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1. Introduction

Throughout this paper, R denotes a unital ring with involution, i.e., a ring with unity
1, and a mapping a 7→ a∗ satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗, for all
a, b ∈ R. Let a, x ∈ R, if axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa, then x is called a
Moore–Penrose inverse of a. If such an element x exists, then it is unique and denoted by a†.
The set of all Moore–Penrose invertible elements will be denoted by R†.

An element a ∈ R is said to be Drazin invertible if there exists b ∈ R such that ab = ba,
bab = b and am = am+1b for some integer m. The element b above is unique if it exists and
denoted by aD. The smallest positive integer m is called the Drazin index of a, denoted
by ind(a). The set of all Drazin invertible elements in R will denoted by RD. The DMP-
inverse for a complex matrix was introduced by Malik and Thome [1]. Let A ∈ Cn×n with
ind(A) = m, where Cn×n denotes the set of all n× n matrices over the field of complex
numbers. A matrix X ∈ Cn×n is called a DMP-inverse of A if it satisfies XAX = X,
XA = AD A and AmX = Am A†. It is unique (and denoted by Ad,†). Malik and Thome gave
several characterizations of the core inverse by using the decomposition of Hartwig and
Spindelböck [2].

The notion of the core-EP inverse for a complex matrix was introduced by Manjunatha
Prasad and Mohana [3]. A matrix X ∈ Cn×n is a core-EP inverse of A ∈ Cn×n if X is
an outer inverse of A satisfying R(X) = R(X∗) = R(Am), where m is the index of A
and R(A) stands for the range (column space) of A ∈ Cn×n. It is unique and denoted
by A †©. The core-EP inverse for a complex matrix can be investigated by the Core-EP
decomposition of a complex matrix by Wang [4]. The notion of the core-EP inverse is
extended from the complex matrix to an element in a ring with involution. We will also use
the following notations: aR = {ax : x ∈ R}, Ra = {xa : x ∈ R}, ◦a = {x ∈ R : xa = 0} and
a◦ = {x ∈ R : ax = 0}. Let a ∈ R with ind(a) = k. An element b ∈ R is called the core-EP
inverse of a if it is an outer inverse of a and b is a ∗-EP element satisfies bR = akR.

The notion of the core inverse for a complex matrix was introduced by Baksalary and
Trenkler [5]. In [6], Rakić et al. generalized the core inverse of a complex matrix to the case
of an element in R. More precisely, let a, x ∈ R, if axa = a, xR = aR and Rx = Ra∗, then x
is called a core inverse of a. The core inverse can be investigated by three equations by Xu,
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Chen and Zhang [7]. If such an element x exists, then it is unique and denoted by a #©. The
set of all core invertible elements in R will be denoted by R #©.

In addition, 1n and 0n will denote the n× 1 column vectors all of whose components
are 1 and 0, respectively. The zero matrix of size m× n is denoted by 0m×n (abbr. 0). If S is
a subspace of Cn, then PS stands for the orthogonal projector onto the subspace S. A matrix
A ∈ Cn×n is unitary if AA∗ = In, where In denotes the identity matrix of size n. Let a ∈ R, a
is called idempotent if a2 = a. The symbol N denotes the set of all positive integers.

2. Preliminaries

A related decomposition of the matrix decomposition of Hartwig and Spindelböck [2]
was given in ([8], Theorem 2.1) by Benítez; in [9] a simpler proof of this decomposition can
be found. Let us start this section with the concept of principal angles.

Definition 1 ([10]). Let S1 and S2 be two nontrivial subspaces of Cn. We define the principal
angles θ1, . . . , θr ∈ [0, π/2] between S1 and S2 by

cos θi = σi(PS1 PS2),

for i = 1, . . . , r, where r = min{dim S1, dim S2}. The real numbers σi(PS1 PS2) ≥ 0 are the
singular values of PS1 PS2 .

The following theorem can be found in ([8], Theorem 2.1).

Theorem 1. Let A ∈ Cn×n, r = rk(A), and let θ1, . . . , θp be the principal angles between R(A)
and R(A∗) belonging to ]0, π/2[. Denote by x and y the multiplicities of the angles 0 and π/2 as
a canonical angle between R(A) and R(A∗), respectively. There exists a unitary matrix U ∈ Cn×n

such that

A = U
[

MC MS
0 0

]
U∗, (1)

where M ∈ Cr×r is nonsingular,

C = diag(0y, cos θ1, . . . , cos θp, 1x),

S =

[
diag(1y, sin θ1, . . . , sin θp) 0p+y,n−(r+p+y)

0x,p+y 0x,n−(r+p+y)

]
,

and r = y + p + x. Furthermore, x and y + n− r are the multiplicities of the singular values 1
and 0 in PR(A)PR(A∗), respectively. We call (1) as the CS decomposition of A.

In this decomposition, one has C2 + SS∗ = Ir and C∗ = C. This decomposition can
answer the question “how far is a matrix from being EP”. Moreover, it can be applied to
some partial matrix ordering, such as star ordering and sharp ordering.

3. (p, q, m)-Core Inverse

Let us start this section by introducing the notation of the (p, q, m)-core inverse.

Definition 2. Let a, p, q ∈ R and m ∈ N. If pa = ap and pa is idempotent, then x ∈ R is called a
(p, q, m)-core inverse of a, if it satisfies

x = pax and amx = q. (2)

It will be proved that if x exists, then it is unique and denoted by a~p,q,m.
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Remark 1. If a ∈ R is (p, q, m)-core invertible, then we have pa = ap and pa is idempotent.
Since this property of the (p, q, m)-core inverse is used many times in the sequel, thus we emphasize
it here.

Theorem 2. If equations in (2) have a solution, then it is unique.

Proof. Let x1 and x2 be two candidates (p, q, m)-core inverse of a, that is x1 = pax1,
amx1 = q, x2 = pax2 and amx2 = q. Thus by pa = ap and pa is idempotent, we have

x1 = pmq = pmamx2 = pax2 = x2.

In the following lemma, we will show that q = paq if a is (p, q, m)-core invertible.

Lemma 1. Let a, p, q ∈ R and m, n ∈ N. If a is (p, q, m)-core invertible, then

(1) q = pam+1a~p,q,m;
(2) q = paq;
(3) ana~p,q,m = pm−nq, where m ≥ n.

Proof. (1) and (2). If a is (p, q, m)-core invertible, then we have a~p,q,m = paa~p,q,m and
ama~p,q,m = q. Having in mind that ap = pa and the idempotency of pa, we obtain

q = ama~p,q,m = am(paa~p,q,m) = pam+1a~p,q,m; (3)

a~p,q,m = paa~p,q,m = pmama~p,q,m = pmq. (4)

Thus, by (3) and (4), we have

q = pam+1a~p,q,m = pam+1(pmq) = pm+1am+1q = paq. (5)

(3). If m ≥ n, then ana~p,q,m = an(paa~p,q,m) = an pmama~p,q,m = an pmq = pm−n pnanq =

pm−n paq = pm−nq by the definition of the (p, q, m)-core inverse and (2).

Theorem 3. If the solution of the equations in (2) exists, then the unique solution is x = pmq.

Proof. By Lemma 1, we have q = paq. Having in mind that ap = pa and the idempotency
of pa, we obtain

pax =papmq = pm(paq) = pmq = x

amx =am pmq = paq = q.

Remark 2. If a ∈ RD and ai, aj ∈ R†, then the (p, q, m)-core inverse is the generalizations of
the 〈i, m〉-core inverse and the (j, m)-core inverse [11], respectively. More precisely, we have the
following statements:

(1) If p = aD and q = ai(ai)†, then the (p, q, m)-core inverse coincides with the 〈i, m〉-core
inverse;

(2) If p = aD and q = am(aj)†, then the (p, q, m)-core inverse coincides with the (j, m)-core
inverse.

By Remarks 3.5, 4.7 and 4.8 in [11], we have the 〈m, j〉-core inverse for a complex
matrix, which extends the notions of the core inverse defined by Baksalary and Trenkler [5]
and the core-EP inverse defined by Manjunatha Prasad and Mohana [3], respectively. The
(m, k)-core inverse for a complex matrix, which extends the notions of the core inverse and
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the DMP-inverse defined by Malik and Thome [1], respectively. Therefore, we have the
following remark by Remark 2. We can use generalized inverses to study the system of
constrained matrix equations and Toeplitz matrix, etc. [12,13].

Remark 3. If a ∈ RD and aj ∈ R†, then the (p, q, m)-core inverse is a generalization of the core
inverse, the DMP inverse and the core-EP inverse. More precisely, we have the following statements:

(1) If p = a#, m = 1 and q = aa†, then the (p, q, m)-core inverse coincides with the core inverse;
(2) If p = aD, m = ind(a) and q = ama†, then the (p, q, m)-core inverse coincides with the

DMP inverse;
(3) If p = aD, m = 1, j = ind(a) and q = aj(aj)†, then the (p, q, m)-core inverse coincides with

the core-EP inverse.

Example 1. The (p, q, m)-core inverse is different from the group inverse and the Moore–Penrose

inverse. Let A =

[
1 i
0 0

]
∈ C2×2. Then A# = A by A2 = A, but A is not Moore–Penrose

invertible by AA∗ =
[

1 i
0 0

][
1 0
i 0

]
=

[
0 0
0 0

]
. Note that if A is Moore–Penrose invertible,

then A = AA† A = A(A† A)∗ = AA∗(A†)∗ = 0, but A 6= 0. In fact, AA∗ implies A is not

{1, 4}-invertible. If we let p = a#, q =

[
1 2
3 4

]
, then a~p,q,m =

[
1 + 3i 2 + 4i

0 0

]
.

Theorem 4. Let a, p, q ∈ R and m ∈ N. If pa = ap and pa is idempotent, then the following are
equivalent:

(1) a is (p, q, m)-core invertible with a~p,q,m = x;
(2) x = pax and q = pam+1x;
(3) x = pax, aq = am+1x and q = paq.

Proof. (1)⇒ (2) and (1)⇒ (3) are trivial by Lemma 1 and the definition of the (p, q, m)-
core inverse.

(2) ⇒ (1). From amx = am(pax) = pam+1x = q we have that x is the (p, q, m)-core
inverse of a.

(3)⇒ (2). It is sufficient to prove q = pam+1x. We have q = paq = pam+1x.

Remark 4. Note that x = pax iff xR ⊆ paR iff ◦(pa) ⊆ ◦x. Moreover, q = paq iff qR ⊆ paR
iff ◦(pa) ⊆ ◦q. Thus, we can obtain more conditions such that a is (p, q, m)-core invertible in
Theorem 4.

If p = a#, m = 1 and q = aa†, then the (p, q, m)-core inverse coincides with the core
inverse, thus we have the following corollary by Theorem 4.

Corollary 1. Let a ∈ R with a ∈ R# ∩ R†. Then the following are equivalent:

(1) a is core invertible with a #© = x;
(2) x = a#ax and aa† = ax;
(3) x = a#ax and a2a† = a2x.

Since the (p, q, m)-core inverse is a generalization of the core inverse, the core-EP
inverse, the DMP-inverse, 〈i, m〉-core inverse and (j, m)-core inverse, we can obtain some
analogous corollaries as Corollary 1.

Recall that for e = e2 ∈ R, we can represent any a ∈ R as a matrix

a =

[
a11 a12
a21 a22

]
e×e

,

where a11 = eae, a12 = ea(1− e), a21 = (1− e)ae and a22 = (1− e)a(1− e).
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Now we present the result concerning the matrix form of (p, q, m)-core invertible
element a ∈ R.

Theorem 5. Let a, p, q ∈ R and m ∈ N. Then a is (p, q, m)-core invertible if and only if there
exists e ∈ R such that e = e2 ,

a =

[
a1 0
0 a2

]
e×e

, p =

[
p1 0
0 p2

]
e×e

and q =

[
q1 q2
0 0

]
e×e

,

where p1a1 = a1 p1 = (p1a1)
2, p2a2 = a2 p2 = 0, a1 is (p1, q1, m)-core invertible and (p1, q2, m)-

core invertible. The (p, q, m)-core inverse of a is given by

a~p,q,m =

[
(a1)

~
p1,q1,m (a1)

~
p1,q2,m

0 0

]
e×e

=

[
pm

1 q1 pm
1 q2

0 0

]
e×e

.

Proof. Suppose that a is (p, q, m)-core invertible and let e = pa. Then e2 = (pa)2 = pa = e,
ea(1− e) = apa(1− pa) = 0 and (1− e)ae = 0. Hence,

a =

[
a1 0
0 a2

]
e×e

,

where a1 = pa2 and a2 = (1− pa)a. Similarly, we obtain, for p1 = p2a and p2 = (1− pa)p,

p =

[
p1 0
0 p2

]
e×e

.

The equalities pa = ap and (pa)2 = pa give p1a1 = a1 p1 = (p1a1)
2 and p2a2 = a2 p2 =

(1− pa)ap(1− pa) = 0. Set

a~p,q,m =

[
x1 x2
x3 x4

]
e×e

and q =

[
q1 q2
q3 q4

]
e×e

.

From a~p,q,m = paa~p,q,m =

[
p1a1 0

0 0

]
e×e

a~p,q,m, we obtain x1 = p1a1x1, x2 = p1a1x2

and x3 = x4 = 0. Since q = paq, then q3 = q4 = 0. Now, by[
am

1 x1 am
1 x2

0 0

]
e×e

= ama~p,q,m = q =

[
q1 q2
0 0

]
e×e

,

we conclude that am
1 x1 = q1 and am

1 x2 = q2. Hence, a1 is (p1, q1, m)-core invertible and
(p1, q2, m)-core invertible with x1 = (a1)

~
p1,q1,m and x2 = (a1)

~
p1,q2,m.

Conversely, by the assumption p1a1 = a1 p1 = (p1a1)
2 and p2a2 = a2 p2 = 0, we check

that pa = ap = (pa)2. Since a1 is (p1, q1, m)-core invertible and (p1, q2, m)-core invertible,
if we let

x =

[
(a1)

~
p1,q1,m (a1)

~
p1,q2,m

0 0

]
e×e

,

we get x = pax and amx = q. So, a is (p, q, m)-core invertible and x = a~p,q,m.

Under some conditions, we obtain that the (p, q, m)-core inverse of a and the (p, r, m)-
core inverse of b commute.

Lemma 2. Let a, b, p, q, r ∈ R and m ∈ N. If a is (p, q, m)-core invertible, b is (p, r, m)-core
invertible and qpmr = rpmq (or equivalently qb~p,r,m = ra~p,q,m), then a~p,q,mb~p,r,m = b~p,r,ma~p,q,m.
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Proof. Because a~p,q,m = pmq and b~p,r,m = pmr by Theorem 3, we get a~p,q,mb~p,r,m =

pmqpmr = pmrpmq = b~p,r,ma~p,q,m.

Now, we study when the product of one (p, q, m)-core invertible element and one
(p, r, m)-core invertible element is (p2, rq, m)-core invertible.

Theorem 6. Let a, b, p, q, r ∈ R and m ∈ N such that a is (p, q, m)-core invertible, b is (p, r, m)-
core invertible, ab = ba and amr = ram. We have the following statements:

(1) If papmr = pmrap (or equivalently pab~p,r,m = b~p,r,map), then ab is (p2, rq, m)-core invert-
ible and (ab)~p2,rq,m = b~p,r,ma~p,q,m;

(2) If qb~p,r,m = ra~p,q,m, then ab is (p2, rq, m)-core invertible and (ab)~p2,rq,m = b~p,r,ma~p,q,m =

a~p,q,mb~p,r,m.

Proof. Since pa = ap and pb = bp are idempotents and ab = ba, notice that p2ab = abp2

and (p2ab)2 = (pa)2(pb)2 = p2ab. The assumptions ab = ba and amr = ram imply
(ab)mb~p,r,ma~p,q,m = am(bmb~p,r,m)a~p,q,m = (amr)a~p,q,m = r(ama~p,q,m) = rq.

(1). Since papmr = pmrap, ap = pa and bp = pb, we have p2abb~p,r,ma~p,q,m =

pa(pbb~p,r,m)a~p,q,m = (pab~p,r,m)a~p,q,m = b~p,r,m(paa~p,q,m) = b~p,r,ma~p,q,m. Therefore, ab is
(p2, rq, m)-core invertible and (ab)~p2,rq,m = b~p,r,ma~p,q,m.

(2). From qpmr = rpmq we can get that b~p,r,ma~p,q,m = a~p,q,mb~p,r,m by Lemma 2. By
p2abb~p,r,ma~p,q,m = pa(b~p,r,ma~p,q,m) = (paa~p,q,m)b~p,r,m = a~p,q,mb~p,r,m = b~p,r,ma~p,q,m, we de-
duce that (ab)~p2,rq,m = b~p,r,ma~p,q,m = a~p,q,mb~p,r,m.

In the case that ab = ba = 0, the sum of (p, q, m)-core invertible element a and
(p, r, m)-core invertible element b is (p, q + r, m)-core invertible.

Theorem 7. Let a, b, p, q, r ∈ R and m ∈ N such that a is (p, q, m)-core invertible, b is (p, r, m)-
core invertible and ab = ba = 0. Then a + b is (p, q + r, m)-core invertible and (a + b)~p,q+r,m =

a~p,q,m + b~p,r,m.

Proof. First, observe that p(a + b) = (a + b)p and [p(a + b)]2 = p2(a2 + b2) = pa + pb =
p(a + b). Further,

amb~p,r,m = am pbb~p,r,m = pambb~p,r,m = 0

and pab~p,r,m = pm(amb~p,r,m) = 0. Analogously, bma~p,q,m = 0 = pba~p,q,m. Thus,

p(a + b)(a~p,q,m + b~p,r,m) = (pa + pb)(a~p,q,m + b~p,r,m) = paa~p,q,m + pbb~p,r,m = a~p,q,m + b~p,r,m

and

(a + b)m(a~p,q,m + b~p,r,m) = (am + bm)(a~p,q,m + b~p,r,m) = ama~p,q,m + bmb~p,r,m = q + r,

that is, a + b is (p, q + r, m)-core invertible and (a + b)~p,q+r,m = a~p,q,m + b~p,r,m.

Lemma 3. Let a, p, q ∈ R and m ∈ N and a is (p, q, m)-core invertible. Then aa~p,q,m = a~p,q,ma if
and only if pm−1q = pmqa.

Proof. By Lemma 1, we have q = paq. If aa~p,q,m = a~p,q,ma, then pmqa = a~p,q,ma = aa~p,q,m =

apmq = pm−1(paq) = pm−1q. For the opposite implication, we have aa~p,q,m = apmq =

appm−1q = appmqa = pm(paq)a = pmqa = a~p,q,ma.

Proposition 1. Let a, p, q ∈ R and m ∈ N. If a is (p, q, m)-core invertible, then

(1) If qam = am, then a~p,q,m is an inner inverse of am and q is idempotent;
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(2) If aq = qa (or equivalently am+1a~p,q,m = ama~p,q,ma), then aa~p,q,m = a~p,q,ma;
(3) If q is idempotent, then a~p,q,m is an outer inverse of am;
(4) If q = q∗, then ama~p,q,m = (ama~p,q,m)

∗;
(5) If aq = qa and q = q∗, then a~p,q,mam = (a~p,q,mam)∗.

Proof. (1). Since qam = am and q = ama~p,q,m, we have that am = qam = ama~p,q,mam and
q = ama~p,q,m = qama~p,q,m = q2.

(2). It is easy to check that pm−1q = pmqa by aq = qa and q = paq. Thus, we have
aa~p,q,m = a~p,q,ma by Lemma 3.

(3). The condition q = q2 gives a~p,q,mama~p,q,m = a~p,q,mam pmq = a~p,q,m paq = pmq2 =

pmq = a~p,q,m.
(4). By definition of the (p, q, m)-core inverse.
(5). It follows from (2) and (4).

Applying Proposition 1, we obtain the next result.

Corollary 2. Let a, p, q ∈ R and m ∈ N. If a is (p, q, m)-core invertible, then

(1) If qam = am and aq = qa, then am ∈ R# and (am)# = a~p,q,m;
(2) If qam = am, q = q∗ and aq = qa, then am ∈ R# ∩ R† and (am)† = (am)# = a~p,q,m (that is,

am is EP).

4. 〈p, q, n〉-Core Inverse

Definition 3. Let a, p, q ∈ R and n ∈ N. We say that x ∈ R is a 〈p, q, n〉-core inverse of a, if
it satisfies

x = panx and anx = q. (6)

It will be proved that if x exists, then it is unique and denoted by a}p,q,n.

Theorem 8. If equations in (6) have a solution, then it is unique and the unique solution is x = pq.

Proof. Let x satisfy (6). Then x = panq = pq". Observe that this implies the uniqueness of
the equations (6): the unique element in R satisfying (6) is pq.

If a is 〈p, q, n〉-core invertible, then we have a}p,q,n = pana}p,q,n and ana}p,q,n = q and

q = ana}p,q,n = an(pana}p,q,n) = an pana}p,q,n

Thus, we obtain
q = an pana}p,q,n = an pan pq = (an p)2q.

By Theorem 8, we have q = anx = an pq; here, x is the 〈p, q, n〉-core inverse of a (see
next Theorem 11).

Lemma 4. Let a, p, q ∈ R and n ∈ N. If a is 〈p, q, n〉-core invertible, then q = an pana}p,q,n =

(an p)2q.

Remark 5. If a ∈ RD and ai, aj ∈ R†, then the 〈p, q, n〉-core inverse is a generalization of
the 〈i, m〉-core inverse and the (j, m)-core inverse [11]. More precisely, we have the following
statements:

(1) If p = (aD)n and q = ai(ai)†, then the 〈p, q, n〉-core inverse coincides with the 〈i, m〉-core
inverse;

(2) If p = (aD)n and q = am(aj)†, then the 〈p, q, n〉-core inverse coincides with the (j, m)-core
inverse.
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Theorem 9. Let a, p, q ∈ R and n ∈ N. Then the following are equivalent:

(1) a is 〈p, q, n〉-core invertible with a}p,q,n = x;
(2) x = panx and q = an panx;
(3) x = panx, an pq = anx and q = (an p)2q.

Proof. (1)⇒ (2) and (1)⇒ (3) are trivial by Lemma 4 and the definition of the 〈p, q, n〉-
core inverse.

(2)⇒ (1). From q = an panx = anx we have that x is the 〈p, q, n〉-core inverse of a.
(3) ⇒ (2). It is sufficient to prove q = an panx. We have q = (an p)2q = an pan pq =

an panx.

Under certain conditions, the product of a 〈p, q, n〉-core invertible element and a
〈r, s, n〉-core invertible element is 〈pr, sq, n〉-core invertible.

Theorem 10. Let a, b, p, q, r, s ∈ R and n ∈ N such that a is 〈p, q, n〉-core invertible, b is 〈r, s, n〉-
core invertible, ab = ba, anr = ran, ans = san and prs = rsp. Then ab is 〈pr, sq, n〉-core
invertible and (ab)}pr,sq,n = b}r,s,na}p,q,n.

Proof. Notice that

(ab)nb}r,s,na}p,q,n = an(bnb}r,s,n)a}p,q,n = (ans)a}p,q,n = s(ana}p,q,n) = sq

and
pr(ab)nb}r,s,na}p,q,n = (prs)q = (rs)(pq) = b}r,s,na}p,q,n

imply ab is 〈pr, sq, n〉-core invertible and (ab)}pr,sq,n = b}r,s,na}p,q,n.

We also study when the sum of a 〈p, q, n〉-core invertible element and a 〈r, s, n〉-core
invertible element is 〈p + r, q + s, n〉-core invertible.

Theorem 11. Let a, b, p, q, r, s ∈ R and n ∈ N such that a is 〈p, q, n〉-core invertible, b is
〈r, s, n〉-core invertible, ab = ba = 0, anrs = 0 = bn pq and ps + rq = 0. Then a + b is
〈p + r, q + s, n〉-core invertible and (a + b)}p+r,q+s,n = a}p,q,n + b}r,s,n.

Proof. Let x be the 〈p, q, n〉-core inverse of a and y be the 〈r, s, n〉-core inverse of b, then
by Theorem 8, we have (p + r)(a + b)n(x + y) = (p + r)(q + s) = pq + ps + rq + rs =
pq + rs = x + y.

It is easy to check the following propositions by Definition 3 and Theorem 8.

Proposition 2. Let a, p, q ∈ R and n ∈ N such that a is 〈p, q, n〉-core invertible. Then aa}p,q,n =

a}p,q,na if and only if apq = pqa.

Proposition 3. Let a, p, q ∈ R and n ∈ N such that a is 〈p, q, n〉-core invertible. Then

(1) If qan = an, then a}p,q,n is an inner inverse of an and q is idempotent;
(2) If q = q2, then a}p,q,nana}p,q,n = a}p,q,n;
(3) If q = q∗, then ana}p,q,n = (ana}p,q,n)

∗;
(4) If apq = pqa and q = q∗, then a}p,q,nan = (a}p,q,nan)∗.

5. How to Compute the (P, Q, m)-Core Inverse and 〈P, Q, n〉-Core Inverse in Cn×n

5.1. How to Compute the (p, q, m)-Core Inverse in Cn×n

Let A, P, Q ∈ Cn×n and m ∈ N. We will assume in this subsection that A is (P, Q, m)-
core invertible.If A ∈ Cn×n is (P, Q, m)-core invertible, then we have PA = AP, PA
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is idempotent, X = PAX and AmX = Q. Assume that A has the form (1). If we let

P = U
[

P1 P2
P3 P4

]
U∗, where P1 ∈ Cr×r, then

PA = U
[

P1MC P1MS
P3MC P3MS

]
U∗; (7)

AP = U
[

MCP1 + MSP3 MCP2 + MSP4
0 0

]
U∗. (8)

From (7) and (8) and PA = AP we obtain P3MC = 0 and P3MS = 0. Then we
have P3MC2 = 0 and P3MSS∗ = 0, thus P3MC2 + P3MSS∗ = P3M(C2 + SS∗) = P3M by
C2 + SS∗ = Ir. The nonsingularity of M implies that P3 is zero matrix, which gives

PA = U
[

P1MC P1MS
0 0

]
U∗ = U

[
P1 0
0 0

][
MC MS

0 0

]
U∗ (9)

Since PA is idempotent, AP = PA and (PA)2 = U
[

(P1MC)2 P1MCP1MS
0 0

]
U∗,

hence
P1MC = MCP1 = (P1MC)2 (10)

By Lemma 1, we have Q = PAQ. If we let Q = U
[

Q1 Q2
Q3 Q4

]
U∗, then by (9) we have

PAQ = U
[

P1MC P1MS
0 0

][
Q1 Q2
Q3 Q4

]
U∗

= U
[

P1MCQ1 + P1MSQ3 P1MCQ2 + P1MSQ4
0 0

]
U∗.

(11)

From Q = PAQ we have that Q3 and Q4 are zero matrices and{
Q1 = P1MCQ1

Q2 = P1MCQ2
(12)

By Theorem 3, we have A~
P,Q,m = PmQ. Since P3 = 0, Q3 = 0 and Q4 = 0, thus we

have P = U
[

P1 P2
0 P4

]
U∗ and Q = U

[
Q1 Q2
0 0

]
U∗, thus Pm = U

[
Pm

1 F
0 Pm

4

]
U∗; the

entries that we are not interested in are marked with F. Therefore

A~
P,Q,m = PmQ = U

[
Pm

1 F
0 Pm

4

][
Q1 Q2
0 0

]
U∗

= U
[

Pm
1 Q1 Pm

1 Q2
0 0

]
U∗.

(13)

By Am = U
[

(MC)m (MC)m−1MS
0 0

]
U∗ and Am A~

P,Q,m = Q, we have

Am A~
P,Q,m = U

[
(MC)m (MC)m−1MS

0 0

][
Pm

1 Q1 Pm
1 Q2

0 0

]
U∗

= U
[

(MC)mPm
1 Q1 (MC)mPm

1 Q2
0 0

]
U∗

= U
[

Q1 Q2
0 0

]
U∗.

(14)
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Thus {
Q1 = (MC)mPm

1 Q1

Q2 = (MC)mPm
1 Q2

(15)

Therefore, by (10), (12), (15) and the definition of the (P, Q, m)-core inverse, we have{
(MC)~P1,Q1,m = Pm

1 Q1

(MC)~P1,Q2,m = Pm
1 Q2

(16)

From (13) and (16) we have

A~
P,Q,m = U

[
(MC)~P1,Q1,m (MC)~P1,Q2,m

0 0

]
U∗.

5.2. How to Compute the 〈p, q, n〉-Core Inverse in Cn×n

Let A, P, Q ∈ Cn×n and n ∈ N. We will assume in this subsection that A is 〈P, Q, n〉-

core invertible. Here we suppose that AP = PA, thus we have P = U
[

P1 P2
0 P4

]
U∗, where

P1 ∈ Cr×r. Moreover, we have
P1MC = MCP1 (17)

and

PAn = U
[

P1(MC)n P1(MC)n−1MS
0 0

]
U∗. (18)

By Lemma 4, we have Q = (AnP)2Q. If we let Q = U
[

Q1 Q2
Q3 Q4

]
U∗, then by (18)

we have

(AnP)2Q = U
[

P1(MC)n P1(MC)n−1MS
0 0

]2[ Q1 Q2
Q3 Q4

]
U∗

= U
[
F F
0 0

]
U∗.

(19)

where we marked with F the entries that we are not interested in. Thus, from Q =
(AnP)2Q we have Q3 and Q4 which are zero matrices. Therefore, we have A}

P,Q,n = PQ =

U
[

P1 P2
0 P4

][
Q1 Q2
0 0

]
U∗ = U

[
P1Q1 P1Q2

0 0

]
U∗. It is not difficult to see that we

have

A}
P,Q,n = U

[
(MC)}P1,Q1,n (MC)}P1,Q2,n

0 0

]
U∗.

6. Conclusions with Some Applications

Two new generalized core inverse are introduced, namely, the (p, q, m)-core inverse
and the 〈p, q, n〉-core inverse. These inverses extend the inverses of the 〈i, m〉-core inverse,
the (j, m)-core inverse, the core inverse, the core-EP inverse and the DMP-inverse. The
(p, q, m)-core inverse and the 〈p, q, n〉-core inverse can used in some areas such as statistics
and matrix generalized inverses. There are a lot of research articles about matrix ordering
and element partial ordering; by using the reverse order of the (p, q, m)-core inverse and the
〈p, q, n〉-core inverse, one can get some suitable applications in statistics, electrical networks,
etc. We can obtain several partial ordering by using different generalized inverses, such
as the minus ordering by using the inner inverse, the sharp ordering by using the group
inverse and the core ordering by using the core inverse. The main results in this paper
as follows:
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If a is (p, q, m)-core invertible, then the (p, q, m)-core inverse of a is pmq. Let a, p, q ∈ R
and m ∈ N. Then a is (p, q, m)-core invertible if and only if there exists e ∈ R such that
e = e2 ,

a =

[
a1 0
0 a2

]
e×e

, p =

[
p1 0
0 p2

]
e×e

and q =

[
q1 q2
0 0

]
e×e

,

where p1a1 = a1 p1 = (p1a1)
2, p2a2 = a2 p2 = 0, a1 is (p1, q1, m)-core invertible and

(p1, q2, m)-core invertible. The (p, q, m)-core inverse of a is given by

a~p,q,m =

[
(a1)

~
p1,q1,m (a1)

~
p1,q2,m

0 0

]
e×e

=

[
pm

1 q1 pm
1 q2

0 0

]
e×e

.

If A ∈ Cn×n is (P, Q, m)-core invertible, then we have PA = AP, PA is idempotent,
X = PAX, AmX = Q and

A~
P,Q,m = U

[
(MC)~P1,Q1,m (MC)~P1,Q2,m

0 0

]
U∗.
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