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Abstract: As an essential part of artificial intelligence, a knowledge graph describes the real-world
entities, concepts and their various semantic relationships in a structured way and has been gradually
popularized in a variety practical scenarios. The majority of existing knowledge graphs mainly
concentrate on organizing and managing textual knowledge in a structured representation, while
paying little attention to the multimodal resources (e.g., pictures and videos), which can serve
as the foundation for the machine perception of a real-world data scenario. To this end, in this
survey, we comprehensively review the related advances of multimodal knowledge graphs, covering
multimodal knowledge graph construction, completion and typical applications. For construction,
we outline the methods of named entity recognition, relation extraction and event extraction. For
completion, we discuss the multimodal knowledge graph representation learning and entity linking.
Finally, the mainstream applications of multimodal knowledge graphs in miscellaneous domains
are summarized.

Keywords: multimodal knowledge graph; knowledge graph construction; knowledge graph completion;
multimodal knowledge graph application

MSC: 68T30

1. Introduction

As a successful application of knowledge engineering in big data, knowledge graph
describes the concepts, entities and their relationships in a structured form. A knowledge
graph can be viewed as a structured representation of facts that can be expressed in a
factual triple in the form of head, predicate and tail) under the RDF [1], with head and tail
being entities and predicate being the relation type. In addition to triples, a knowledge
graph can also be represented as a multirelational graph, where nodes represent entities
and directed edges represent relationships.

Ranging from general to domain-specific purposes, knowledge graphs contribute
to organizing, managing and understanding the massive information on the Internet
and facilitate the development of intelligent services, such as recommender systems [2],
dialogue systems [3], semantic search [4] and other miscellaneous systems. A general
knowledge graph can be visually regarded as a “structured encyclopedia knowledge base”
for general fields, which contains a large number of common sense knowledge in the
real world [5]. They not only contain a large amount of semistructured and unstructured
data but also have high domain coverage. Representative works of general knowledge
graphs over the last years include Freebase [6], DBpedia [7] and Wikidata [8]. On the
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other hand, domain-specific knowledge graphs, also called industry knowledge graphs
or vertical knowledge graphs, are usually applied to a specific field and can be regarded
as an “industry knowledge based on semantic technology” whose construction relies on
the data of a specific industry. Typical domain-specific knowledge graphs include IMDB
(http://www.imdb.com, 1 March 2022), MusicBrainz (http://musicbrainz.org/, 1 March
2022) and UMLS [9].

Nevertheless, the above-mentioned knowledge graphs focus on the textual facts with
few multimodal sources. Actually, in addition to text and structured data, visual and
auditory data, such as pictures, videos and audio, can also be the data sources. These
different data sources complement and strengthen each other when describing the same
object, thus improving the performance of knowledge graph tasks over unimodal models
and facilitating the machine’s perception of the real data scenarios [10]. In light of this, we
view a multimodal knowledge graph as a graph of data intended to accumulate and convey
knowledge from multimodal views such as textual, visual and auditory views. A well-
constructed multimodal knowledge graph can provide a wider data scope and research
base for researchers from natural language processing and computer vision, and further
promote cross-domain fusion research.

Recent advances in multimodal knowledge graphs focus on construction [11] and com-
pletion [12,13]. Due to the proliferation of visual resources on the Web, current multimodal
knowledge graph construction mostly focuses on textual and visual resources. Examples of
traditional knowledge graphs and multimodal knowledge graphs are illustrated in Figure 1.
Typical multimodal knowledge graphs include IMGpedia [14], MMKG [15] and Richpe-
dia [16]. Related research has been successfully applied in miscellaneous tasks, such as
multimodal entity linking [17], recommender system [18] and E-commerce [19].

Figure 1. An example of a knowledge graph and a multimodal knowledge graph.

In this paper, we provide a comprehensive survey of multimodal knowledge graphs
including construction, completion and typical applications in different domains. In partic-
ular, we focus on multimodal knowledge graphs based on textual and visual data resources.
The contributions of this survey are twofold. First, we comprehensively summarize the
development and typical examples of multimodal knowledge graphs. In addition, the mul-
timodal knowledge graph construction as well as completion techniques are systematically
introduced and organized. Second, we provide a concrete taxonomic schema to organize
the multimodal knowledge graph construction and completion technologies. Specifically,
we present the graph construction technologies including named entity recognition, rela-
tion extraction and event extraction. Analogously, we survey the knowledge completion
technologies which include entity linking and knowledge representation learning. The
taxonomy of this survey is described in Figure 2.

http://www.imdb.com
http://musicbrainz.org/
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Figure 2. The taxonomy of the survey on MMKG.

2. Open Multimodal Knowledge Graphs

A traditional knowledge graph G can be defined as G = {E ,R,F} where E ,R and F
represent the collection of entities, relations and facts, respectively. Facts are composed of
triples, (h, r, t) where h, r and t represent head entity, relation and tail entity, respectively.
According to the definition of traditional knowledge graph [20], a multimodal knowledge
graph G can be seen as a knowledge graph whose entities E are associated with data in
modalities other than text (e.g., images). Existing multimodal knowledge graphs mainly
adopt two different ways for representing visual information. One way is to represent
multimodal data as particular attribute values of entities, while the other way takes mul-
timodal data as entities, which are associated with the corresponding concepts through
specific types of relations. [20] In this section, we enumerate and introduce some existing
typical multimodal knowledge graphs.

2.1. MMKG

Knowledge Graphs have been used as external sources of knowledge for multifarious
tasks. As a result, much research has focused heavily on the problem of knowledge graph
completion. Considering that it is one-sided to evaluate completion approaches on only
one knowledge graph [21], Liu et al. [15] proposed MMKG to address the issues. Contrary
to previous knowledge graphs, MMKG contains both numerical features and images for all
entities as well as entity alignments between pairs of knowledge graphs, which is specially
designed for tackling link prediction and entity matching problems. The aim of the former
is to infer missing links within the KG while that of the latter is to find pairs of records
which refer to the same entity.

MMKG created two knowledge graphs DBpedia15K and YAGO15K, which are the
counterparts of DBpedia and YAGO, respectively. In terms of specific construction process,
MMKG employs Freebase15K [22] as the blue print for the construction of multimodal
knowledge graphs, based on which the construction of MMKG can be roughly summarized
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as the following steps: Firstly, by entity alignment with DBpedia [7] and YAGO [23]
through the sameAs links, respectively, MMKG incorporates more entities for downstream
tasks. Numeric literals, which are linked by numerical relations such as the relation
/location/geocode/latitude, with which entities are then integrated, after which MMKG collects
images through a web crawler aiming to parse query results for the image search engines,
such as Google Images, Bing Images and Yahoo Image Search, and takes them as attribute
nodes of each entity. To minimize the noise caused by polysemous entity labels, the authors
adopted Wikipedia URIs as query strings which are processed and used as search queries
for disambiguation purposes. For example, for the entity “Paris”, we can obtain URIs such
as Paris (ile-de-France, France) and Paris (City of New Orleans, Louisiana). With the above
procedures, MMKG stores 55.8 images per entity on average. Concrete construction details
can be found in MMKG [15].

2.2. IMGpedia

To address the problem that the existing datasets describing multimedia are focused
on capturing the metadata of the multimedia files rather than the multimedia content itself,
Ferrada et al. [14] proposed IMGpedia, which incorporates visual descriptors and visual
similarity relations for the images of Wikimedia Commons dataset and links them with
both DBpedia Commons dataset and DBpedia dataset for a variety of applications, such as
visual similarity calculation and visual–semantic queries over the images.

In terms of the construction of IMGpedia, concretely, IMGpedia first gathers about
14.7 million images from Wikimedia Commons and then proceeds to compute different
visual descriptors to capture different elements of the content of the images, such as Gray
Histogram Descriptor, Histogram of Oriented Gradients Descriptor and Color Layout
Descriptor. Aided by visual descriptors, IMGpedia can obtain the visual similarity between
pairs of images. Thereafter, IMGpedia represents this information as an RDF through a
custom lightweight ontology. Through the above steps, a dataset of IMGpedia containing
information about 14.7 million images of Wikimedia Commons, the description of their
content as well as links to their most similar images and to the DBpedia resources that form
part of their context is established, which supports queries based on SPARQL query and is
available for many potential use-cases.

2.3. Richpedia

In order to solve the lack of complete multimodal graphs in the academic community,
which hinders future research on multimodal fusion, Wang et al. [16] infused visual–
relational resources into general knowledge graphs and established a multimodal knowl-
edge graph, Richpedia.

Overall, Richpedia is a finite set of Richpedia triples, t = <subject, predicate, object>,
where t is a member of set (E ∪ B)×R× (E ∪ L∪ B). Richpedia defines relations between
entities as R and the entity set as E = EKG ∪ EIM, where EKG is general KG entities and
EIM is image entities. L and B represent the set of literals and blank nodes, respectively.

Richpedia was constructed in three steps: data collection, image processing and
relation discovery. In the first stage, general KG entities and image entities were col-
lected respectively. Richpedia mainly collected 30,638 KG entities regarding cities, sights
and celebrities from Wikidata, and 2,883,162 images entities from Wikipedia and web
sources aided by the web crawler. During the second step, since the images collected
from web search engines may be duplicated or irrelevant to KG entities, the authors chose
K-means algorithm on visual features (such as gradient histogram descriptor, color layout
descriptor, etc.) extracted by the VGG16 to filter out the noise image entities. After the
denoising process, visual descriptors are introduced to calculate the similarity between
images by integrating the distance between different descriptors. Last of all, the relation
discovery between image entities for Richpedia was conducted. Due to the existence of
potential relations between scattered image entities (e.g., “imageof”, “sameAs”), the au-
thors propose three effective rules to extract and infer these semantic relationships from
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unstructured information about image entities, namely, relevant hyperlinks and text in
Wikipedia. Subsequently, the authors created a custom lightweight Richpedia ontology to
represent the data in RDF format.

Richpedia (http://richpedia.cn, 1March 2022) provides a facet query endpoint to allow
researchers to retrieve and leverage data distributed over general KGs and image resources
to answer richer visual queries and make multirelational link predictions.

2.4. ImageGraph

ImageGraph [24], based on FB15K, is a multirelational graph within which images are
introduced and associated with the corresponding entities as attributes. In total, it contains
1330 relation types, 14,870 entities and 829,931 images crawled from the web.

The construction of ImageGraph can be summarized into the following steps: First,
as FB15K does not contain any visual data, a web crawler is applied to obtain images
from Google Images, Bing Images and Yahoo Image Search. To minimize polysemous
entity labels brought by noise, Wikipedia URIs are used for disambiguation. For example,
there are more than 100 Freebase entities with the label “Springfield” to distinguish these
entities, and URIs like Spring f ield_(Massachusetts, United_States) and Spring f ield_(MA)
are used (these two URIs specify the entity representing Springfield, Massachusetts). Then,
the corrupted, low-quality and duplicate images are removed from the crawled images,
and only the top 25 images are chosen as the associated images for each entity, with the
images scaled to a maximum height or width of 500 pixels while keeping their aspect ratio.
In the end, triples containing a head or tail entity that could not be associated with an
image are filtered out, and the ImageGraph dataset is obtained.

Numerous applications can benefit from visual–relational KGs like ImageGraph. They
promote numerous novel query types through introducing images to be arguments of
queries, bringing more efficient and accurate query answering.

2.5. VisualSem

Alberts et al. [25] released VisualSem, which is a high-quality knowledge graph
containing nodes with multilingual glosses and multiple illustrative images, where nodes
represent concepts and named entities with well-curated related images as well as glosses
in multiple languages as attributes. Specifically, VisualSem consists of 89,896 nodes with
1,342,764 glosses and 938,100 images.

To gather information from various sources, BabelNet API (https://babelnet.org/
guide, 1 March 2022) [26], a big multilingual and multimodal resource that compiles
data from a variety of sources, is applied for constructing the knowledge graph during
the construction process. Specifically, the construction process starts from choosing a
set of initial nodes which can guarantee the high-quality images associated with them.
As ImageNet classes satisfy the above conditions, BabelNet API is used to obtain synsets
corresponding to the 1000 ImageNet classes used in the ILSVRC image classification
competition [27], which forms the initial nodes. These initial nodes are referred as the initial
node pool. With initial nodes set, an iterative process containing four consecutive steps are
performed for construction. Firstly, neighbor nodes are retrieved for each node in the node
pool through BabelNet API. Namely, all first-degree nodes are picked up using BabelNet
API, with duplicate ones being removed. Secondly, the linked images ware validated,
and those do not meet the predefined quality standards are removed. Thirdly, the CLIP
model [28] is applied to further filter images that do not match the corresponding nodes’
glosses based on a predefined threshold. Lastly, the top-k nodes among remaining nodes
are accepted after sorting. The above four steps are processed iteratively until the number
of nodes reaches 90,000.

VisualSem is designed to be used in vision and language research and can be easily
integrated into neural model pipelines, which has the potential to facilitate various sorts of
natural language understanding (NLU) and natural language generation (NLG) tasks in
data augmentation or data grounding settings.

http://richpedia.cn
https://babelnet.org/guide
https://babelnet.org/guide
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3. Multimodal Knowledge Graph Construction

In this section, we provide a comprehensive review of the research of multimodal
knowledge graph construction, namely knowledge acquisition, which aims to discover and
recognize entities and relations from text sources as well as sources from other modalities.
In this section, we divide the knowledge acquisition techniques into three categories: entity
recognition, relation extraction and event extraction.

3.1. Named Entity Recognition

Named entity recognition (NER) is designed to recognize and classify named entities
within natural texts and visual objects within images or videos into predefined categories
such as person, location, organization, etc. [29]. Besides acting as an essential role in
information extraction, NER is also widely used in various downstream applications, such
as information retrieval [30,31], knowledge base construction [32], question answering [33]
and machine translation [34].

This section briefly summarizes the text-based named entity recognition and intro-
duces the multimodal named entity recognition in detail.

3.1.1. Text-based Named Entity Recognition

Previous methods of NER have usually been based on hand-crafted rules, such as
entity dictionaries and word forms. With the rise of deep learning, deep-learning meth-
ods, which are conducive to the automatic discovery of hidden features, have become
the mainstream.

Traditional methods for NER can be divided into three streams: rule-based, unsuper-
vised learning and feature-based supervised learning methods. (1) Rule-based methods
mainly rely on hand-crafted rules, which can work well when the lexicon is exhaustive.
Typical rule-based NER systems include LaSIE-II [35], SAR [36], FASTUS [37] and LTG [38]
systems. Nevertheless, these systems have poor transferability due to the domain-specific
rules and incomplete dictionaries. (2) Feature-based supervised learning methods are more
widely used compared with the above methods. Given data samples to be annotated, these
methods cast NER to a multiclass classification or sequence labeling task. Common meth-
ods include hidden Markov models (HMM) [39,40], decision trees [41,42] and conditional
random fields [43–45].

Compared with traditional methods, the deep-learning-based methods are useful
in discovering hidden features automatically and have achieved superior results. Deep-
learning-based methods can be further divided into three categories: (1) CNN-based models
are widely used for NER tasks. Wu et al. [46] adopted a sentence-level log-likelihood ap-
proach [47], consisting of a convolutional layer, a nonlinear layer and several linear layers
for NER. Strubell et al. [48] adopted an iterated dilated CNN architecture to incorporate
global information from a whole sentence. (2) RNN-based models have achieved remark-
able achievements in NER. Huang et al. [49] were first to utilize bidirectional LSTM CRF
architecture on sequence tagging tasks. Zhang et al. [50] leveraged a lattice LSTM structure
to automatically choose the most relevant characters and words for better NER results.
(3) The pretrained language model is becoming a new paradigm in NER with the superior
performance of BERT [51]. Figure 3 compares the differences between BiLSTM and BERT in
named entity recognition. Zhang et al. [52] adopted the pretrained BERT model to obtain
expressive sentence features for resolving the problem of limited labeled resources and
domain shift in NER. Liu et al. [53] applied BERT to extract underlying features of texts for
conducting NER in the biomedical field. Fang et al. [54] exploited BERT-based character
vectors and embedded them into a deep learning model for performing Chinese NER.
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Figure 3. Comparison of BiLSTM and BERT in text-based named entity recognition.

3.1.2. Multimodal Named Entity Recognition

Most unstructured texts often do not provide a sufficient textual context to resolve
polysemous entities and may contain a massive number of unknown tokens. As shown in
Figure 4, with visual information, we can know Rocky is a dog instead of a person named
Rocky. To address these challenges, Moon et al. [55] proposed the multimodal named
entity recognition task, which aims at exploiting practical visual information to improve the
performance of NER. We can further classify the multimodal named entity recognition into
direct concatenation-based methods, gated fusion-based methods, multimodal alignment-
based methods, pretrained multitask-based methods and graph-based methods according
to the way in which information from different modalities is fused.

Figure 4. Illustration of multimodal named entity recognition.

Direct Concatenation-based Methods. Some methods apply simple concatenation
when fusing multimodal information. Moon et al. [55] proposed a BiLSTM-CNN hybrid
model to extract a relevant visual context to augment textual information for the recognition
of a named entity in the text input. Zhang et al. [56] proposed an adaptive coattention
network to integrate the multimodal features extracted with BiLSTM and VGG to recognize
named entities. Specially, in addition to the visual clues, Shahzad et al. [57] also considered
text information under the level of word, character and sentence for NER in short text.

Gated Fusion-based Methods. Some methods introduce the gated mechanism to
filter the key information. Lu et al. [58] adopted an attention-based model to extract
those visual features most related to the text and employed a visual gate to control the
combination of visual features and text representation generated by BiLSTM for multimodal
NER. Analogously, Arshad et al. [59] extended the self-attention mechanism to capture
relationships between two words and image regions, and further introduced a gated fusion
module to dynamically select information from multimodal features.

Multimodal Alignment-based Methods. Some methods focus on the alignment be-
tween information from different modalities. Wu et al. [60] utilized the pretrained Mask-
RCNN [61] to extract the visual objects and introduced a dense coattention network to
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model the correlations between visual objects and textual entities as well as the internal con-
nections of objects or entities. Similarly, Zheng et al. [62] introduced gated bilinear attention
to capture the mapping relations between visual objects detected by Mask-RCNN [61] and
textual entities. In order to map two different representations into a shared representation,
they adopted a strategy of adversarial training for a better fusion of the two modalities to
improve the performance of multimodal NER. Asgari-Chenaghlu [63] adopted BERT to
integrate the textual features and visual features extracted by the InceptionV3 model [64]
to recognize named entities. Based on [65], Sun et al. [66] upgraded the original BiLSTM to
BERT and introduced a method of text-image relation propagation for multimodal NER.
In order to augment the interaction between modalities and alleviate the visual bias caused
by the dataset, Yu et al. [67] proposed a unified multimodal architecture based on trans-
former to capture the implicit alignments between words and images. Furthermore, they
leveraged a text-based entity span detection module to largely eliminate the bias of the
visual context.

Pretrained Multitask-based Methods. Some methods apply multiple tasks for pre-
training their model so as to fuse multimodal information. Sun et al. [65] designed a
text–image relation classification task and a next-word prediction task for pretraining a
multimodal language model. Using a semisupervised paradigm and a multitask frame-
work, their model can resolve the problem of inappropriate visual clues fused in the
multimodal model, which causes a negative impact on multimodal NER.

Graph-based Methods. Zhang et al. [68] represented the sentence and image as a
multimodal graph, with each node indicating the textual word or visual object. By con-
structing a unified multimodal graph fusion approach, their model can capture various
semantic relationships between words and objects to perform entity labeling.

3.2. Relation Extraction

Relation extraction (RE) is one of the crucial techniques involved in information
extraction. It refers to extracting new relation facts between entities from plain text and
adding them into knowledge graphs. Most existing research on relation extraction exploits
neural-network-based approaches. Nevertheless, these methods are mainly text-based and
suffer poor performance when texts lack contexts. In light of this, Zheng et al. [69] found
that image-related information can supplement the missing contexts in social media texts.
Thus, they proposed multimodal relation extraction, which refers to classifying textual
relations between two entities with the help of visual contents.

This section provides a brief overview of text-based relation extraction and a detailed
summary of the multimodal relation extraction approaches developed thus far.

3.2.1. Text-Based Relation Extraction

Supervised methods based on CNN-based models and RNN-based models were
dominant in the early days. The employment of CNN for RE was first presented in [70].
By concatenating the lexical and sentence level features extracted by CNN, the relationship
between two marked nouns can be predicted through a softmax classifier. Nevertheless,
simple CNN models often fail to identify critical cues, and many of them still require an
external dependency parser. Based on this, some researchers [71,72] incorporated the atten-
tion model in CNN to capture both entity-specific attention and relation-specific pooling
attention so as to detect more subtle cues about relation extraction. Apart from CNN, RNN-
based models [73–75] are also employed for relation extraction. Analogously, attention
mechanism [76–78] was introduced to capture the most important semantic information
in a sentence. Benefiting from the superior performance of BERT [51], pretrained models
are used for relation extraction [79,80]. However, supervised methods suffer from the
expensive and limited labeled training data. In light of this, Mintz et al. [81] proposed a
distant supervised approach, which intuitively extracts relations based on Freebase and
named entity tagger. To alleviate the noise introduced by distant supervision, some re-
searchers [82–85] resort to attention mechanism and GCN. In order to further avoid costly
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data labeling and the wrong labeling problem caused by distant supervision methods,
transfer learning and reinforcement learning have also recently been integrated into neural
relation extraction. For transfer learning, Liu et al. [86] proposed a word-level distant
supervised model initialized with prior knowledge learned from the relevant task of entity
classification by transfer learning. Di et al. [87] proposed to explore a large amount of
existing KBs that may not be very closely related to the target relation to extract relations
mentioned within a given text corpus. For reinforcement learning(RL), Zeng et al. [88]
proposed to learn sentence relations through the reinforcement learning method and with a
distantly supervised dataset. To extract overlapping relations, Takanobu et al. [89] designed
and incorporated reinforcement learning into an end-to-end hierarchical paradigm which
decomposes the task into a relation detection task and an entity extraction task.

3.2.2. Multimodal Relation Extraction

Although the aforementioned RE methods have made considerable progress, there
may be a performance decline in social media posts when texts lack context. Visual
contents have been demonstrated to be effective in complementing textual contexts in other
domains, such as named entity recognition, entity extraction and entity linking. Figure 5
shows an example of visual relation extraction, and with the support of visual information,
the relation extraction can be more precise. In light of this, some methods use visual
elements of documents to learn generalizable features that can be used in conjunction
with textual semantics for better relation extraction. Zheng et al. [69] defined multimodal
relation extraction(MRE) as the problem of classifying textual relations between two entities
with visual information.

Figure 5. Illustration of visual relation extraction.

To address the lack of contexts for social media texts, Zheng et al. [90] firstly intro-
duced a human-annotated multimodal dataset for testing the ability of neural relation
extraction and proposed several multimodal baselines against previous SOTA text-based
relation extraction models, showing that, through merging visual and textual information,
the result for relation extraction can be significantly improved. Zheng et al. [69] further
proposed a Multimodal Neural Network with Efficient Graph Alignment (MEGA), which
utilizes graph-structured visual information to guide the extraction of textual relations with
both semantic and structural graph similarity taking into consideration. To address high
coupling in multimodal information and serious unbalanced distribution, Wan et al. [91]
presented FL-MSRE, a few-shot learning-based approach, for extracting social relations
with the help of both texts and face images. To alleviate the noise caused by irrelevant visual
elements, Chen et al. [92] proposed MKGformer, which is a hybrid transformer for unified
multimodal KGC. It models multimodal features of the entity across the last few layers of
the visual transformer and the textual transformer with multilevel fusion. Chen et al. [93]
proposed Hierarchical Visual Prefix fusion Network(HVPNeT), which generates effective
and robust textual representation by incorporating hierarchical multiscaled visual features
through a visual prefix-based attention mechanism at each self-attention layer of BERT for
reducing error sensitivity.
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3.2.3. Visual Relation Extraction and Grounding

We also introduce visual relation extraction and visual relation grounding: the former
aims to extract the relation within image objects while the latter refers to discovering
images, which contain or represent a specific relation, from an image corpus.

Visual Relation Extraction. Visual relation extraction plays a crucial role in the com-
prehensive understanding of an image through describing all the objects within the scene
and how they relate to each other. Language priors is considered to provide helpful in-
formation to detect visual relationships. Lu et al. [94] fine-tuned the likelihood of the
predicted relationship with the language. Inspired by the successful TransE method in
knowledge graph representation learning, Zhang et al. [95] proposed VTransE, which mea-
sures embedding of predicates through mapping the visual features into the corresponding
predicate space. Apart from language priors, statistical information is also utilized by some
models for enhancing the performance. For example, Dai et al. [96] proposed to exploit
the statistical dependencies among predicates, objects and subjects. Moreover, context
messages passing also plays a vital role. For instance, through joint inference by iterative
message passing, Xu et al. [97] were able to predict each visual relationship. However,
the previous model focused on message passing in the same image, and Wang et al. [98]
achieved messages passing from different images and were first to apply the one-shot
learning approach to visual relationship detection.

Visual Relation Grounding. Visual relation grounding, along with visual grounding,
has been widely studied and is now a subject under intense research. Mao et al. [99] were
first to explore referring expression grounding by modeling images and sentences through
CNN and LSTM. Grounding is achieved through extracting region proposals, along with
finding the region which is able to generate the sentence possessing maximum posterior
probability. Likewise, Rohrbach et al. [100] explored image grounding via reconstruction,
which enables grounding in a weakly supervised manner. In order to explore referring
relationships, Krishna et al. [101] utilized iterative message passing among subjects and
objects. The above works mainly focus on image grounding. There are also some works fo-
cusing on video grounding. Zhou et al. [102] explored the weakly supervised grounding of
descriptive nouns in distinct frames in a frame-weighted fashion. Huang et al. [103] inves-
tigated grounding referring expression in temporally instructional videos. Chen et al. [104]
presented a model to perform spatio-temporal object grounding under video-level super-
vision. Specifically, they first pre-extracted the action tubes. Afterward, they ranked and
returned the tube of maximum similarity using query sentences. Xiao et al. [105] were first
to define the task of visual relation grounding in videos and proposed a weakly supervised
approach for video relation grounding. Specifically, they collaboratively optimized two
sequences of regions over a hierarchical spatio-temporal region graph and proposed a
message passing mechanism based on spatial attention shifting between visual entities so
as to pinpoint the related subject and objects.

3.3. Event Extraction

Event extraction (EE) is a long-standing and crucial task in information extraction
research. As a particular form of information, an event refers to the occurrence of something
at a specific time and place involving one or more participants, which can usually be
described as a state change [106]. An event usually includes a trigger and several arguments
with their corresponding argument roles. A trigger is usually a verb that marks the
occurrence of the event; an argument is a word describing important information like
time, place or participants; and an argument role refers to the role that an argument
plays in the course of an event. Event extraction is intended to extract event information
from unstructured texts, most of which illustrate the who, what, when, where, why and
how of real-world events that have occurred. Nevertheless, the text-based EE models are
generally limited due to the ambiguity of natural language. Events do not solely exist in a
single modality of text, and similar event types, arguments or participants may coexist in
multimedia content, such as videos and images. In light of this, researchers have proposed
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multimedia event extraction, a task that aims to jointly extract events and arguments from
multiple modalities.

This section provides a brief overview of text-based event extraction and a detailed
summary of the development of multimedia event extraction thus far.

3.3.1. Text-Based Event Extraction

The traditional event extraction techniques are pattern-matching methods and sta-
tistical methods, with the latter achieving better results and becoming a research hotspot.
The pattern-matching methods are mainly based on syntax trees or regular expressions,
and their performance is strongly dependent on the expression form of text, domain, etc.
Statistical learning to identify events, on the other hand, refers to the idea of text classifica-
tion and transfers event detection and argument extraction into a classification problem,
the core of which lies in the construction of classifiers and the selection of features. Never-
theless, it is challenging for traditional event extraction methods to learn in-depth features,
making it difficult to improve the task of event extraction that depends on complex seman-
tic relations. Compared with traditional event extraction methods, deep learning methods
can capture complex semantic relations and significantly improve multiple event extraction
datasets. Most recent event extraction works are based on deep learning architectures like
CNN [107], RNN [108], transformer [109] and other networks [110,111].

3.3.2. Multimodal Event Extraction

Apart from textual modality, event types, arguments or participants may coexist in
multimedia content [112]. Figure 6 illustrates that the visual information can correct the
extraction result and enrich some event arguments that can only be extracted from the
image. For this reason, researchers have proposed the multimedia event extraction task
which leverages multimedia information.

Figure 6. Illustration of multimodal event extraction.

Event Extraction with Text and Image. Image features are capable of providing addi-
tional information for event extraction. Zhang et al. [112] were first to propose a multimodal
framework to integrate explicit visual information to resolve ambiguities of the text-only
modality and improve event extraction performance on text documents. They adopted an
in-domain visual pattern discovery method, which can be divided into visual argument
discovery and visual feature extraction, to generate auxiliary background knowledge for
each specific event. Ultimately, the visual features and text features extracted by Join-
tIE [113] were integrated to improve event extraction performance. Li et al. [11] proposed
the learning of a structured multimedia embedding space for multimedia event extraction.
More specifically, they represented each image or sentence as a graph and adopted a weakly
supervised framework to align the modalities. Moreover, they constructed an annotated
news dataset called M2E2 as a benchmark for multimedia events extraction.

Event Extraction with Text and Video. Videos contain rich dynamics and detailed
development of events, which can also be used as an information source for event detection.
To this end, Chen et al. [114] introduced a new task of video multimedia event extraction
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which extracts multimodal events and arguments from text and videos jointly. For this
task, they proposed a self-supervised model to determine the coreference between video
events and text events, and adopted the multimodal transformer to extract structured
event information jointly from both videos and text documents. Analogously, the authors
introduced a new multimodal video–text dataset with extensive annotations covering event
and argument role extraction. Sadhu et al. [115] introduced visual semantic role labeling
and proposed a framework for understanding and representing relevant salient events
within videos. Specifically, they attempted to represent videos as a set of events, each of
which is formed by a verb and several entities fulfilling various roles related to the event.
Chen et al. [116] introduced the new task of vM2E2 and proposed two novel components
to construct the first system of this task. Specifically, they proposed a self-supervised
multimodal event coreference model that is able to determine event coreference between
video and text events, as well as a multimodal transformer that jointly distills structured
event information from videos and text documents.

4. Multimodal Knowledge Graph Completion

Knowledge graph completion has become an area of interest interest for various ap-
plications, as it involves completing the structure of a knowledge graph by predicting
the missing entities or relationships within the knowledge graph as well as mining un-
known facts. In this section, an extensive review of the research of multimodal knowledge
graph completion is provided.

4.1. Entity Linking

Entity linking is an essential task in information extraction since it resolves the lexical
ambiguity of entity mentions and determines their meanings in context. It refers to the task
of linking entity mentions within texts with their corresponding entities in a knowledge
base and one of its potential applications is knowledge base population [117], which means
entity linking can be utilized for knowledge graph completion. Early approaches of entity
linking focus on the language domain and generally lack visual information that can be
used in this task, which hinders the construction of large-scale multimodal knowledge
bases and poses great challenges for computing techniques to understand the real-world
multimodal data comprehensively. To address this problem, an emerging task called
multimodal entity linking was proposed, which utilizes both textual and visual information
to map an ambiguous mention to an entity in a knowledge base [17].

This section provides a brief overview of text-based entity linking general architecture
and a detailed summary of the multimodal entity linking approaches proposed thus far.

4.1.1. Text-Based Entity Linking

The universal approach to entity linking is to treat it as a ranking problem [118].
Figure 7 illustrates the generalized architecture, which is applicable to the majority of
neural approaches.

based on surface from matching

based on expansion using aliases

based on prior probability 

convolutional neural network 

recurrent neural network 

BERT

unstructured text

relational information

scoring function

NIL prediction task 

Text-based Entity Linking General Architecture 

1. Candidate Generation 2. Context-mention encoding 3. Entity Encoding 4. Entity Ranking

Figure 7. Reference graph of text-based entity linking general architecture.

An essential part of entity linking is candidate generation, which aims to perform
preliminary filtering of the entity list. According to [118], there are three common candidate
generation methods in entity linking: (1) those based on surface form matching, (2) those
based on expansion using aliases and (3) those based on a prior probability computation.
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The first approach generates a candidate list composed of entities that match diverse surface
forms of mentions in the text [119–121]. The second approach constructs a dictionary of
additional aliases using KG metadata like the disambiguation/redirect pages of Wikipedia
to improve the candidate generation recall [122–124] while the third one is based on
precalculated prior probabilities of correspondence between certain mentions and entities.

The next crucial step is context-mention encoding, which aims to correctly disam-
biguate an entity mention and capture the information from its context. The mainstream
approach represents a mention as a dense contextualized vector. Early techniques mainly
utilize a convolutional encoder as well as local neural attention to obtain the mention
embedding [125–127]. In recent models, recurrent networks and self-attention mechanism
prevail [128,129]. Additionally, encoding methods based on self-attention have recently
become ubiquitous [130,131].

The third step is entity encoding, which aims to construct distributed vector repre-
sentations of entity candidates. Some methods adopt entity representations constructed
using relations between entities in knowledge graphs and graph embedding methods.
Huang et al. [132] proposed a deep semantic relatedness model to generate dense entity
representations from sparse entity features. Several methods expand their entity related-
ness objective by aligning mentions and entities in a unified vector space [133–135]. As for
graph embedding methods, representative works include DeepWalk [136] and TransE [22].
A few works [137,138] have verified the effectiveness of this method in entity linking. Apart
from the aforementioned methods, recent work have utilized pretrained language models
like BERT [51] for encoding entities [130,131].

The fourth step is entity ranking. Its goal is to give a list of entity candidates from a
knowledge graph and a context with a mention to assign a score to each entity. During the
calculation of the score, the mention representation is generated in the mention encoding
step, and the entity representation is generated in the entity encoding step. Prevailing
scoring functions for calculating similarity include dot product [127,128] and cosine simi-
larity [125,139]. The final decision is deduced by a probability distribution, which can be
approximated by a softmax function over the candidates.

It is important to note that since the corresponding entities of some mentions can be
deficient in knowledge graphs, an entity linking system should be able to predict the lack
of references if a mention appears in specific contexts, which is called NIL prediction task
(NIl is the value returned when there is no corresponding entities during a entity linking
task). Common ways to carry out the NIL prediction include setting a threshold for the
best linking probability [140,141], introducing an additional "NIL" entity in the ranking
stage [142] and training an additional binary classifier [120,143].

4.1.2. Multimodal Entity Linking

In addition to textual information, visual information is effective for depicting an entity
auxiliary and is instrumental for the construction of large-scale multimodal knowledge
bases. As Figure 8 shows, if we only take text into consideration, it is difficult for us to
distinguish whether juustin should be linked to Justin Bieber or Justin Trudeau. However,
with the help of some visual information, like the image in this example, which can
be associated with concerts, it becomes obvious that juustin should be linked to Justin
Bieber. To this end, researchers have proposed the multimodal entity linking task, which
leverages both textual and visual information to disambiguate mentions by linking them
to the corresponding entities in a knowledge base [17]. We first introduce multimodal
entity linking datasets and then further classify multimodal entity linking approaches into
multimodal attention-based approaches, which are jointly learning-based approaches and
graph-based approaches.
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Figure 8. Illustration of multimodal entity linking.

Multimodal Entity Linking Datasets. The growing trend toward multimodality re-
quires the expansion of EL research from single modality to multimodality. Multimodal
Entity Linking (MEL) datasets have played a vital role in supporting multimodal entity link-
ing tasking, and a wide range of research has been conducted on this topic. Moon et al. [144]
were the first to address the MEL task and proposed their MEL dataset. However, their
dataset is unavailable due to GDPR rules. To address this issue, Adjali et al. [13,145]
proposed a framework to automatically build the MEL dataset from Twitter. However,
this dataset has limited entity types along with ambiguous mentions, and thus it is not
sufficiently challenging. Zhang et al. [17] proposed a Chinese MEL dataset collected from
Weibo, which is a Chinese social media platform. However, their work mainly focuses
on the person entities. Gan et al. [146] studied on a MEL dataset collected from movie
reviews and proposed to disambiguate both visual and textual mentions. This dataset
mostly focuses on the movie domain. Peng [146] released three MEL datasets, which were
built from Weibo, Wikipedia and Richpedia information, with CNDBpedia, Wikidata and
Richpedia being the respective, KBs. However, this dataset may lead to the data leakage
problem, as many language models are pretrained on Wikipedia. To address the prob-
lem, Wang et al. [147] presented the WIKIDiverse dataset, which is a manually annotated
high-quality MEL dataset covering diversified topics and entity types.

Multimodal Attention-based Methods. The attention mechanism has been proven
to be superior for extracting the crucial parts from chaotic information. Zhang et al. [17]
proposed an MEL model which can remove the impact of noisy images as well as bet-
ter capture the interaction between mention representation and its corresponding entity
representation with the help of a multiple attention mechanism. Moon et al. [144] built
a zero-shot multimodal network and adopted a modality-attention module to attenuate
irrelevant modalities while amplifying the most informative ones for entity disambigua-
tion. Furthermore, they manually constructed a dataset called SnapCaptionsKB, which
is composed of Snapchat image captions, with mentions fully annotated and linked to
corresponding entities in an external knowledge base.

Joint Learning-based Methods. Some joint learning proposals are also applied for
multimodal entity linking. Omar et al. [13] used joint learning of a representation of both
mentions and entities based on the unsupervised Sent2Vec model [148] and pretrained the
InceptionV3 model [64] for multimodal entity linking. In order to evaluate the multimodal
entity linking model, they proposed a quasi-automatic dataset construction method and
released a new annotated dataset of Twitter posts for this task.

Graph-Based Methods. Some works resort to a graph for addressing the MEL task.
Gan et al. [146] formulated the entity linking task as a bipartite graph matching problem
and proposed an optimal-transportation-based model to perform multimodal entity linking.
Analogously, the authors released a finely labeled multimodal entity linking dataset, M3EL,
that focuses on disambiguation of movie characters given textual documents and pictures.
Differently from the aforementioned work which links the textual mentions to knowledge
graphs, Zheng et al. [149] concentrated on visual entity linking which maps the visual
objects detected from an image to the entities in the knowledge graph. Specifically, they
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employed the scene graph for better visual scene understanding and utilized the GRU to
extract textual features of objects from image caption. All features are aggregated to rank
and map visual objects to the entities in the knowledge.

Knowledge Representation Learning. Knowledge representation learning, also known
as knowledge graph embedding, has found important applications in miscellaneous entity-
oriented tasks and quickly gained widespread attention [150]. The core idea is to learn
the distributed representations of knowledge graphs by projecting entities and relations to
low-dimensional dense vector spaces so as to simplify the manipulation while retaining
the inherent structure of the knowledge graph. It has been largely applied in enormous
downstream tasks including knowledge graph completion [22], semantic parsing [151] and
relation extraction [152,153], among others. Previous works of knowledge representation
learning mainly calculate the entity and relation embeddings based on structured triples,
ignoring rich visual information of entities that intuitively describe the appearances and
behaviors of this entity. To this end, Xie et al. [12] were first to attempt incorporating the
multimodal information of entities for knowledge representation learning.

This section briefly presents text-based knowledge representation learning and repre-
sentation learning in multimodal tasks, while also providing a summary of the multimodal
knowledge representation learning approaches devised thus far.

4.1.3. Text-Based Knowledge Representation Learning

Previous text-based knowledge representation learning can be roughly classified
into translation-based methods, semantic-matching-based methods and neural network-
based methods. Translation-based methods calculate the distance between entities where
the relation is regarded as the translation operation. They ensure the translation result
of head entity vector h and relation vector r close to the tail entity vector t. Primitive
methods, like TransE [154], use the simple principle h + r ≈ t. Advanced models, like
TransH [155] and KG2E [156], utilize more complex representation space and spatial
transformation. Semantic-matching-based methods measure the plausibility of facts by
matching the latent semantics of entities and relations embodied in their vector space
representations. RESCAL [157] uses a bilinear formulation to calculate the score of a
fact, DistMult [158] proposed simplified relation matrices, and ComplEx [159] extends
DisMult to complex vector space to deal with antisymmetric relations. Neural network-
based methods utilize deep models, such as CNN, RNN and transformer, to model the
interactions between entities and relations . ConvE [160] and ConvKB [161] both adopt
convolutional neural networks but reshaped entity vector and relation vector differently as
model inputs. KG-BERT [162] borrowed the idea of the pretrained language model and
used transformer to encode entities and relations.

4.1.4. Multimodal-Based Knowledge Representation Learning

Text-based knowledge representation learning models merely consider the single-
modal structural information with triple facts, while multimodal information with rich
semantics has been ignored. To utilize the multimodal information for knowledge rep-
resentation learning of multimodal knowledge graphs, researchers began with utilizing
multimodal representation learning modules to capture multimodal features and combined
them with traditional knowledge representation learning measures. Before we summarize
multimodal knowledge representation learning, we first review multimodal representa-
tion learning.

Multimodal Representation Learning. Research on encoding and using features from
different modalities have been conducted for some time. Thus far, several deep learning
methods, including probabilistic graphical models, multimodal autoencoders, attention
mechanism and generative adversarial network, have been widely used in multimodal
tasks. These approaches unify the representation of visual, audio or textual information,
and enable neural networks to understand semantics across modalities more precisely.
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Probabilistic Graphical Models-based Methods. Probabilistic models include deep
belief networks (DBNs) [163] as well as deep Boltzmann machines (DBMs) [164]. Multi-
modal DBN is a typical example of probabilistic graphical models proposed by Srivastava
and Salakhutdinov [165], which uses learned joint representation across modalities through
shared restricted Boltzmann machine (RBM) hidden layer on top of image-specific and
text-specific DBNs.

Multimodal Autoencoder-based Methods. Autoencoders have garnered much atten-
tion because of their ability to learn representations. Ngiam et al. [166] trained a bimodal
deep autoencoder, which consists of two separate autoencoders for reconstructing both
modalities when given only the visual data so as to discover correlations across differ-
ent modalities. Similar to Ngiam’s work, Silberer et al. [167] proposed a variant, which
exploits stacked autoencoders to learn semantic representations integrating visual and
textual information. Wang et al. [168] further proposed to impose orthogonal regular-
ization on the weights so as to reduce the redundancy in the learned hashing represen-
tation. The above mentioned works learn multimodal representation within a common
subspace, and some researchers tried to capture the correlation between different modali-
ties. For example, Feng et al. [169] proposed a correspondence autoencoder mode, which is
constructed by correlating hidden representations of two unimodal autoencoders. More
specifically, the model first learns a set of independent but correlated representations for
each single modality through modality-specific autoencoders and then minimizes the sim-
ilarity loss between modalities to capture their correlation. Based on Feng et al.’s work,
Wang et al. [170] designed a learning objective function which takes both the intermodal
and intramodal important into consideration. Autoencoders can also be used for extracting
intermediate features. Liu et al. [171] fused multiple modalities into a joint representation
which contains intrinsic semantic information through stacked contractive autoencoders,
and Hong et al. [172] constructed a hypergraph Laplacian with low-rank representation for
multimodal fusion.

Attention Mechanism-based Methods. Attention mechanism allows the model to
direct focus on certain parts of the inputs. Attention mechanism usually falls into the fol-
lowing categories: key-based attention and keyless attention. Key-based attention is useful
for evaluating intramodality and intermodality importance, and has been widely exploited
in visual description applications. When fusing multimodal features, the balance of the con-
tribution for each modality is a key issue. Thus, several pieces of research [173–175] have
been conducted and have shown that application performance can be improved through
dynamically assigning weights to modality-specific features conditioned within contexts.
Keyless attention is applied when the key is hard to obtain or define, and the attention
mechanism is directly conducted on the localized features. Keyless attention is typically ap-
plied under classification or regression tasks. It is extremely suitable for multimodal feature
fusion tasks, as it selects prominent cues from raw input, which has been proven in several
studies [102,176,177]. In order to model the interactions between different modalities for a
visual question-answering task, Lu et al. [178] proposed a coattention mechanism which
jointly reasons about visual and question attention as well as a hierarchical architecture
which coattends to the image and questions. Zedeh et al. [179] applied a multiattention
mechanism to find distinct interactions between modalities. Zhou et al. [102] presented a
model to fuse heterogeneous user behavior features through a a multiattention mechanism.

Generative Adversarial Network-based Methods. The generative adversarial net-
work (GAN) is an emerging technique that has been widely applied and hosted with
great success. Due to its unsupervised nature, GAN is rather effective for learning data
representation without labels and has been extended to the multimodal representation
learning field. For the text-to-image synthesis task, Reed et al. [180] proposed a GAN-based
model for translating visual concepts from characters to pixels. Specifically, the model
is composed of a generator network and a discriminator network: the former encodes
the text input with noise, translating it into image, while the latter is used to determine
whether the text and the image are compatible or not. Zhang et al. [181] proposed stacked
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generative adversarial networks for text-to-image synthesis. Specifically, they decomposed
the problem into a more manageable problem via a sketch-refinement process and intro-
duced a conditioning augmentation technique which smooths the text encoding in the
latent conditioning manifold. Reed et al. [182] took the object location information revealed
by bounding boxes and key points into consideration and combined them with the text
descriptions to learn what content should be drawn in which location. In cross-modal
retrieval cases, Peng et al. [183] proposed a cross-modal GAN architecture which is able to
explore intermodality and intramodality correlation simultaneously in generative and dis-
criminative models: the former is formed through cross-modal convolutional autoencoders
with weight-sharing constraint, while the the latter exploits two types of discriminative
models to discriminate intramodality and intermodality at the same time. Xu et al. [184]
used learning of cross-modal representations in a shared latent subspace. In order to place
data of various modalities into a common hash space, Zhang et al. [185] preserved the
manifold structure across different modalities. Based on CycleGAN [186], Wu et al. [187]
proposed the learning of cross-modal hash functions without available paired training
samples via cycle consistency loss.

Multimodal Knowledge Representation Learning. In recent years, entity-based
methods have achieved excellent performance in multimodal knowledge representation
learning by incorporating multimodal knowledge as new entities and relations into tradi-
tional knowledge representation learning methods. Xie et al. [12] applied earned knowl-
edge representations with both triples and images. Specifically, they constructed an image
encoder with an attention-based method so as to complete learning of the image-based
representation for each entity as an extension of the structure-based representations learned
from the traditional translation-based method. Similarly, Mousselly-Sergieh et al. [188]
proposed a multimodal translation-based approach and designed a new type of margin-
based ranking loss to incorporate the linguistic representations and visual representations
for knowledge representation learning. In contrast, TransAE [189] combines a multimodal
autoencoder and TransE [22] to jointly learn representation based on both the structural
knowledge and multimodal knowledge of triplets. Semantic-matching-based methods
and neural network-based methods have also been improved to fit the multimodal setting.
Liu et al. [15] proposed PoE to find entity alignment within multimodal knowledge graphs
via extracting relational, latent, numerical and visual features. Entity and embeddings
are trained through the link prediction task. Pezeshkpour et al. [190] attempted to in-
corporate the multimodal information into existing relational models like DistMult [158]
and ConvE [160] for knowledge representation. For this reason, they introduced domain-
specific encoders to embed multimodal context, which can be used to score the truth
value of a triple. Recently, Wang et al. [10] designed an RSME model, which is able to
automatically enhance or decline the influence of visual context during the representation
learning process, proving that the leveraging of visual information can help to generate
better knowledge graph embeddings under appropriate circumstances.

5. Multimodal Knowledge Graph Applications

Multimodal knowledge graphs have gradually attracted the attention of researchers
and have been applied in miscellaneous domains. In this section, we primarily summarize
the applications of multimodal knowledge graphs.

5.1. Multimodal Knowledge Graphs in the Recommender System

A recommender system is a compelling information filtering system that aims to pre-
dict a customer’s ratings or preferences for a product and has shown great potential to tackle
information explosion problems, enhancing the user experience in various applications.

Knowledge graphs are widely used in recommender systems, which can alleviate data
sparsity and cold start problems. However, most previous works ignore the importance of
multimodal information like images and text descriptions. For example, before buying a
product online, users tend to watch the images of this product and its descriptions as well
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as the related user reviews about the product. Thus, it is important to introduce multimodal
information into the knowledge graphs to better enhance recommender systems [18].
For this reason, Sun et al. [18] were first to introduce the multimodal knowledge graph into
the recommender system and modeled the multimodal knowledge graph from two aspects:
entity information aggregation and entity relation reasoning. Specifically, they employed a
graph attention mechanism to conduct information propagation and a translational method
to model the reasoning relation between entities. Extensive experiments have demonstrated
that multimodal knowledge graphs can improve the quality of recommender systems.

5.2. Multimodal Knowledge Graphs in E-Commerce

Live-streaming sales are becoming increasingly popular in E-commerce, the core of
which consists of encouraging customers to purchase in an online broadcasting room.
In order to provide rich and attractive information about each product item, researchers
have proposed leveraging the multimodal knowledge graphs to enable customers to better
understand a product without jumping out. In light of this, Xu et al. [19] constructed
a multimodal knowledge graph called AliMe MKG that centers on and aggregates rich
information about items. They further built an online live assistant based on AliMe MKG
for product search, product exhibition and question answering, allowing customers to
conveniently seek information in an online broadcasting room. Furthermore, AliMe MKG
can be applied in short video productions which present the core selling points of a product
item in an attractive and intuitive manner.

5.3. Multimodal Knowledge Graphs in Biomedicine

The knowledge graph is becoming increasingly significant in the biomedical field
given the exponential increase in the volume of biomedical articles which contain valuable
knowledge regarding biomedical entities such as proteins and drugs. Since protein–protein
interaction(PPI) is one of the most important tasks in biomedical document processing,
where the relation (“interaction” or “noninteraction”) is determined from the given biomed-
ical texts, and the knowledge of protein interaction is vital for understanding the biological
processes, there have been some works on PPI in the literature. However, earlier works
mostly focused on textual information within the biomedical texts, which lacks the abil-
ity to capture multiomics information related to protein interaction or the genetic and
structural information of proteins. Toward this end, Pingali et al. [191] explored the Graph-
based Transformer model (GraphBERT) [192] so as to learn the modality-independent
graph representation. Specifically, they utilized protein atomic structural information
when identifying the protein interactions and developed a generalized modality-agnostic
approach that is capable of learning the feature representations for both textual and protein
structural modalities.

5.4. Multimodal Knowledge Graphs in Fake News Detection

The widespread dissemination and misleading effect of online rumors on social media
have become a key concern for the public and government. Discovering and regulating
social media rumors is important to ensuring that users receive truthful information and
maintain social harmony. Previous related work has mainly focused on inferring clues
from the media content and social context, largely ignoring the rich knowledge information
behind the highly condensed text, which is useful for rumor verification. Additionally,
earlier methods perform badly on unseen events, as they tend to capture a plethora of event-
specific features within seen data that cannot be transferred to newly emerging events.
To address these problems, Zhang et al. [193] proposed Multi-modal Knowledge-aware
Event Memory Network (MKEMN), which exploits the Multi-modal Knowledge-aware
Network (MKN) and Event Memory Network (EMN) as building blocks for social me-
dia rumor detection. Specifically, MKN learns multimodal representations of posts on
social media and retrieves external knowledge from real-world knowledge graphs so as to
complement the semantic representation for short text in posts. Conceptual knowledge
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is considered to be the additional evidence for improved rumor detection. Apart from
the above work, Wang et al. [194] designed Knowledge-driven Multimodal Graph Con-
volutional Networks (KMGCNs) to model the semantic representation through modeling
the textual information, knowledge concepts and visual information jointly into a unified
framework for fake news detection. To this end, they converted each post into a graph
and proposed a multimodal graph convolution network for capturing nonconsecutive
phrases for better obtaining the composition of semantics. In addition, knowledge distil-
lation is exploited for providing complementary knowledge concepts, which have better
generalization performance for emerging posts.

6. Conclusions

With the proliferation of multimodal resources in the Internet and the development of
related research in recent years, the subject of multimodal knowledge graphs has attracted
increased attention. This paper reviews the related advances of multimodal knowledge
graphs in the following three areas: open multimodal knowledge graphs, multimodal
knowledge graph construction and completion technologies and typical applications.
The related construction technologies are further elaborated from the three perspectives of
named entity recognition, relation extraction and event extraction. Finally, we enumerate
the typical applications of multimodal knowledge in various scenarios, such as recom-
mender system and E-commerce. We hope that this survey can provide a good reference in
facilitating future research.
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