

RCAGE F&G 0.697 0.432 0.449 0.638

Table 4. Node-clustering performance on Pubmed.

Methods Input ACC NMI ARI F1

K-means F 0.573 0.291 0.246 0.574
Spectral-F F 0.599 0.326 0.098 0.586

Spectral-G G 0.397 0.035 0.057 0.520
DNGR G 0.454 0.154 0.059 0.179

DeepWalk G 0.619 0.167 0.255 0.471

GAE F&G 0.641 0.230 0.246 0.493
VGAE F&G 0.655 0.251 0.201 0.510
ARGA F&G 0.591 0.232 0.217 0.584

ARVGA F&G 0.582 0.206 0.183 0.230
AGC F&G 0.698 0.316 0.282 0.687

DAEGC F&G 0.671 0.266 0.278 0.659

RCAGE F&G 0.730 0.328 0.335 0.719

4.5.2. Link Prediction

The link prediction results of the three datasets are summarized in Table 5. The greatest
outcomes are represented by bold numbers, while the second-best results are represented
by italicized numbers. The results of the experiments indicate that our technique also
performs well on the link prediction job. According to the best baseline results, AUC
improved by 3.9% and 4.8% on Cora and Citeseer, respectively. AP increased by 3.0% and
4.0% on Cora and Citeseer, respectively, in comparison to the best baseline results.

Table 5. Link prediction results.

Methods Input
Cora Citeseer

AUC AP AUC AP

Spectral-G G 0.844 0.886 0.803 0.849
DeepWalk G 0.833 0.851 0.804 0.835

GAE F&G 0.913 0.921 0.893 0.898
VGAE F&G 0.915 0.927 0.908 0.920
ARGA F&G 0.923 0.930 0.917 0.931

ARVGA F&G 0.924 0.926 0.924 0.930

RCAGE F&G 0.963 0.962 0.972 0.973

Mathematics 2023, 11, 1830 10 of 14

4.5.3. Ablation Study

To further clarify how each module in the overall model functions, we ran ablation
experiments. Here are the specifics of the three models that were created by eliminating
the random walk with restarts, centrality encoding, and attention mechanism sections,
respectively. As shown in Figure 2, the outcomes of the node clustering using these three
models are compared to our method in this paper.

• RCAGE/rwr: Our proposed method does not use the random walk with restarts
regularization strategy to learn node embedding;

• RCAGE/att: Our proposed method does not utilize the attention mechanism;
• RCAGE/ce: The model input does not contain node centrality encoding, only the raw

feature information.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 14

GAE F&G 0.913 0.921 0.893 0.898
VGAE F&G 0.915 0.927 0.908 0.920
ARGA F&G 0.923 0.930 0.917 0.931

ARVGA F&G 0.924 0.926 0.924 0.930
RCAGE F&G 0.963 0.962 0.972 0.973

4.5.3. Ablation Study
To further clarify how each module in the overall model functions, we ran ablation

experiments. Here are the specifics of the three models that were created by eliminating
the random walk with restarts, centrality encoding, and attention mechanism sections,
respectively. As shown in Figure 2, the outcomes of the node clustering using these three
models are compared to our method in this paper.
• RCAGE/rwr: Our proposed method does not use the random walk with restarts reg-

ularization strategy to learn node embedding;
• RCAGE/att: Our proposed method does not utilize the attention mechanism;
• RCAGE/ce: The model input does not contain node centrality encoding, only the raw

feature information.
From Figure 2, we can obviously see that each module contributes significantly to the

overall model. Moreover, we can draw some conclusions from the figure. Of these three
modules, the attention mechanism applied to this work has the most impact on the exper-
iment results, indicating that it is important for learning the feature of graph topology.
For Cora and Citeseer, random walk regularization has a stronger impact than the cen-
trality encoding module, but the converse is true for Pubmed. Combined with the previ-
ous experimental results, we assume that the centrality encoding and the attention mech-
anism with the effect of the indegree and outdegree discussed in this research can better
acquire complicated and larger graph structure features. This aids us in obtaining superior
node-embedding representations.

Figure 2. Comparison of different variants of the model with our method.

4.5.4. Variant Analyses
Analysis for the variants of random walk with restarts: There are three main varia-

bles involved in this module; they are the number of walks, walk length, and window
size. Number of walks refers to the total number of random node-to-node journeys. The
duration of the random walk that began at each node is known as the walk length. Win-
dow size indicates the co-occurrence window size of the SkipGram model when sampling
the neighbors of each node. Figure 3 shows that the results of node clustering, as an ex-
ample, are relatively better when the walk length and window size are set to values of 25
or 20. At the same time, when the number of walks is set to 45, the experimental results
are noticeably better than the cases with other values.

Figure 2. Comparison of different variants of the model with our method.

From Figure 2, we can obviously see that each module contributes significantly to
the overall model. Moreover, we can draw some conclusions from the figure. Of these
three modules, the attention mechanism applied to this work has the most impact on
the experiment results, indicating that it is important for learning the feature of graph
topology. For Cora and Citeseer, random walk regularization has a stronger impact than
the centrality encoding module, but the converse is true for Pubmed. Combined with the
previous experimental results, we assume that the centrality encoding and the attention
mechanism with the effect of the indegree and outdegree discussed in this research can
better acquire complicated and larger graph structure features. This aids us in obtaining
superior node-embedding representations.

4.5.4. Variant Analyses

Analysis for the variants of random walk with restarts: There are three main vari-
ables involved in this module; they are the number of walks, walk length, and window
size. Number of walks refers to the total number of random node-to-node journeys. The
duration of the random walk that began at each node is known as the walk length. Window
size indicates the co-occurrence window size of the SkipGram model when sampling the
neighbors of each node. Figure 3 shows that the results of node clustering, as an example,
are relatively better when the walk length and window size are set to values of 25 or 20.
At the same time, when the number of walks is set to 45, the experimental results are
noticeably better than the cases with other values.

Analysis for k: To allow the model to explore the effect of the node neighborhood on
its feature learning, we control the amount of the order for which neighborhood information
is utilized by setting different values of k. We set the neighbor order to {1, 2, 3, 4}, and
Table 6 displays the experimental results on the three datasets with different neighbor
orders. Table 6 indicates that the model’s experimental results on three datasets gradually
increases as the number of neighbor orders increases from 1 to 2, and the highest clustering
accuracy is achieved when k = 2. The model may capture more interference information
from less important neighbors when the neighbor order is raised above the optimum,
failing to acquire a more discriminative node representation as a result.

Mathematics 2023, 11, 1830 11 of 14Mathematics 2023, 11, x FOR PEER REVIEW 11 of 14

Figure 3. Analysis for walk length, window size, and number of walks.

Analysis for 𝒌: To allow the model to explore the effect of the node neighborhood

on its feature learning, we control the amount of the order for which neighborhood infor-

mation is utilized by setting different values of 𝑘. We set the neighbor order to {1, 2, 3, 4},

and Table 6 displays the experimental results on the three datasets with different neighbor

orders. Table 6 indicates that the model’s experimental results on three datasets gradually

increases as the number of neighbor orders increases from 1 to 2, and the highest cluster-

ing accuracy is achieved when 𝑘 = 2. The model may capture more interference infor-

mation from less important neighbors when the neighbor order is raised above the opti-

mum, failing to acquire a more discriminative node representation as a result.

Table 6. Differences in the accuracy of node clustering with different neighbor orders.

𝒌
Cora Citeseer Pubmed

ACC NMI ARI F1 ACC NMI ARI F1 ACC NMI ARI F1

𝑘 = 1 0.673 0.476 0.398 0.597 0.665 0.434 0.435 0.629 0.694 0.299 0.328 0.724

𝑘 = 2 0.707 0.557 0.540 0.658 0.697 0.432 0.449 0.638 0.730 0.328 0.335 0.719

𝑘 = 3 0.687 0.487 0.451 0.606 0.671 0.423 0.442 0.641 0.712 0.315 0.320 0.701

𝑘 = 4 0.684 0.479 0.422 0.652 0.658 0.407 0.421 0.633 0.678 0.270 0.283 0.671

Analysis for embedding size: Taking node clustering as an example, we set the em-

bedding size to {4, 16, 32, 64, 256} to investigate its effect on the experiment. The details are

summarized in Figure 4. As can be observed, the model performs best on Cora and Citeseer

when the value of the embedding size is taken as 16, while it achieves the best performance

on Pubmed when the value of the embedding size is taken as 32. For graph networks with

a different feature richness, it is necessary to experiment repeatedly with the value of the

embedding dimension to ensure that as much feature information as possible is preserved.

Figure 4. Analysis for embedding size.

4.5.5. Visualization

In order to demonstrate the efficacy of the proposed approach more clearly, we visual-

ize the node-clustering results of several models for comparison. Since the trends of the vis-

ualization results are similar on different datasets, we use the Cora and Citeseer datasets

Figure 3. Analysis for walk length, window size, and number of walks.

Table 6. Differences in the accuracy of node clustering with different neighbor orders.

k
Cora Citeseer Pubmed

ACC NMI ARI F1 ACC NMI ARI F1 ACC NMI ARI F1

k = 1 0.673 0.476 0.398 0.597 0.665 0.434 0.435 0.629 0.694 0.299 0.328 0.724
k = 2 0.707 0.557 0.540 0.658 0.697 0.432 0.449 0.638 0.730 0.328 0.335 0.719
k = 3 0.687 0.487 0.451 0.606 0.671 0.423 0.442 0.641 0.712 0.315 0.320 0.701
k = 4 0.684 0.479 0.422 0.652 0.658 0.407 0.421 0.633 0.678 0.270 0.283 0.671

Analysis for embedding size: Taking node clustering as an example, we set the
embedding size to {4, 16, 32, 64, 256} to investigate its effect on the experiment. The details
are summarized in Figure 4. As can be observed, the model performs best on Cora and
Citeseer when the value of the embedding size is taken as 16, while it achieves the best
performance on Pubmed when the value of the embedding size is taken as 32. For graph
networks with a different feature richness, it is necessary to experiment repeatedly with the
value of the embedding dimension to ensure that as much feature information as possible
is preserved.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 14

Figure 3. Analysis for walk length, window size, and number of walks.

Analysis for 𝒌: To allow the model to explore the effect of the node neighborhood

on its feature learning, we control the amount of the order for which neighborhood infor-

mation is utilized by setting different values of 𝑘. We set the neighbor order to {1, 2, 3, 4},

and Table 6 displays the experimental results on the three datasets with different neighbor

orders. Table 6 indicates that the model’s experimental results on three datasets gradually

increases as the number of neighbor orders increases from 1 to 2, and the highest cluster-

ing accuracy is achieved when 𝑘 = 2. The model may capture more interference infor-

mation from less important neighbors when the neighbor order is raised above the opti-

mum, failing to acquire a more discriminative node representation as a result.

Table 6. Differences in the accuracy of node clustering with different neighbor orders.

𝒌
Cora Citeseer Pubmed

ACC NMI ARI F1 ACC NMI ARI F1 ACC NMI ARI F1

𝑘 = 1 0.673 0.476 0.398 0.597 0.665 0.434 0.435 0.629 0.694 0.299 0.328 0.724

𝑘 = 2 0.707 0.557 0.540 0.658 0.697 0.432 0.449 0.638 0.730 0.328 0.335 0.719

𝑘 = 3 0.687 0.487 0.451 0.606 0.671 0.423 0.442 0.641 0.712 0.315 0.320 0.701

𝑘 = 4 0.684 0.479 0.422 0.652 0.658 0.407 0.421 0.633 0.678 0.270 0.283 0.671

Analysis for embedding size: Taking node clustering as an example, we set the em-

bedding size to {4, 16, 32, 64, 256} to investigate its effect on the experiment. The details are

summarized in Figure 4. As can be observed, the model performs best on Cora and Citeseer

when the value of the embedding size is taken as 16, while it achieves the best performance

on Pubmed when the value of the embedding size is taken as 32. For graph networks with

a different feature richness, it is necessary to experiment repeatedly with the value of the

embedding dimension to ensure that as much feature information as possible is preserved.

Figure 4. Analysis for embedding size.

4.5.5. Visualization

In order to demonstrate the efficacy of the proposed approach more clearly, we visual-

ize the node-clustering results of several models for comparison. Since the trends of the vis-

ualization results are similar on different datasets, we use the Cora and Citeseer datasets

Figure 4. Analysis for embedding size.

4.5.5. Visualization

In order to demonstrate the efficacy of the proposed approach more clearly, we visual-
ize the node-clustering results of several models for comparison. Since the trends of the
visualization results are similar on different datasets, we use the Cora and Citeseer datasets
here as examples. The output embedding at the last layer, in the previous Softmax opera-
tion, was applied to the node-clustering task and the generated node embeddings were
plotted using t-SNE [46]. The results are reported in Figure 5 and colored with real labels.

Mathematics 2023, 11, 1830 12 of 14

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 14

here as examples. The output embedding at the last layer, in the previous Softmax opera-

tion, was applied to the node-clustering task and the generated node embeddings were plot-

ted using t-SNE [46]. The results are reported in Figure 5 and colored with real labels.

In this section, we have selected a few typical models to visualize the experimental

results. As seen in Figure 5, the other models are noticeably superior to DeepWalk, due to

the fact that they consider both the node attributes and graph structure. This further em-

phasizes that node features play an essential role in the research of mining hidden graph

information. The results of the three variant models are displayed in Figure 2 and are also

visualized here separately. Comparatively speaking, our method has somewhat more dis-

tinct borders between each class, and it particularly clusters well on the pink group. This

also illustrates the importance of the joint role of random walk regularization, centrality

encoding, and the attention mechanism in the model.

(a) DeepWalk (b) GAE (c) AGC (d) DAEGC

(e) RCAGE/att (f) RCAGE/ce (g) RCAGE/rwr (h) RCAGE

Figure 5. Visualization of node embeddings learned by different models on Cora.

5. Conclusions

In this paper, we propose the RCAGE model and apply it to graph representation

learning. In this study, we employ centrality coding to quantify the significance of each

node in the network. This information, together with the raw features and graph structure,

are given into the model. To better combine node characteristics and graph topology in-

formation, we adopt an attention mechanism that takes into account the effect of the node

degree. We also use random walk with restarts to sample node neighbors and use it as a

regularization to learn potential representations of nodes. The final experimental results

show that our model performs well for unsupervised learning tasks such as node cluster-

ing and link prediction.

In the future, we plan to investigate expanding the framework to more sophisticated

and time-varying graphs, as well as further learning of edge attributes and global location

information, in order to allow more accurate graph-embedding representations.

Author Contributions: Conceptualization, Y.Y. and Y.W.; methodology, Y.Y.; software, B.H.; vali-

dation, Z.R. and M.G.; formal analysis, Y.Y.; investigation, Z.R. and M.G.; resources, Y.Y.; data cu-

ration, B.H.; writing—original draft preparation, Y.Y.; writing—review and editing, Y.Y., Z.R., and

M.G.; visualization, Y.Y.; supervision, Y.W.; project administration, Y.W.; funding acquisition, Y.W.

All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by both the National Natural Science Foundation of China

(NSFC) and the Postgraduate Scientific Research Innovation Project of Hunan Province under num-

ber CX20200075.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 5. Visualization of node embeddings learned by different models on Cora.

In this section, we have selected a few typical models to visualize the experimental
results. As seen in Figure 5, the other models are noticeably superior to DeepWalk, due
to the fact that they consider both the node attributes and graph structure. This further
emphasizes that node features play an essential role in the research of mining hidden graph
information. The results of the three variant models are displayed in Figure 2 and are
also visualized here separately. Comparatively speaking, our method has somewhat more
distinct borders between each class, and it particularly clusters well on the pink group. This
also illustrates the importance of the joint role of random walk regularization, centrality
encoding, and the attention mechanism in the model.

5. Conclusions

In this paper, we propose the RCAGE model and apply it to graph representation
learning. In this study, we employ centrality coding to quantify the significance of each
node in the network. This information, together with the raw features and graph structure,
are given into the model. To better combine node characteristics and graph topology
information, we adopt an attention mechanism that takes into account the effect of the
node degree. We also use random walk with restarts to sample node neighbors and use
it as a regularization to learn potential representations of nodes. The final experimental
results show that our model performs well for unsupervised learning tasks such as node
clustering and link prediction.

In the future, we plan to investigate expanding the framework to more sophisticated
and time-varying graphs, as well as further learning of edge attributes and global location
information, in order to allow more accurate graph-embedding representations.

Author Contributions: Conceptualization, Y.Y. and Y.W.; methodology, Y.Y.; software, B.H.; valida-
tion, Z.R. and M.G.; formal analysis, Y.Y.; investigation, Z.R. and M.G.; resources, Y.Y.; data curation,
B.H.; writing—original draft preparation, Y.Y.; writing—review and editing, Y.Y., Z.R. and M.G.;
visualization, Y.Y.; supervision, Y.W.; project administration, Y.W.; funding acquisition, Y.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by both the National Natural Science Foundation of China
(NSFC) and the Postgraduate Scientific Research Innovation Project of Hunan Province under num-
ber CX20200075.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fang, R.; Wen, L.; Kang, Z.; Liu, J. Structure-Preserving Graph Representation Learning. In Proceedings of the IEEE International

Conference on Data Mining (ICDM), Orlando, FL, USA, 28 November–1 December 2022.
2. Hastings, M.B. Community detection as an inference problem. Phys. Rev. E 2006, 74, 035102. [CrossRef] [PubMed]

https://doi.org/10.1103/PhysRevE.74.035102
https://www.ncbi.nlm.nih.gov/pubmed/17025687

Mathematics 2023, 11, 1830 13 of 14

3. Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (SIGKDD-2018), London, UK, 19–23 August 2018; pp. 974–983.

4. Welling, M.; Kipf, T.N. Semi-supervised classification with graph convolutional networks. In Proceedings of the 5th International
Conference on Learning Representations (ICLR-2017), Toulon, France, 24–26 April 2017.

5. Chang, S.; Pierson, E.; Koh, P.W. Mobility network models of COVID-19 explain inequities and inform reopening. Nature
2021, 589, 82–87. [CrossRef] [PubMed]

6. Cao, S.; Lu, W.; Xu, Q. Deep neural networks for learning graph representations. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

7. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated Graph Sequence Neural Networks. arXiv 2015, arXiv:1511.05493.
8. Bojchevski, A.; Shchur, O.; Zügner, D.; Günnemann, S. NetGAN: Generating Graphs via Random Walks. In Proceedings of the

International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 610–619.
9. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.
10. Henaff, M.; Bruna, J.; Lecun, Y. Deep convolutional networks on graph-structured data. arXiv 2015, arXiv:1506.05163.
11. Chen, F.; Wang, Y.; Wang, B.; Kuo, C. Graph representation learning: A survey. APSIPA Trans. Signal Inf. Process. 2020, 9, e15.

[CrossRef]
12. Newman, M.E. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 2006, 74, 036104.

[CrossRef] [PubMed]
13. Roweis, S.; Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]

[PubMed]
14. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (SIGKDD-2014), New York, NY, USA, 24 August 2014;
pp. 701–710.

15. Mikolov, T.; Sutskever, I.; Chen, K. Distributed representations of words and phrases and their compositionality. In Proceedings
of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119.

16. Mikolov, T.; Chen, K.; Corrado, G. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781.
17. Mikolov, T.; Karafiát, M.; Burget, L. Recurrent neural network based language model. In Proceedings of the International Speech

Communication Association, Makuhari, Chiba, Japan, 26–30 September 2010; pp. 1045–1048.
18. Grover, A.; Leskovec, J. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.
19. Ribeiro, L.F.R.; Saverese, P.H.P.; Figueiredo, D.R. struc2vec: Learning node representations from structural identity. In Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13 August
2017; pp. 385–394.

20. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web (WWW-2015), New York, NY, USA, 18–22 May 2015; pp. 1067–1077.

21. Wang, D.; Cui, P.; Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (SIGKDD-2016), San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234.

22. Bruna, J.; Zaremba, W.; Szlam, A.; Lecun, Y. Spectral networks and locally connected networks on graphs. In Proceedings of the
3rd International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014.

23. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering.
Advances in neural information processing systems. Adv. Neural Inf. Process. Syst. 2016, 29, 3844–3852.

24. Velı̆ckovíc, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
25. Xu, K.; Ba, J.; Kiros, R. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the 32nd

International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015; Springer: Berlin/Heidelberg, Germany,
2015; pp. 2048–2057.

26. Qin, C.; Zhu, H.; Xu, T. Enhancing person-job fit for talent recruitment: An ability-aware neural network approach. In Proceedings
of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR 2018), Ann Arbor,
MI, USA, 8–12 July 2018; pp. 25–34.

27. Wang, H.; Chen, E.; Liu, Q. A United Approach to Learning Sparse Attributed Network Embedding. In Proceedings of the 2018
IEEE International Conference on Data Mining (ICDM 2018), Singapore, 17–20 November 2018; pp. 557–566.

28. Gao, H.; Huang, H. Deep Attributed Network Embedding. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI 2018), Stockholm, Sweden, 13–19 July 2018; pp. 3364–3370.

29. Wang, H.; Wang, J.; Jia, W.; Miao, Z.; Guo, M. GraphGAN: Graph Representation Learning with Generative Adversarial Nets. In
Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

30. Dai, Q.; Li, Q.; Tang, J.; Wang, D. Adversarial Network Embedding. In Proceedings of the AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018.

31. Ding, M.; Tang, J.; Zhang, J. Semi-supervised Learning on Graphs with Generative Adversarial Nets. In Proceedings of the 27th
ACM International Conferenceon Information and Knowledge Management, Torino, Italy, 22–26 October 2018; pp. 913–922.

32. Kingma, D.P.; Welling, M. Auto-encoding variational baye. arXiv 2013, arXiv:1312.6114.

https://doi.org/10.1038/s41586-020-2923-3
https://www.ncbi.nlm.nih.gov/pubmed/33171481
https://doi.org/10.1017/ATSIP.2020.13
https://doi.org/10.1103/PhysRevE.74.036104
https://www.ncbi.nlm.nih.gov/pubmed/17025705
https://doi.org/10.1126/science.290.5500.2323
https://www.ncbi.nlm.nih.gov/pubmed/11125150

Mathematics 2023, 11, 1830 14 of 14

33. Wang, C.; Pan, S.; Celina, P.Y.; Hu, R.; Long, G.; Zhang, C. Deep neighbor-aware embedding for node clustering in attributed
graphs. Pattern Recognit. 2022, 122, 108230. [CrossRef]

34. Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; Zhang, C. Adversarially regularized graph autoencoder for graph embedding. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018.

35. Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; Zhang, C. Attributed graph clustering: A deep attentional embedding approach. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019), Macao, China, 10–16 August 2019.

36. Zhang, X.; Liu, H.; Li, Q.; Wu, X.M. Attributed Graph Clustering via Adaptive Graph Convolution. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019.

37. Xu, H.; Xia, W.; Gao, Q.; Han, J.; Gao, X. Graph embedding clustering: Graph attention auto-encoder with cluster-specificity
distribution. Neural Netw. 2021, 142, 221–230. [CrossRef] [PubMed]

38. Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the 33rd International
conference on machine learning (ICML-2016), New York, NY, USA, 19–24 June 2016; pp. 478–487.

39. Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; Zhang, W. Modularity based community detection with deep learning. In
Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-2016), New York, NY, USA, 9–15 July 2016;
pp. 2252–2258.

40. Marshall, P.D. The promotion and presentation of the self: Celebrity as marker of presentational media. Celebr. Stud. 2010, 1, 35–48.
[CrossRef]

41. Pan, J.; Yang, H.; Faloutsos, C.; Duygulu, P. Automatic multimedia cross-modal correlation discovery. In Proceedings of the
10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 22 August 2004;
pp. 653–658.

42. Cui, G.; Yang, C.; Liu, Z. Adaptive Graph Encoder for Attributed Graph Embedding. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD’20), New York, NY, USA, 6–10 July 2020; pp. 976–985.

43. Zhang, Z.; Mao, J. Jointly sparse neighborhood graph for multi-view manifold clustering. Neurocomputing 2016, 216, 28–38.
[CrossRef]

44. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
45. Ng, A.; Jordan, M.; Weiss, Y. On spectral clustering: Analysis and an algorithm. In Proceedings of the 14th International

Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, BC, Canada, 3–8 December 2001;
Volume 14.

46. Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.patcog.2021.108230
https://doi.org/10.1016/j.neunet.2021.05.008
https://www.ncbi.nlm.nih.gov/pubmed/34029998
https://doi.org/10.1080/19392390903519057
https://doi.org/10.1016/j.neucom.2016.07.014
https://doi.org/10.1109/TIT.1982.1056489

	Introduction
	Related Works
	Methodology
	Problem Description
	Graph Autoencoder
	Centrality Encoding
	Graph Attentional Encoder

	Random Walk Regularization
	Decoder
	Reconstruction Loss

	Experiments
	Datasets
	Baseline Methods
	Evaluation Metrics
	Parameter Settings
	Experimental Results
	Node Clustering
	Link Prediction
	Ablation Study
	Variant Analyses
	Visualization

	Conclusions
	References

