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Abstract: At present, quantitative data is often used for fault diagnosis of electromechanical devices,
while qualitative data in the form of text is rarely used. In order to integrate qualitative data in
the form of text and quantitative data in the fault diagnosis of an electromechanical device, a text‑
oriented fault diagnosis method based on belief rule base (BRB) is proposed in this paper. Specif‑
ically, the key information of fault diagnosis is extracted from the text through natural language
processing (NLP) and then converted into belief rules. Then, a rule supplement method is adopted
to add the extracted belief rules to the BRB for the completion of the BRB construction. This method
applies qualitative data in the form of text to the process of BRB construction, which is a new attempt
at the BRB construction method. It not only solves the problem that BRB cannot use qualitative data
in text form but also improves the modeling accuracy and data comprehensive processing ability of
BRB. To verify the effectiveness of the algorithm, we designed an experiment of asynchronousmotor
fault diagnosis in the case study. The experimental result shows that the proposed method can use
qualitative data in text form to construct BRB and effectively diagnose faults of asynchronousmotors.
The MSE of the proposed method is 0.0451, which is better than that of traditional BRB (0.1461), BP
(0.0613), and SVR (0.0974) under the same experimental conditions.

Keywords: qualitative data; text form; belief rule base; NLP

MSC: 37M10

1. Introduction
The electromechanical device is an important part of all kinds of large equipment; its

reliability is closely related to the safe operation of equipment,which is very important. Fault
diagnosis is the main method to improve the safety of electromechanical devices [1–3]. At
present, fault diagnosis methods can be divided into three categories [4]: (1) data‑driven
method [4,5], (2)model‑basedmethod, and (3) expert system. To effectively fault diagnosis,
it is necessary to analyze the advantages and disadvantages of each method.

In general, data‑driven and model‑based methods have received attention in recent
decades, with the characteristics of data processing and analysis of the model system to
deal with faults. However, the data‑driven method belongs to the “black box modeling”
method; its internal calculation process and output lack interpretation [6,7]. The model‑
based methods require mathematical models designed according to the working principle
of the object of study, which is difficult to implement for complex systems [8]. The expert
system method can effectively combine model and data information to provide a more ac‑
curate fault diagnosis by comparing the advantages and disadvantages of the above two
methods. The belief rule base (BRB) is similar to an expert system, which can use qualita‑
tive data and quantitative data to analyze quantitative data [9]. It is based on the traditional
IF‑Then rule, proposed by Yang et al. [6–8] in 2006. In recent years, BRB has been success‑
fully applied in the field of fault diagnosis [9].
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However, most of the current research on BRB fault diagnosis focuses on how to im‑
prove the diagnosis accuracy. There is a lack of research on how qualitative data in text
form can be used in BRB. As a kind of widely used equipment, electromechanical device
accumulates a lot of valuable qualitative data in the form of text in the working process,
which can be used for fault diagnosis. However, due to the fact that BRB cannot use these
data at present, it not only causes the waste of data but also directly affects the fault di‑
agnosis effect of BRB and becomes the main factor restricting the further development of
BRB. Therefore, how to apply qualitative data in text form to fault diagnosis of electrome‑
chanical equipment based on BRB has become an urgent problem to be solved.

Therefore, this paper proposes a text‑oriented fault diagnosis method for electrome‑
chanical devices based on a belief rule base in order to improve the modeling accuracy
of the fault diagnosis method based on BRB by using qualitative data in text form. For
text information processing, Natural Language Processing (NLP) technology is a stan‑
dard method [10–12]. It mainly studies how computers understand human language and
perform relevant operations according to the results of their understanding [11–13]. At
present, NLP has been used in many fields [11]. In this study, NLP is used for word seg‑
mentation of qualitative data in text form.

Through the use of the method proposed in this paper, the quantitative data in tex‑
tual form is no longer wasted. The belief rules can be extracted from the text information
related to the fault diagnosis of electromechanical devices. It improves the accuracy and in‑
terpretability of the initial parameters of the BRB and provides a guarantee for maintaining
the interpretability of the parameter optimization results and preventing the optimization
results from falling into the local optimum. In addition, how to reduce the influence of insuf‑
ficient expert knowledge on the construction of BRB has always been the focus of research
on the construction method of BRB. This method provides a way to solve these problems.

A case study at the end of this paper verifies the effectiveness of the proposedmethod.
First, two confidence rules are extracted from the failure reports of electromechanical de‑
vices. Then, these two rules are complemented to an incomplete BRB to complete the con‑
struction of the BRB. Finally, the fault diagnosis of electromechanical devices is performed.
Since belief rules are extracted from qualitative data in text form and no longer set by ran‑
dom function, themodeling accuracy of BRB is improved, and better fault diagnosis results
are obtained.

2. Literature Review
Section 2.1 reviews the present studies on the data‑driven method and model‑based

method. Section 2.2 reviews the current research status of BRB. So far, no studies have
been conducted on the use of qualitative data in the form of text. Most of them focus on
the BRB structure. Section 2.3 summarizes the current research status of NLP. So far, no
combination of NLP and BRB has been found.

2.1. Data‑Driven Method and Model‑Based Method
Aiming at the data‑driven method, Ikotun et al. [1] studied the single‑wire ground‑

ing fault, dual‑wire grounding fault, and three‑phase grounding fault of an AC system
inverter and their performance in a DC link and rectifier AC system and established a sim‑
ulation model for high‑voltage direct current (HVDC) single‑pole system by using Mat‑
lab/Simulink software. Li et al. [3] proposed a data‑driven optimal test selection design for
fault detection and isolation. Hu et al. [4] proposed a new cause–effect relations method
to determine the root cause of anomalies in industrial process monitoring of complex pro‑
cesses. Chen et al. [5] proposed a single‑side neural network‑aided canonical correlation
analysis method for fault diagnosis of industrial systems. Although the above methods
have achieved good results in fault diagnosis research, they can only use quantitative data.
Those results in a waste of data and affect the effectiveness of fault diagnosis. In model‑
based methods, Andrei S. Maliuk et al. [14] proposed a hybrid feature selection method
based on Wrapper‑WPT, used to improve the accuracy of early bearing fault diagnosis
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and achieved good results. Zhang et al. [15] proposed a method of rolling bearing fault di‑
agnosis based on the threshold acquisition U‑Net, which was successfully verified on the
vibration signals of rolling bearings. Although the model‑based method has good detec‑
tion anddiagnosis results, it ismore difficult to accuratelymaster the operationmechanism
and model structure of the subject before use.

2.2. BRB
Due to its compelling combination of quantitative data and qualitative data, BRB

has been successfully applied in equipment fault diagnosis, state assessment, and other
fields [8,16,17]. Cheng et al. [18] proposed an effective fault diagnosis model based on
BRB to solve the fault problem of the train running gear systems. Experiments showed that
this method could locate faults more accurately. Feng et al. [19] put forward a BRB safety
assessment method with attribute reliability, verified this method based on Liquefied Nat‑
ural Gas (LNG) tanks and achieved good results. Tan et al. [20] proposed a collaborative
distributedmultiobjective method (CDMO‑BRB) to optimize the structure and parameters
of heterogeneous BRBs simultaneously. The method is validated in pipeline leakage detec‑
tion, and the results show that CDMO‑BRB has better performance than previous studies.
Cao et al. [9] proposed a BRB‑based health status assessment model in 2021, which suc‑
cessfully evaluated the operating status of aero‑engines and proved the interpretability of
BRB. Although the above studies have achieved good results, there is a lack of discussion
on using qualitative data in text form. This calls for a new BRB capable of qualitative data
processing using textual forms.

2.3. NLP
NLP can process text information and has functions such as word segmentation, se‑

mantic analysis, and syntactic analysis [10,13,21]. Zhao et al. [13] used the BoW model
in NLP to count the fault‑related words in the fault description and then sorted the sta‑
tistical results to realize the extraction of fault features in mechanical fault information.
Naseri Hossien et al. [21] used NLP to extract the pain which was summarized by doctors
from clinical reports, and tested it by using the clinical words of patients with cancer bone
metastasis, achieving good results and effectively verifying the ability of NLP to extract
text information. Shi et al. [22] used NLP to extract information from FDA drug labels
to enhance the product‑specific guidance evaluation and achieved good results. Dastan
Hussen Maulud et al. [23] explained the application of NLP in Internet searches and com‑
pared the performance of various application technologies in NLP. The result showed that
all technologies reached a good level. These applications and studies show thatNLP solves
many text‑processing problems in many fields, but the combination of NLP and BRB has
not yet been discovered.

The above literature review shows that it is feasible to apply NLP to the fault diagno‑
sis method based on BRB to achieve the purpose of using qualitative data in text form in
fault diagnosis. Therefore, this paper proposes a text‑oriented fault diagnosis method for
electromechanical devices based on a belief rule base. This method uses NLP to extract the
critical information describing the fault cause from qualitative data in text form and then
convert it into belief rules. After that, the obtained belief rules are added to the BRB con‑
struction process. Finally, the BRB is adopted for fault diagnosis. This paper has twomain
innovations: (1) NLP is used to convert the fault description information in the text infor‑
mation into belief rules; (2) the constructed belief rules are added to the existing belief rules
to complete the construction of BRB. The specific content and experimental verification of
the method is explained in the following seven sections.

3. Proposed Approach
Focusing on the problem of electromechanical device fault diagnosis, the whole work

of this paper is divided into seven steps, as shown in Figure 1. Starting from the fault diag‑
nosis of an electromechanical device, this article first briefly introduces the main methods
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of fault diagnosis. Then, the problem that qualitative text data cannot be used in fault diag‑
nosis method based on BRB is found, and the solution to this problem is put forward. This
method is divided into two parts: (1) extraction of belief rules and (2) supplementation of
belief rules. Each part is introduced in detail. After that, the effectiveness of the method is
illustrated by method verification and comparative study. Finally, the application of this
method in the fault diagnosis of electromechanical devices is summarized and prospected.

Figure 1. Step of whole work.

4. Problem Formulation
Based on traditional IF‑THEN rules, the BRB is an excellent method to solve the prob‑

lem of the unified use of quantitative data and qualitative data [6,19,20]. Specifically, the
IF part of each rule is composed of several attributes with weights, and the conclusion of
the THEN part has a belief degree [6,23]. BRB is generally described as follows [23,24]:

Ri:IF
(

x1isAi
1
)
∩
(

x2isAi
2
)

. . .
(
xnisAi

n
)
THEN{(D1, β1,i), (D2, β2,i), . . . , (Dm, βm,i)}

with the rule weight θi and the attribute weight δ1,i, δ2,i, . . . , δn,i

where Ri represents the ith (i = 1, 2 . . . , L) rule. xj is the jth attribute (j = 1, 2, . . . , n). Ai
j

is the value of the jth attribute of Ri. Dk is the kth conclusion (k = 1, 2, . . . , m). βk,i is the

belief degree of the kth conclusion in Ri. If
m
∑

k=1
βk,i = 1, then Ri is complete; otherwise, Ri

is incomplete. θi is the weight of Ri. δj,i is the weight of the jth premise property in Ri. The
larger the weight value, the more important the content is [25].

Although BRB can effectively use quantitative and qualitative data, there is still no
feasible method to use qualitative data in text. Therefore, finding a way to apply quality
data in text form to BRB is urgent. In this regard, it is considered to use NLP technology to
extract the information describing the mechanism of the device or analyze the fault cause
from the text, then convert the information into belief rules and add them to the BRB to
complete the construction of the BRB. To accomplish the above tasks, this paper needs to
solve two fundamental problems:

Problem 1 The belief rule has four parts: the value of the attribute, the weight of the
attribute, the weight of the belief rule, and the initial belief degree of each conclusion [6].
Additionally, the text used to supplement the expertise, which is made up of statements,
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is the textual description. Therefore, the first problem to be solved in this paper is how to
find the information that can be used to build belief rules from these text descriptions and
convert the information into data that conforms to the format of belief rules. Problem 1
can be formulated as

R′
u(A′u, δ′u, β′

u, θ′u) = Γ(m) (1)

wherem represents the text information. Γ(·) represents the transformationmethodadopted
by themodel. R′

u(A′u, δ′u, β′
u, θ′u) represents a belief rule obtained from the text (0 ≤ u ≤ L).

A′u and δ′u represent the set of values and weights of each premise attribute in this rule,
respectively. β′

u represents the belief set of each conclusion in the rule, and θ′u represents
the weight of the rule.

Problem 2 The belief rules R′
u obtained can be added to the existing BRB as the sup‑

plementary rule. However, the specific situation between the rule R′
u and the existing BRB

needs to be considered in this supplement. In Formula (2), a rule supplement algorithm
should be established to complete the BRB supplement operation.

BRB(Ri) = F(R′
u) (2)

where F(·) is a nonlinear mapping for the adopted algorithm by the models and BRB(Ri)
represents the entirely reconstructed model.

To solve the aboveproblems, this paper proposes a text‑oriented fault diagnosismethod
for electromechanical devices based on BRB. Themethod is divided into two parts: (1) The
NLP establishes the fault knowledge transformation algorithm and generates belief rules.
(2) Establish the rule supplement algorithm, apply the obtained belief rules to the existing
BRB, and complete the construction of the BRB. The concrete structure of the proposed
method is shown in Figure 2.

Figure 2. Framework of method.

Before the method is executed, the expert needs to complete three tasks: (1) the estab‑
lishment of a custom thesaurus, (2) the selection of a stopword list, and (3) the construction
of an initial BRB. The custom thesaurus includes attribute vocabulary, attribute state vo‑
cabulary, fault vocabulary, and fault level vocabulary. It is possible that some belief rules
in the initial BRB cannot determine the parameters and need to be supplemented.

In Part I of the method, a belief rule extraction algorithm based on NLP is established.
This method first uses NLP to segment the text information of the device with the help of
a custom thesaurus created in advance by experts and a selected stopword list. After that,
attributes and attribute states are combinedwith the established combination rules to form
a fault phenomenon phrase, and then faults and fault levels are combined to form a fault
cause phrase. Then, the mapping relationship between the two phrases is established to
complete the extraction of formal text rules. Finally, the attribute states and fault levels in
the rules are converted into data that can be used to construct belief rules, completing the
conversion of text to the confidence rule.

In Part II of themethod, a belief rule supplement algorithm is established. Thismethod
can add the belief rules obtained in Part I to the initial BRB constructed by the expert in
advance, supplement the belief rules that cannot determine parameters, or replace the ex‑
isting belief rules at the choice of experts. If there are still rules in the initial BRB whose
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parameters cannot be determined after rule supplementation, the parameters of these rules
are assigned by random setting. Finally, the BRB construction is completed.

Below, the two algorithms are introduced in detail, respectively.

5. An Algorithm for Transforming Fault Knowledge into Belief Rules Based on NLP
To solve the problem 1proposed in Section 3, this section proposes an algorithmbased

on NLP to transform fault knowledge into belief rules. First, using the NLP word segmen‑
tation tool and custom lexicon, belief rule information can be extracted from system fault
diagnosis text in the Chinese context. Then, the information is formatted and converted
into belief rules.

5.1. Rule Extraction
According to the structure of the belief rule, the information extracted from the text

needs to be made up of two parts. The first part is the IF part of the rule, which describes
the fault phenomenon, including the system attributes and the value of attributes. The
second part is the THEN part of the rule, indicating the fault cause phenomenon, which is
composed of the fault of the system and the belief degree of the fault. The key to extracting
rules from text is to find the information that makes up the IF part and THEN parts. This
requires the word segmentation function of NLP, combined with a custom thesaurus, to
decompose the statements in the text into words [26]. Then, extract the key information
from these words. Finally, this information is combined into a phrase describing the fault
phenomenon and a phrase describing the fault cause phenomenon. Considering the com‑
plexity of Chinese and the possible irregular description of text information, this paper
assumes that the description of fault information in the text to be processed is relatively
accurate. The content of the custom thesaurus does not appear between the description
of the phenomenon and the cause of the fault. Moreover, the description of the attribute
state and fault level has been fully included in the attribute state vocabulary and fault level
vocabulary. The specific process is described as follows:

Step 1: Build a custom thesaurus. According to device conditions, the expert builds
custom vocabularies, including attribute vocabulary, X(x) = {x1, x2, . . . , xn}, attribute state
vocabulary, S(A) = {A1, A2, . . . , Añ}, fault vocabulary, F(D) = {D1, D2, . . . , Dm}, and
fault level vocabulary, L(p) = {p1, p2, . . . , pm̃}. Add a stop word list, Stop(w) =
{w1, w2, . . . , wz}. Among them, the attribute vocabulary contains various metrics that re‑
flect the state of the system. The attribute state vocabulary describes the possible conditions
for indicator state and specifies the symbolic representation for each. The fault vocabulary
describes various faults that can occur on a device. The failure vocabulary contains the
various failures that can occur in a system. The fault level vocabulary contains a descrip‑
tion and a probabilistic representation of the probability of each failure. The stop‑word list
contains high‑frequency words that need to be ignored, and it can be selected from several
well‑known stop‑word lists in the field of NLP.

Step 2: Obtain the word segmentation set. The Chinese text is loaded, and then the
word segmentation tool of NLP is used to perform a word segmentation operation on the
text to obtain theword segmentation set composed of basic words and their corresponding
parts of speech, O(o) = {o1, o2, . . . , om}.

Step 3: Obtain a collection of phrases to be grouped using a custom thesaurus. O(o)
is traversed, and the useless words are found and removed from it by using the stop word
table, namely O′(o′). Based on the attribute vocabulary, attribute state vocabulary, fault
vocabulary, and fault level vocabulary, the corresponding basic words are found from
O′(o′) and recombined to obtain the fault symptom phrase and fault cause phrase and set
labels p and f for them, respectively. Finally, put these phrases into the words set to be
grouped phrase_set(ph) = {{p : ph1}, { f : ph2}, { f : ph3}, . . . , {p : phn}}.

Step 4: Obtain the set of rules. The phrase_set(ph) is traversed, and the fault cause
phrases corresponding to the fault phenomenon phrases are found by using the labels of
each element in the phrase_set(ph), and then these phrases are put into the final rule set.



Mathematics 2023, 11, 1814 7 of 25

The above process is shown in Figure 3.

Figure 3. Fault symptom and fault level extraction process.

The following uses the fault description “当电机转角过大,电源电压高于阈值时,很可
能是因为电机卡死, 也有可能是由于电源短路. (When the motor Angle is larger and the
power supply voltage is higher than the threshold, it is likely to be because the motor
is stuck or the power supply is short‑circuited.)” as an example to describe the fault symp‑
tom and fault cause extraction process.

Firstly, based on the knowledge of the device, the expert can define the attribute
vocabulary X(x) and the fault vocabulary F(D), which is (“ 电机转角” (motor rotation), “
电源电压” (supply voltage)) and (“ 电机卡死” (motor stick), “ 电源短路” (power supply
circuit)). Then, according to the possible conditions of attributes, the state vocabulary of
attributes S(A) is established, ((“大 (large),高 (high)”: “H”), (“小 (small),低 (low)”: “L”)).
According to the expression habit of fault possibility in the Chinese context, the vocabu‑
lary of fault level L(p) is established, ((“极可能 (most probable)”: 0.9), (“很可能 (likely)”:
0.7), (“可能 (probable)”: 0.4), (“也许 (maybe)”: 0.1)). The meanings of the above Chinese
nouns are shown in Table 1.

Table 1. The meaning of Chinese nouns.

Chinese English

电机转角 motor rotation
电源电压 supply voltage
电机卡死 motor stick
电源短路 power supply circuit
大 large
高 high
小 small
低 low

极可能 most probable
很可能 likely
可能 probable
也许 maybe

Secondly, the word segmentation tool and Stop(w) are used for word segmentation
operation to obtain O(o), which contains the basic word and its corresponding part of
speech, as shown in Figure 4.
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Figure 4. The base word set O(o).

Thirdly, the basic words are combined according to X(x) and F(D) to obtain the at‑
tribute phrase and the fault cause phrase, as shown in Figure 5.

Figure 5. The attribute phrase and fault cause phrase.

In theChinese context, the commonly used grammatical structure is “attribute + state”,
and adjectives dominate the description of the state. Therefore, this can be taken as a condi‑
tion. After finding an attribute, continue to look for an adjective appearing in S(A) to form
a fault phenomenon phrase with the attribute. The commonly used grammatical structure
for the fault cause is “level of failure + cause of failure”, and the description word of the
level of failure is an adverb. With this condition, after finding a fault cause, backtrack to
the left to find an adverb that appears in L(p) to form a fault cause phrase with the fault
cause. Put the successively obtained phenomenon phrase and cause phrase together with
their labels “p” and “f “ into phrase_set(ph), as shown in Figure 6.

Finally, phrase_set(ph) elements are traversed to establish the relationship between
fault phenomenon and fault causes. Since the structure of the fault description statement
is to introduce the phenomenon of the fault first and then explain the fault cause, the phe‑
nomenon phrase and cause phrase in the phrase set will be adjacent. Therefore, element
search with “p” label can be carried out from phrase_set(ph). When an element with “f”
label is found, it means that the previously found element with “p” label matches this one
with “f” label. It is put into rule_set({p:x}, {f :y}) = {({p:x1}, {f :y1}), ({p:x2}, {f :y2}), . . . , ({p:xn},
{f :yn})} as a found text rules, as shown in Table 2. “p” and “ f” indicate fault phenomenon
labels and fault cause labels, and “x” and “y” indicate fault symptoms and fault causes in
a rule.
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Figure 6. The set of phenomenon and cause phrases.

Table 2. rule_set({p:x}, {f :y}).

p f

x1

电机转角大,电源电压高
(Larger motor Angle and higher
power supply voltage)

y1

很可能电机卡死,可能电源短路
(It is possible that the motor is stuck or the
power supply is short‑circuited)

5.2. Conversion of Rules
The contents in the rule_set need to be converted to belief rules before they can be

added to BRB. This conversion process extracts information from contents in text form,
then converts it into parameter values of belief rules. According to the description of the
rule Ri in Section 2, the parameters in a rule include the value Ai

j of the jth attribute xj and
the belief βk,i of the kth conclusion, theweight θi of Ri, and theweight δj,i of the jth attribute.
Therefore, extracting these four values from the rule_set is the key to rule transformation.
The specific steps are as follows:

Step 1: Calculate the attribute weight δj,i. A full‑text retrieval for the text information
is performed to find the frequency of occurrence of each attribute in the attribute vocab‑
ulary and the frequency of occurrence of various faults in the fault vocabulary, denoted
as ACj (j = 1, 2, . . . , n) and FCk (k = 1, 2, . . . , m). Then, calculate the proportion of each
ACj in the total number of attribute occurrences ATj, and the proportion of each FCk in the
total number of faults occurrence k. The larger the values of ATj and FTk are, the more
times attribute xj and fault k are mentioned in the text, the more important xj is, and the
more frequently fault k occurs. Therefore, ATj can be used as attribute weight, as shown
in Formula (3):

δj,i = ATj =
ACj

n
∑

j=1
ACj

(3)

The calculation formula of ATj is shown in Formula (4):

FTj =
FCk

m
∑

k=1
FCk

(4)
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Step 2: Compute the value Ai
j of the premise property xj. Using RTj as the standard,

descending order is performed in the attributes of fp of each rule in rule_set({p:x}, {f :y}) to
unify the format of the IF part. The content of p label is traversed in each rule by using the
content in the attribute vocabulary, and the attribute content is removed, and only adjec‑
tives describing the state are retained. Then, these state words are matched with the con‑
tents of the attribute state vocabulary to obtain the symbolic representation of each state.

Step 3: Calculate the kth conclusion, that is, the belief βk,i of the kth fault in the rule.
With the FTk obtained in Step 1 as the standard, the fault causes of y part of each rule in
rule_set({p:x}, {f :y}) are sorted in descending order, and the format of the THEN part is uni‑
fied. Then, the fault vocabulary is used to remove the fault words in each rule, and only the
description words of fault level are reserved. For Ri, the probability values corresponding
are found to the THEN part of the fault possibility descriptors in the fault level vocabulary
Dk,i (k = 1, 2, . . . , m), and then Formula (5) is used to obtain the belief degree of this fault.

βk,i =
Dk,i

m
∑

k=1
Dk,i

(5)

Step 4: Calculate rule weight θi. The initial value is θ̃i, as calculated by Formula (6).

θ̃i =
1
L
∑

i=1
i

(6)

Later, look for the same rule in rule_set({p:x}, {f :y}). If the rules are the same, add the
θ̃i of these same rules to obtain the rule weight θi, as shown in Formula (7).

θi = θ̃i + θ̃w, i = w, i, w = 1, 2, . . . , L (7)

At this point, the four‑parameter values of a belief rule are converted. Through the
establishment of the above two parts of the model, the acquisition and transformation of
text form rules are completed, respectively, and Problem 1 is solved.

6. A New Fault Diagnosis Method Based on BRB
To solve problem 2 raised in Section 3, a new fault diagnosis method based on BRB

is proposed in this section. First, experts build the BRB with their expertise. Considering
the possibility of insufficient expert knowledge, partial belief rules may not complete the
construction; that is, the BRB of the construction is incomplete. At this point, the belief
rules obtained in the previous section can be added to the incomplete BRB. Then, the BRB
is optimized. Finally, the BRB is used for fault diagnosis.

6.1. Construction of BRB
Assuming that the set of all rules in BRB is R = {R1, R2, . . . , Ri}, i = 1, 2, . . . , L. Con‑

sidering inadequate expert knowledge, only an incomplete BRB can be constructed. The
rule set of incomplete BRB is R̃ =

{
R̃1, R̃2, . . . , R̃ĩ

}
, ĩ = 1, 2, . . . , N, and the belief rule set

obtained from the text is R′ = {R′
1, R′

2, . . . , R′
i′}, i′ = 1, 2, . . . , M. The four situations are

described as follows:
R = R̃ ∪ R′ , R̃ ∩ R′ = ∅ , L = N + M (8)

R = R̃ ∪ R′ , R̃ ∩ R′ = ∅ , L < N + M (9)

R ̸= R̃ ∪ R′ , R̃ ∩ R′ = ∅ , L > N + M (10)
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R ̸= R̃ ∪ R′ , R̃ ∩ R′ = ∅ , L < N + M (11)

R ̸= R̃ ∪ R′ , R̃ ∩ R′ = ∅ , L = N + M (12)

R ̸= R̃ ∪ R′ , R̃ ∩ R′ ̸= ∅ , L > N + M (13)

Among them, Formula (8) is the ideal case, in which R′ exactly completes the missing
part of R. Formula (9) indicates that R′ completes not only the missing part of R, but also
has some rules that are the same as some rules in R̃. Formula (10) shows that the rule
in R′ cannot complete the missing part of R. Formulas (11)–(13) show that the rules in R′

cannot complete themissing part ofR, and they are the same as some rules in R̃. The above
situation shows that the rule supplement operation is not a simple process of merging R′

and R̃. It is necessary to find a reasonable way to complete the rule supplement under the
condition of rational use of R′.

According to the cases listed in Formulas (8)–(13), the union operation of set R′ and
set R̃ can be divided into two cases, namely R̃ ∩ R′ =∅ or R̃ ∩ R′ ̸= ∅. In these two cases,
the rule R̃ and R′ can be compared on the condition that the attribute’s value is the same to
determine whether the same rule exists and perform different processing. The following
contents are discussed separately.

(1) When R̃ ∩ R ′ =∅, it indicates that there is no overlap between the rules in R̃ and
the rules in R′, that is, the rules in R′ cannot be constructed due to insufficient expert
knowledge. In this case, we can directly union R′ and R̃.

(2) When R̃ ∩ R′ ̸= ∅, it indicates that the rules in R̃ and R′ are repeated, that is, some
rules in R′ have been constructed by expert knowledge, and R′ ⊆ R̃may even appear.
For duplicate rules, since they are the embodiment of expert knowledge, it is up to
the expert to decide which rules to use. For the rule of no repetitions, the union of R′

and R̃ can be performed.

According to Formulas (10)–(13), after the union operation of R′ and R̃ is completed,
the situation of R ̸= R̃ ∪ R′ may occur, that is, there are still belief rules that cannot be
constructed. For these rules, rule parameters can be set by random assignment to complete
the construction of rules [16]. The above process is shown in Figure 7.
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The above operations complete the belief rules to supplement the incomplete BRB.
The complete BRB is constructed, and Problem 2 is solved.

6.2. Reasoning Process of BRB
BRB is used for fault diagnosis. According to the basic structure of the BRB in

Section 2, the sampling data ej of attribute xj needs to be converted into belief distribu‑
tion αj,k according to the pre‑set attribute reference value γj,k, and the calculation formula
is as follows [27]:

αj,k =
γj,k+1 − ej

γj,k+1 − γj,k
, γj,k ≤ ej ≤ γj,k+1 (14)

αj,k+1 = 1 − αj,k, γj,k ≤ ej ≤ γj,k+1 (15)

αj,s = 0, s = 1, 2, . . . , Jk, s ̸= k, k + 1 (16)

The resulting αj,k is used in the following formula [24]:

ωi =

θi
M
∏
j=1

(αi
j)

δj

L
∑

l=1
θl

M
∏
j=1

(αi
j)

δj

(17)

where θi represents the weight of rule ith. αi
j represents the belief distribution of the value

of jth feature under rule ith, and δj represents the weight of the feature. The numerator on
the right‑hand side represents the belief of the input value of each attribute in the ith rule
considering the weight of rules, and then divides it with the belief of all rules represented
by the denominator. ωi on the left is the activation weight of the ith rule and ωi ∈ [0, 1],

L
∑

i=1
ωi = 1. When ωi = 0, it indicates that the rule is not activated; otherwise, the rule

is triggered.
All activated rules of BRB are fused by ER method to obtain a belief distribution set

for each conclusion, which can be expressed as [27]:

S(e) =
{(

Dm, β̂m
)
, m = 1, 2, . . . , M

}
(18)

where e is a set of input vectors representing the input values of each feature. S(e) rep‑
resents the belief set corresponding to each evaluation result obtained according to these
inputs. β̂m represents the belief degree relative to the evaluation result Dm, which is calcu‑
lated by the ER analytic algorithm. The formula is as follows [27]:

β̂m =

µ

[
L
∏
i=1

(
ωiβm,i + 1 − ωi

M
∑

m=1
βm,i

)
−

L
∏
i=1

(
1 − ωi

M
∑

m=1
βm,i

)]
1 − µ

[
L
∏
i=1

(1 − ωi)

] (19)

µ =

[
M

∑
m=1

L

∏
i=1

(
ωiβm,i + 1 − ωi

M

∑
m=1

βm,i

)
− (M − 1)

L

∏
i=1

(
1 − ωi

M

∑
m=1

βm,i

)]−1

(20)

whereωi is calculated from Formula (8) and represents the activationweight of the ith rule.
βm,i represents the belief of the mth evaluation result in the ith rule, which is specified by
the expert.

The obtained β̂m is multiplied by the numerical representation µ(Dm) of the evalua‑
tion result Dm, that is, the utility of the evaluation result Dm is obtained. After summing
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up each utility, the utility of a rule for all evaluation results is obtained, and the formula is
as follows [27]:

µ(S(e)) =
M

∑
m=1

µ(Dm)β̂m (21)

6.3. Optimization of BRB
For BRB, its operation precision can be expressed by mean square error (MSE), and

the formula is as follows [28]:

P =

L
∑

i=1
[µ(S(e)i − yi)]

2

L
(22)

where P represents the MSE. µ(S(e)i represents the utility of the input data e in BRB after
processing in the ith rule, and yi represents the actual result of the ith rule. L represents the
number of rules in BRB. Therefore, the optimization goal of BRB is to make the error be‑
tween the utility of each rule and the actual output value as small as possible. The objective
function for parameter optimization can be established as follows [28]:

min
{

MSE
(
δj,i, βk,i, θi

)}
s.t. 0 ≤ θi ≤ 1, i = 1, 2, . . . , L

0 ≤ δj,i ≤ 1, j = 1, 2, . . . , n
0 ≤ βk,i ≤ 1, k = 1, 2, . . . , m
M
∑

k=1
βk,i = 1

(23)

To solve the objective function shown in Formula (24), this paper uses the Projec‑
tion covariance matrix adaptive evolution strategy (P‑CMA‑ES) as the optimization algo‑
rithm, which can solve nonlinear, non‑convex real‑value continuous optimization prob‑
lems and is suitable for parameter optimization under various constraints of the objective
function [29].

6.4. BRB Fault Diagnosis Algorithm
With the text information as the source of expert knowledge, the NLP technology

is used to extract and transform rules. Then, the obtained belief rules are added to the
incomplete BRB, and the BRB construction is completed. This process, shown in Figure 8,
consists of the following steps.

Step 1: According to the research object, experts establish a custom thesaurus, in‑
cluding attribute vocabulary, attribute state vocabulary, failure vocabulary, failure level
vocabulary, and stop word list.

Step 2: According to the created custom thesaurus, using the NLP, the loaded text
information is processed by word segmentation, and the belief rule set rule_set({p:fp}, {f :fa})
in text form is obtained.

Step 3: Formulas (1)–(5) are used to format belief rules set rule_set({p:fp}, {f :fa}) in text
form and obtain BRB supplementary rule set R′.

Step 4: Experts construct the BRB and obtain an incomplete belief rule set R̃ in the
case of insufficient expert knowledge.

Step 5: According to R̃ ∩ R′ =∅ or R̃ ∩ R′ ̸= ∅, the union operation of R′ and R̃ is
carried out.

Step 6: If R ̸= R̃∪ R′ still exists after the union operation, the rest rules are constructed
by random assignment.

Step 7: The BRB is optimized by P‑CMA‑ES.
Step 8: Fault diagnosis is performed using the optimized BRB.
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7. Case Study
To verify the validity of the above methods, this paper took a certain asynchronous

motor as the research object. There are three reasons for choosing asynchronous motors as
the research object. (1) Asynchronous motor is widely used and is a typical representative
of an electromechanical device, which is relatively consistentwith the research background
of this article. (2) The design and manufacture of the asynchronous motor is mature, and
the qualitative data in the form of text related to it is relatively easy to collect, which can
provide data support for the experiment. (3) Many people have tried a variety of methods
for asynchronous motor fault diagnosis, but it is rare to apply qualitative data in the form
of text to the fault diagnosis process. The qualitative data is processed from the Chinese
fault diagnosis report of asynchronousmotor, and the belief rules of BRB are obtained after
extraction and conversion. It is assumed that the expert knowledge is insufficient and can
only construct an incomplete BRB. At this point, the obtained BRB supplementary rule can
be added to the incomplete BRB. Finally, the BRB that completes the supplement is used
for the fault diagnosis operation of the asynchronous motor.

7.1. Numerical Analysis
An asynchronousmotor is the key part of themechanical and electrical system, which

has the characteristics of large amounts, easy wear, and various faults [30–32]. The fault
diagnosis of its operation can be carried out by two attributes: motor angle and power
supply voltage [33]. The motor rotation angle is collected by a rotary encoder, and the
power supply voltage is obtained by a graphic recording voltmeter. A total of 72 samples
are obtained. Among them, there are four operating states of the motor, which include
23 data of power short circuit (D1), 27 data ofmotor stuck (D2), 10 data of power disconnect
(D3), and 12 data of normal (D4). It is shown in Figure 9.
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Figure 9. Data graph.

The blue circles in the Figure 9 represent the values of the sampled data. Take half of
each state data as the training set and the rest as the test set, as shown in Table 3.

Table 3. Experimental data.

Category D1 D2 D3 D4

Train 12 14 5 6
Test 11 13 5 6

When the quantitative data scale is large, data‑driven fault diagnosis methods can
be used [34]. However, the experimental data scale is small, and the data‑driven fault
diagnosis method is no longer applicable [35]. However, because BRB can solve small
sample data, it can be used for asynchronous motor fault diagnosis operations with fewer
experimental data.

According to the working mechanism of a three‑phase asynchronous motor and the
obtained data, the reference levels of the motor rotation angle and the power supply volt‑
age can be set as High (H), Low (L), and Normal (N). The reference values are shown in
Table 4.

Table 4. Attribute reference value.

Attribute H L N

motor rotation angle 285 247 270
power supply voltage 400 300 380

According to the above analysis, the custom vocabularies are established, including
attribute vocabulary X(x), attribute state vocabulary S(A), fault vocabulary F(D), and fault
level vocabulary L(p). The specific contents are listed in Table 5.

In the Chinese context, many organizations have introduced stop‑word lists. This
example uses the Chinese stopword table presented by theHarbin Institute of Technology,
which is rich in content and has 1893 stop words, which can meet the needs of most word
segmentation operations [36].

For Chinese text word segmentation, NLP word segmentation technology is needed
to complete the operation. At present, there are three main methods for Chinese word
segmentation: rule word segmentation, statistical word segmentation, and mixed word
segmentation (the combination of rules and statistics) [36–38]. Among them, regular word
segmentation is the earliest method, requiring a custom thesaurus to complete the word
segmentation operation. It is relatively simple and efficient, but it is difficult to process the
new words that do not appear in the custom thesaurus [36,37]. On the other hand, statis‑
tical word segmentation is a method that emerged after the rise of machine learning tech‑
nology. It divides statements by establishing a word segmentation model and then calcu‑
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lates the probability of the segmentation results by statistical methods (such as the hidden
Markov model, conditional random field, etc.) to obtain the word segmentation method
with the maximum probability. Although this word segmentation method can better deal
with the emergence of new words, the model needs training and is more dependent on
the corpus quality during training [38,39]. Mixed word segmentation is a combination of
regular word segmentation and statistical word segmentation. Therefore, it is better to ac‑
complish word segmentation through the self‑defined thesaurus and word segmentation
training model. Thus, the current mainstream Chinese word segmentation engines, such
as Jieba, Paoding, SnowNLP, etc., adopt the mixed word segmentation method [39]. In
this example, the Jieba word segmentation engine is selected as the word segmentation
tool to perform word segmentation operations on the fault diagnosis report of the asyn‑
chronous motor.

Table 5. Custom vocabularies.

Vocabulary Content

X(x) 电机转角,电源电压 (motor angle, power supply voltage)

S(A) (过大 (larger),高于 (higher)): H,
(过小 (too small),低于 (lower)): L, (正常 (normal)): N

F(D)
电机卡死 (motor stuck),电源短路 (power short circuit),

电源断路 (power break),正常 (normal)

L(p) (极可能 (most probable):0.9,非常可能 (very probable): 0.8,很可能 (likely): 0.7,
可能 (probable): 0.4,也许 (maybe): 0.2)

7.2. Rule Extraction and Transformation
First, the fault diagnosis report of the asynchronous motor is analyzed using the cus‑

tom thesaurus and the stop word table using the Jieba word segmentation engine. Then,
the rule set is obtained in Table 6.

Table 6. The rules set.

p f

电机转角大,电源电压高
(Larger motor angle, high power supply
voltage)

很可能电机卡死,可能电源短路
(It is possible that the motor is stuck or the
power supply is short‑circuited)

电机转角大 (Larger motor angle) 极可能电机卡死 (Most likely, the motor is
stuck)

The times of occurrence of each premise attribute in the fault diagnosis report are
counted. The results are listed in Table 7.

Table 7. The times of occurrences of each attribute.

Attribute Times

电机转角 (motor rotation angle) 38
电源电压 (power supply voltage) 73

Formula (1) is used to calculate the weight of each premise attribute as follows:

δ1 =
38

38 + 73
= 0.34 δ2 =

73
38 + 73

= 0.66

Then, according to the setting of the attribute state value in S(A), the attribute state
value of the two rules in the rule set is “HH” and “H”, respectively. Since rule 2 does not
state the voltage of the supply, it is considered to be in a normal state, and its state value
is “HN”. In the fault diagnosis report, statistics are made on the occurrence times of each
fault. The results are shown in Table 8 below:
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Table 8. The times of failures.

Fault Times

电机卡死 (motor is stuck) 9
电源短路 (power supply circuit) 12
电源断路 (power disconnect) 7

Formula (2) is used to calculate the frequency of each failure, which is as follows:

FT1 =
9

9 + 12 + 7
= 0.32 FT2 =

12
9 + 12 + 7

= 0.42 FT3 =
7

9 + 12 + 7
= 0.25

Sort the parts of the two rules in the rule set according to the value of FTk, and the
results are shown in Table 9:

Table 9. Sorted rule set.

p f

x1

电机转角大,电源电压高
(Larger motor angle, high power
supply voltage)

y1

可能电源短路,很可能电机卡死 (The
power supply may be
short‑circuited, and the motor may
be stuck)

x2 电机转角大 (Larger motor angle) y2
极可能电机卡死极可能电机卡死
(Most likely, the motor is stuck)

Then, according to the setting of various fault possibilities in L(p), Formula (3) is
used to calculate the belief degree of known conclusions in each rule, which can be written
as follows:

β1,1 =
0.4

0.4 + 0.9
= 0.3 β2,1 =

0.9
0.4 + 0.9

= 0.7 β1,2 =
0.9
0.9

= 1

For the conclusion without explanation, the belief can be set to 0.
Finally, according to Formulas (4) and (5), the weights of the two rules are 0.5 and

0.5, respectively. At this point, for the two rules extracted from the text, their transformed
contents are listed in Table 10.

Table 10. Values of rule parameters after transformation.

Attribute Values Attribute Weight The Belief Rule Weight

R1 HH 0.34, 0.66 0.3, 0.7, 0, 0 0.5
R2 NH 0.34, 0.66 0, 1, 0, 0 0.5

7.3. Added BRB Supplementary Rules
Based on the analysis of the premise properties and running state of the three‑phase

asynchronous motor, the ith rule of BRB is as follows:

Ri:IF
(

motor rotation angle is Ai
1

)
∩
(

power supply voltage is Ai
2

)
THEN{(

D1, β1,i
)
,
(

D2, β2,i
)
,
(

D3, β3,i
)
,
(

D4, β4,i
)}

with the rule weight θi and the attribute weight δ1,i, δ2,i

Considering the lack of expert knowledge and according to the different values of the
premise attribute of a three‑phase asynchronousmotor, BRB construction is carried out for
the four conclusions. The premise attribute value is 1, and the weight of each rule is 0.8.
Therefore, N/A indicates that it cannot be determined, as listed in Table 11.
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Table 11. Incomplete BRB.

Rule No.
Attributes Consequent

Rule Weight
Moto Rotation Angle Power Supply Voltage D1 D2 D3 D4

1 H H N/A N/A N/A N/A
2 H(1) L(1) 0.1 0.5 0.4 0 0.8
3 H N N/A N/A N/A N/A
4 N(1) H(1) 0.8 0.1 0.1 0 0.8
5 N(1) L(1) 0.3 0.1 0.6 0 0.8
6 N(1) N(1) 0 0 0 1 0.8
7 L H N/A N/A N/A N/A
8 L(1) L(1) 0.1 0 0.9 0 0.8
9 L N N/A N/A N/A N/A

As can be seen from Table 11, there are four rules which cannot be constructed by
expert knowledge. Among them, rules 1 and 3 are consistent with the BRB supplementary
rules shown in Table 9 and can be added directly to the BRB. For rules 7 and 9, there is no
corresponding supplementary rule, which needs to be set randomly. The conclusions in
the two rules are set to 0.25, the weight of the rule is set to 1, and the weight of the attribute
is set to 1. At this point, the situation of each rule in BRB is listed in Table 12.

Table 12. BRB for adding supplementary rules.

Rule No.
Attributes Consequent

Rule Weight
Moto Rotation Angle Power Supply Voltage D1 D2 D3 D4

1 H(0.34) H(0.66) 0.3 0.7 0 0 0.5
2 H(1) L(1) 0.1 0.5 0.4 0 0.8
3 H(0.34) N(0.66) 0 1 0 0 0.5
4 N(1) H(1) 0.8 0.1 0.1 0 0.8
5 N(1) L(1) 0.3 0.1 0.6 0 0.8
6 N(1) N(1) 0 0 0 1 0.8
7 L(1) H(1) 0.25 0.25 0.25 0.25 1
8 L(1) L(1) 0.1 0 0.9 0 0.8
9 L(1) N(1) 0.25 0.25 0.25 0.25 1

P‑CMA‑ES algorithm is used for optimization. The population size is set to 40, and
the number of evolutions is set to 300. The optimized BRB is listed in Table 13.

Table 13. Optimized BRB.

Rule No.
Attributes Consequent

Rule Weight
Moto Rotation Angle Power Supply Voltage D1 D2 D3 D4

1 H(0.8) H(1) 1 0 0 0 0.98
2 H(0.8) L(1) 0.9 0.1 0 0 0.60
3 H(0.8) N(1) 0 0 1 0 0.75
4 N(0.8) H(1) 0 0.9 0.1 0 0.58
5 N(0.8) L(1) 0 0 0 1 0.42
6 N(0.8) N(1) 0 0.1 0.8 0.1 0.60
7 L(0.8) H(1) 0 1 0 0 0.85
8 L(0.8) L(1) 0 0.2 0.7 0.1 0.65
9 L(0.8) N(1) 0.1 0 0.8 0.1 0.39

The optimized BRB is verified by using the data of the test set, and the fault diagnosis
results of the operation of the asynchronous motor are obtained, as shown in Figure 10.
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Figure 10. Fault diagnosis results.

It can be seen from Figure 10 that the optimized BRB can accurately distinguish the
four operating states, MSE = 0.0451. In the four kinds of status, the belief distribution of
each sample is shown in Figure 11. It can be found that the belief degree of many samples
in their actual status does not reach 1, which explains why the diagnosis results of the
samples in Figure 10 have some deviations from the actual results.

Figure 11. Belief distribution of diagnostic results of each sample.

7.4. Comparative Study
(1) Comparison with traditional BRB. In the traditional BRB building process, if there

is a rule that cannot be built, then the random assignment is used to specify parameters [5].
In this example, four rules cannot be constructed by expert knowledge. Therefore, the be‑
lief distribution of each of the four rules can be divided equally, and both attribute weight
and rule weight can be set to 0.25, as listed in Table 14.
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Table 14. Traditional BRB.

Rule No.
Attributes Consequent

Rule Weight
Moto Rotation Angle Power Supply Voltage D1 D2 D3 D4

1 H(1) H(1) 0.25 0.25 0.25 0.25 1
2 H(1) L(1) 0.1 0.5 0.4 0 0.8
3 H(1) N(1) 0.25 0.25 0.25 0.25 1
4 N(1) H(1) 0.8 0.1 0.1 0 0.8
5 N(1) L(1) 0.3 0.1 0.6 0 0.8
6 N(1) N(1) 0 0 0 1 0.8
7 L(1) H(1) 0.25 0.25 0.25 0.25 1
8 L(1) L(1) 0.1 0 0.9 0 0.8
9 L(1) N(1) 0.25 0.25 0.25 0.25 1

P‑CMA‑ES is used to optimize this BRB, and the population size and optimization
times are still set as 40 and 300. The optimized results are shown in Table 15.

Table 15. Optimized traditional BRB.

Rule No.
Attributes Consequent

Rule Weight
Moto Rotation Angle Power Supply Voltage D1 D2 D3 D4

1 H(1) H(0.9) 1 0 0 0 0.99
2 H(1) L(0.9) 0.4 0.2 0.1 0.3 0.01
3 H(1) N(0.9) 0 0 1 0 0.53
4 N(1) H(0.9) 0 1 0 0 0.22
5 N(1) L(0.9) 0 0 0 1 0.02
6 N(1) N(0.9) 0 0 0.8 0.2 0.01
7 L(1) H(0.9) 0 1 0 0 0.95
8 L(1) L(0.9) 0.3 0 0.6 0.1 0.05
9 L(1) N(0.9) 0.2 0.1 0.7 0 0.87

The optimized BRB is used to analyze the test set again, and the fault diagnosis result
of the fault operation of the three‑phase asynchronous motor is obtained, as shown in
Figure 12.

Figure 12. Fault diagnosis results of traditional BRB.



Mathematics 2023, 11, 1814 21 of 25

It can be seen from Figure 12 that there is a certain deviation between the traditional
BRB’s diagnosis of the running status and the actual status, and there is a certain gap be‑
tween the diagnosis result shown in Figure 10. This is because BRB is an expert system
whose initial parameter settings rely heavily on expert knowledge. In this case, four of
the nine rules cannot be constructed by expert knowledge, and nearly half of the rules
are constructed by random assignment, resulting in too little expert knowledge in BRB,
which inevitably affects the operation effect of BRB. From this point, the importance of the
method proposed in this paper to build the BRB when insufficient expert knowledge can
be demonstrated.

8. Discussion
In order to further verify the effectiveness and stability of the proposedmethod (BRB1),

this paper conducted a comparative study with traditional BRB (BRB2), BP (Back Propaga‑
tion neural network), and SVR (Support Regression Vector).

Use the training set data in Table 3 to train BRB2, BP, and SVR, respectively. After
that, the trained model is tested using the test set data in Table 3. Compare the test results
of BRB1, BRB2, BP, and SVR, as shown in Table 16 below.

Table 16. Comparison of test results of various methods.

BRB1 BRB2 BP SVR

MSE 0.0451 0.1461 0.0613 0.0974

From Table 16, it can be seen that the accuracy of BRB1 is the highest. Due to the
random setting of four belief rules, the accuracy of BRB2 is lower than that of BP and SVR.
However, the diagnostic processes of BP and SVR lack interpretability, which is a defect
of their own.

Following is cross‑validation to continue the comparative study of BRB1, BRB2, BP,
and SVR. The 72 samples are divided into 6 groups, with 12 samples in each group, as
shown in Table 17.

Table 17. Sample grouping.

Group D1 D2 D3 D4

1 4 5 1 2
2 4 4 2 2
3 4 4 2 2
4 4 4 2 2
5 4 5 1 2
6 3 5 2 2

Then, six groups of training sets and test sets are established according to the propor‑
tion of training sets and test sets of 50%, respectively, as shown in Table 18.

Table 18. A training set and test set.

Train Test

1, 2, 3 4, 5, 6
2, 3, 4 5, 6, 1
3, 4, 5 6, 1, 2
4, 5, 6 1, 2, 3
5, 6, 1 2, 3, 4

BRB1, BRB2, BP, and SVR are used for validation according to the six groups, and the
average MSE of the six validations is calculated. According to this process, the proportion
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of the training set and test set is adjusted to 40%:60% and 30%:70%. After that, six times of
verification are carried out, respectively, to calculate the average MSE. The results of the
above process are shown in Table 19.

Table 19. Comparison results of different methods.

Training Set Ratio BRB1 BRB2 BP SVR

50% 0.0671 0.1833 0.0877 0.1025
40% 0.0839 0.1969 0.1731 0.2421
30% 0.1033 0.2010 0.4112 0.5633
average 0.0848 0.1937 0.2273 0.3026

It can be seen from Table 19 that the average MSE of the method proposed in this
paper (BRB1) is lower than that of the other three models in the case of three different
proportions of training sets. Among them, the average MSE of BRB2 is higher than that
of BRB1 due to the random set of four rules in traditional BRB (BRB2). BP and SVR have
commonly used machine learning algorithms. Since they need the support of large data
samples, their MSE is higher than BRB1, with only 72 data samples. In addition, the BRB1
also shows high stability, as shown in Figure 13.

Figure 13. Comparison of stability of the four models.

As shown in Figure 13, the rectangular box of BRB1 is the narrowest, and the median
line is basically in themiddle, indicating that theMSEof each diagnosis result in BRB1 is rel‑
atively concentrated and stable. SVR is alsomore stable, but it is less accurate. In summary,
the above studies demonstrate the effectiveness and stability of the proposed method.

The above comparative study shows that it is feasible and efficient to extract belief
rules from qualitative data in text form and apply them to the construction of BRB. This
indicates that this method plays an important role in improving data utilization and im‑
proving BRB modeling accuracy. Moreover, by processing qualitative data in text form,
the construction of BRB can become faster and more convenient. In the future, the role of
experts may shift from rule‑making to rule review, ultimately making it possible to build
BRB automatically.

NLP is a specialized field of study. The method proposed in this paper is the first
combination of NLP and BRB and does not involve more complex functional applications
of NLP, such as sentiment analysis functions. If more NLP functions are added to the
method, the processing ability of qualitative data in text form will be further enhanced,
which will provide more powerful support for the construction of BRB.
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9. Conclusions
Aiming at the problem that the fault diagnosis method for electromechanical devices

based on belief rule base (BRB) cannot use qualitative data in the form of text, a text‑
oriented fault diagnosis method for electromechanical devices based on BRB is proposed
in this paper. Specifically, the key fault information conversion algorithm based on NLP
is used to obtain belief rules from qualitative data in text form. By using the belief rule
supplement algorithm, the obtained belief rules are added to the BRB to complete the con‑
struction of the BRB. Adding qualitative data in the form of text into the process of BRB
construction is an innovation to the method of BRB construction. It not only brings the
qualitative data in text form into the data range that BRB can process but also improves
the modeling accuracy of BRB. Compared with the previous method of improving the ac‑
curacy of BRB modeling by updating the optimization algorithm, the proposed method is
more intuitive and efficient. Through a case study, it is verified that the proposed method
can extract belief rules from the fault diagnosis report of the induction motor and apply
these rules to the construction of BRB. The case shows that the MES of fault diagnosis re‑
sults is 0.0451. In subsequent comparative studies, theMSEof traditional BRB, BP, and SVR
are 0.1461, 0.0613, and 0.0974, respectively, which are all lower than the method proposed
in this paper. This indicates that the proposed method can be more effectively applied to
the fault diagnosis of electromechanical devices and provides a new choice for fault diag‑
nosis in practice.

Although the above methods have achieved good results, their ability to deal with
more complex text information still has some limitations. It can be considered to add a
semantic analysis function in the subsequent research to solve the problem. In addition, the
proposedmethod can only dealwithChinese, and how to extract belief rules for qualitative
data in other language text forms, such as English, has not been studied and analyzed. This
is the direction that should be further studied in the future.
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