
Citation: Fan, C.; Jia, P.; Lin, M.;

Wei, L.; Guo, P.; Zhao, X.; Liu, X.

Cloud-Assisted Private Set

Intersection via Multi-Key Fully

Homomorphic Encryption.

Mathematics 2023, 11, 1784.

https://doi.org/10.3390/

math11081784

Academic Editor: Antanas Cenys

Received: 21 March 2023

Revised: 4 April 2023

Accepted: 4 April 2023

Published: 8 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Cloud-Assisted Private Set Intersection via Multi-Key Fully
Homomorphic Encryption
Cunqun Fan 1,2, Peiheng Jia 3, Manyun Lin 1,2, Lan Wei 1,2,∗, Peng Guo 1,2, Xiangang Zhao 1,2 and Ximeng Liu 4

1 Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite
Meteorological Center (National Center for Space Weather), China Meteorological Administration,
Beijing 100081, China

2 Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing 100081, China
3 School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
4 College of Computer and Data Science, Fuzhou University, Fuzhou 350108, China
* Correspondence: weilan@cma.cn

Abstract: With the development of cloud computing and big data, secure multi-party computation,
which can collaborate with multiple parties to deal with a large number of transactions, plays an
important role in protecting privacy. Private set intersection (PSI), a form of multi-party secure
computation, is a formidable cryptographic technique that allows the sender and the receiver to
calculate their intersection and not reveal any more information. As the data volume increases and
more application scenarios emerge, PSI with multiple participants is increasingly needed. Homo-
morphic encryption is an encryption algorithm designed to perform a mathematical-style operation
on encrypted data, where the decryption result of the operation is the same as the result calculated
using unencrypted data. In this paper, we present a cloud-assisted multi-key PSI (CMPSI) system
that uses fully homomorphic encryption over the torus (TFHE) encryption scheme to encrypt the
data of the participants and that uses a cloud server to assist the computation. Specifically, we design
some TFHE-based secure computation protocols and build a single cloud server-based private set
intersection system that can support multiple users. Moreover, security analysis and performance
evaluation show that our system is feasible. The scheme has a smaller communication overhead
compared to existing schemes.

Keywords: private set intersection; homomorphic encryption; multi-key TFHE; cloud computing;
privacy protection

MSC: 68U99; 68U99; 68T09; 68Q06

1. Introduction

With the rapid growth of data in the Internet era, the demand for data storage and
computing capacity in various fields far exceeds the capacity of their own devices. To solve
this problem, cloud computing has been proposed. Cloud computing is generally defined
as an internet-based computing method. In this way, the shared software and hardware
information and resources can be provided to various terminals and other devices of the
computer as required. Cloud computing technology can transmit various information to
the Internet and store and calculate data, and users can view the calculation results and
data information. However, current security issues in the context of cloud computing are
more prominent [1]. Data security issues in cloud computing mainly include storage data
security, computing data security, and transmission data security. When users store data
on the cloud server, the cloud server will obtain the users’ data first, but the abnormal
use of malicious users can also cause a risk of data leakage. In the process of cloud server
computing, the cloud server will know the calculation results and additional data. This
information that should only be known by users also has a risk of leakage. In addition,

Mathematics 2023, 11, 1784. https://doi.org/10.3390/math11081784 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11081784
https://doi.org/10.3390/math11081784
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4238-3295
https://doi.org/10.3390/math11081784
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11081784?type=check_update&version=1


Mathematics 2023, 11, 1784 2 of 20

data theft can easily occur during data transmission, and user data can show problems of
theft and tampering [2].

Private set intersection (PSI), as an interactive encryption protocol, calculates the
intersection of two data owners’ data and returns it to one of them. We generally refer to
the party receiving the data as the receiver and the party receiving nothing as the sender. It
is important and necessary to protect the privacy of the set in computing, especially when
the information in the set is important private information such as the customer transaction
information of a bank or the address book of a user. With the concerted efforts of many
researchers, PSI technology has developed rapidly, and more and more efficient solutions
have been proposed [3–15]. After several years of development, PSI technology has been
applied to the fields of internet of vehicles [16], profile matching [17], and private contact
search [18]. In the current situation where the data volume is large and scattered in the
hands of different participants, PSI technology can well balance the relationship between
privacy and information sharing. Leveraging the storage and computing power of cloud
servers allows PSI protocols to compute larger datasets, but current cloud-assisted PSI
schemes suffer from information leakage [19] or large communication overhead [20].

Fully homomorphic encryption (FHE) refers to the computation of data that has been
homomorphically encrypted, and the computed decryption result is the same as that
obtained by the same computation for unencrypted data. The concept of FHE has been
proposed as early as the late 1970s, but it has only started to develop rapidly in the last
two decades. The development of fully homomorphic encryption is generally divided
into three stages. In 2009, the first generation of fully homomorphic encryption started
to develop, and Gentry constructed the first fully homomorphic encryption scheme [21].
The scheme first constructs a somewhat homomorphic encryption (SHE) scheme that can
homomorphically compute circuits of a certain depth, then compresses and decrypts the
circuits and performs bootstrapping operations in an orderly manner, and finally obtains a
scheme that can homomorphically compute arbitrary circuits. The second generation of
fully homomorphic encryption schemes arose in 2011 when Brakerski and Vaikuntanathan
implemented FHE for the first time under the LWE assumption using linearization and
modulo conversion [22] and implemented FHE under the RLWE assumption [23]. These
schemes do not require compression and decryption circuits, and the security and efficiency
are greatly improved. In 2013, the third generation of fully homomorphic encryption
schemes was born, and Gentry et al. for the first time designed a fully homomorphic
encryption scheme, Gentry–Sahai–Waters (GSW), that does not require the computation of
a key using the approximate eigenvector technique [24].

There are two broad categories of fully homomorphic algorithms, the BGV [25] scheme
proposed by Professor Brakerski of Stanford University, Research Fellow Gentry of IBM,
and Professor Vaikuntanathan of the University of Toronto, and the GSW [24] scheme pro-
posed by Gentry of IBM, Sahai of the University of California and Waters of the University
of Austin. Fully homomorphic encryption over toru (TFHE) [26] is an improvement of
the GSW scheme with higher efficiency. TFHE can accomplish fast comparisons, supports
arbitrary boolean circuits, and allows fast bootstrapping to reduce the noise due to cipher-
text computation. In previous studies, the BGV scheme has been used to focus on the
unbalanced privacy aggregation scenario [27–29]. Unlike previous works, this paper uses
the TFHE encryption scheme for the first time to implement privacy-seeking protocol based
on cloud computing. At a high level, our contributions can be summarized as follows:

• We have designed a series of security sub-protocols for the MKTFHE cryptosystem,
including some basic circuit gate operations and security comparison protocols.

• We have built a cloud-assisted multi-key private set intersection (CMPSI) system
based on a single cloud server. Our system can prevent collusion attacks between
servers and participants.

• We strictly prove the security of the proposed CMPSI system under the semi-honest
model.



Mathematics 2023, 11, 1784 3 of 20

• We have conducted extensive experimental evaluation on the performance of the
scheme, which proves that our scheme has greatly reduced the communication cost of
the participants.

The rest of the paper is organized as follows. In Section 2, we describe the related work
of private set intersection. In Section 3, we provide the preliminaries. Section 4 details the
system model, threat model, and design goals. Section 5 elaborates on the cryptographic
protocol for the private set intersection. Section 6 analyzes the security of our proposed
protocols. Section 7 conducts a series of experimental comparisons. Finally, Section 8
concludes this paper.

2. Related Work

PSI was first proposed by Freedman et al. [30], who transformed the element compar-
ison problem into the polynomial root problem and realized PSI through multiplicative
homomorphic encryption. However, when the polynomial order is large, it will lead
to a costly exponential computation of the homomorphic encryption. In recent years,
many researchers have intensively studied the PSI problem, and many PSI protocols
with high efficiency and low communication overhead have emerged. PSI computing
protocols are mainly divided into two categories according to whether there is a third
party, namely, the traditional PSI computing protocol based on public key encryption,
obfuscation circuit [31–33] and inadvertent transmission [34] technology and the cloud-
assisted PSI computing protocol that uses cloud servers to complete computing.

Traditional PSI computing protocols rely on a series of basic cryptography technologies
for computing. These basic cryptography technologies are mainly divided into PSI based
on public key encryption mechanism, PSI based on obfuscation circuit, and PSI based on
inadvertent transmission. The PSI calculation protocol proposed by Freedman et al. [34] is
based on the public key encryption mechanism. This scheme represents the elements in the
set as the roots of polynomials and uses polynomials to calculate the intersection. However,
the cost of calculation will become large with the increase in the order of polynomials.
Hazay et al. also improved the article [30] and adopted the bit commitment protocol to
prevent the scenario of inconsistent input data on the server [35], so that the PSI protocol
can be applied to the protocol of malicious adversaries. In 2012, Huang et al. first proposed
PSI computing protocols based on obfuscated circuits [36], which are Bitwise-AND (BWA),
Pairwise-Comparisons (PWC), and Sort-Compare-Suffle (SCS) protocols. In 2013, the PSI
protocol proposed by Dong et al. [37] used OT technology for the first time. The author
used OT technology to ensure the security of the protocol. Pinkas et al. [38] proposed
a new PSI protocol based on Hash and random OT protocols and optimized the SCS
protocol in [36]. The computational efficiency of the protocol was greatly improved, and
the complexity of the algorithm was also reduced. Based on the article [34], Freedman et al.
further optimized and improved their scheme in 2014 [39]. Specifically, the scheme uses
different hash functions for the client and server when mapping the set elements. In 2018,
Pinkas et al. realized PSI based on unintentional pseudorandom function [40] through the
circuit. In 2020, Pinkas et al. [12] constructed a PSI protocol with malicious security based
on the protocols [41] in the literature. The traditional PSI does not need the assistance of a
third party, but in the application, the participants are generally resource-constrained users,
who are insufficient in providing sufficient data storage and computing power.

With the development of cloud computing, the PSI protocol based on cloud servers
began to develop. The cloud-assisted PSI scheme provides a new optimization method
for the existing PSI scheme by the excellent storage and computing capabilities of the
cloud server. The cloud-assisted PSI uses the third-party cloud computing framework to
complete the calculation and uses the storage and computing resources of the cloud server
to enable the protocol to calculate large-scale datasets. Kerschbaum [42] implemented the
anti-collusion outsourcing PSI protocol through two single functions, but the method has
the risk of brute force cracking. Then, Kerschbaum [43] proposed another kind of cloud-
assisted PSI using bloom filter and homomorphic encryption. Liu et al. [19] proposed a



Mathematics 2023, 11, 1784 4 of 20

relatively simple PSI protocol, but it can disclose the cardinality of set intersection. Abadi
et al. [44] implemented the PSI protocol using homomorphic encryption and polynomial
interpolation in 2015. This protocol outsources the collection of clients to a third-party server
to perform infinite PSI operations. Based on this work, a verifiable cloud outsourcing PSI
protocol [45] is proposed to ensure the privacy and integrity of data. Ali et al. [46] proposed
an attribute-based private set intersection scheme. The cloud server can calculate the
corresponding access rights of the participants. The PSI protocol based on the cloud server
can use the computing and storage capabilities of the cloud server, but it has produced
the privacy disclosure problem of data outsourcing, and the excessive cost of users in the
operation of the protocol is another problem that needs to be solved. Table 1 shows the
comparison between our scheme and the existing scheme.

Table 1. Comparison with existing schemes.

CMPSI [46] [47] [48] [19] [42] [43]

The year 2023 2020 2019 2014 2014 2012 2012
Private against the CSP 52 52 52 52 56 52 52
PSI computation authorization 52 52 52 52 56 52 52
Supports multiple user queries 52 52 52 52 56 56 56
Participants can go offline after uploading data 52 52 56 56 56 56 56
CSP can collude with participants 52 56 56 56 56 56 56

3. Preliminaries

In this section, we first introduce the concept of private set intersection and have an
example to better understand the concept. Then, we introduce the cryptosystem MKTFHE
used in our system and present the algorithm as an example of a NAND gate. Table 2 lists
some of the symbols used in this paper.

Table 2. Notation used.

Notations Definition

λ Security parameter
Z Integer set
T (R)LWE over the real torus
si Private key of participant i
(PKi, BKi, KSi) Public key set of participant i
[[x]]si Encrypted data x under si
MKHENAND NAND gate in multi-key TFHE
CMPSI Cloud-assisted multi-party private set intersection

3.1. Private Set Intersection

PSI allows two parties holding sets to compare encrypted versions of these sets to
compute the intersection. Let the two parties holding the sets be sender X and receiver Y.
The sender and receiver hold datasets of size Nx and Ny respectively, each with a number
of bits σ. In a basic PSI protocol, receiver Y encrypts its own dataset and sends it to sender
X. For each of Y’s data, sender X calculates the homomorphic product of the difference
with all of its own terms and sends the result to receiver Y. Y decrypts the result of X’s
calculation and obtains the final intersection information. The result of the calculation
is sent to the receiver Y. Y decrypts the result of X’s computation and obtains the final
intersection information. The basic PSI protocol is shown in Figure 1.



Mathematics 2023, 11, 1784 5 of 20

Figure 1. Basic PSI protocol.

In the scheme of this paper, the storage of data and the computation are performed
on the cloud server. We construct a new PSI scheme using fully homomorphic encryption.
Both the sender and the receiver encrypt the data locally and then send it to the cloud server.
Suppose that the sender has encrypted data a1, . . . , aNX and the receiver has encrypted
data b1, . . . , bNY . Both parties send their encrypted data to the cloud server. On the cloud
server, for each data bi of the receiver, ci = ∏0<j≤Nx

(
bi − aj

)
is computed. ci is a Boolean

value that represents whether the data bi of the receiver are in the sender X or not. Figure 2
shows the handshake model of this scheme.

Figure 2. Handshake model.

3.2. MKTFHE Cryptosystem

Homomorphic encryption is the computation of the encrypted data to obtain the
encrypted computational result, and the result of the decryption of the obtained encryption
result is the same as the result obtained by performing the same operations on the unen-
crypted plaintext. Fully homomorphic encryption [24,25] is a homomorphic encryption that
can satisfy both additive and multiplicative operations. Fully homomorphic encryption
over the toru (TFHE) [26] is a type of fully homomorphic encryption that can accomplish
fast comparisons and support operations on arbitrary Boolean circuits.TFHE differs from
other FHE schemes in that it can be fast bootstrapping to reduce noise during ciphertext
operations. In this paper, we use multi-key TFHE [49] to meet the needs of our system.
MKTFHE is a multi-key version of TFHE that can compute Boolean circuits on ciphertexts
encrypted under different keys, and then performs bootstrapped to refresh the noise as



Mathematics 2023, 11, 1784 6 of 20

each binary gate is computed. However, the MKTFHE library only implements multi-key
homomorphic NAND gates, which cannot meet the needs of our system. The following
describes the five components of MKTFHE and gives an example of the homomorphic
computation process with a multi-key homomorphic NAND gate.

1. Setup(1λ): Takes as input the security parameter λ and returns the public parameter
ppMKTFHE.

(a) Run LWE.Setup(1λ) to generate the LWE parameter ppLWE = (n, χ, α, B′, d′).
In the LWE parameters, n is the dimension of the LWE secret, χ is the key
distribution of the LWE secret, α is the error rate, B′ is the decomposition basis,
and d′ is the dimension of the key transformation gadget vector. We use the
key-switching gadget vector g′ =

(
B′−1, . . . , B′−d′

)
.

(b) Run RLWE.Setup(1λ) to generate the RLWE parameter ppRLWE = (N, ψ, B, d, a).
We define N as the dimension of RLWE secret (a power of 2), ψ as the distri-
bution of RLWE secret over R and with error rate α, B ≥ 2 as an integer base,
decomposition dimension d, and gadget vector g =

(
B−1, . . . , B−d

)
. a is a

uniformly distributed sample over distribution Td.
(c) Returns the generated public parameter ppMKTFHE =

(
ppLWE, ppRLWE).

2. KeyGen(ppMKTFHE): Each participant generates its keys independently. Take the
public parameter ppMKTFHE as input and return the key si and the public key set
(PKi, BKi, KSi).

(a) Generate the LWE secret si ← LWE.KeyGen(). This step is only for sampling
the key from distribution χ.

(b) Run (zi, bi)← RLWE.KeyGen(), and set the public key to PKi = bi. Sample
z from distribution ψ, and then, set z = (1, z). Take an error vector e from
Dd

α and calculate the public key b = −z · a + e(mod1). For zi = z1,0 + zi,1X +
. . . + zi,N−1XN−1, note z∗i = (zi,0,−zi,N−1, . . . , zi,1) ∈ ZN .

(c) For j ∈ [n], generate
(
di,j, Fi,j

)
← RLWE.UniEnc

(
si,j, zi

)
, this step is to encrypt

the LWE secret using the RLWE secret. In addition, set the bootstrap key to
BKi =

{(
di,j, Fi,j

)}
j∈[n]. Taking a random value r from ψ, one can think of d

as the LWE key s under the encryption of the random value r and F as the
random value r under the encryption of the RLWE key z.

(d) Generate a key conversion key KS← LWE.KSGen
(
z∗i , si

)
, capable of convert-

ing an LWE ciphertext corresponding to t ∈ ZN into another LWE ciphertext
for the same message under s ∈ ZN encryption.

(e) Returns key si, a triple (PKi, BKi, KSi) of public keys, public key, bootstrap
key and key transformation key, respectively.

3. Enc(m): The data m to be encrypted are taken as input, and return TLWE ciphertext
[[m]] = (b, a) ∈ Tn+1 satisfies b + 〈a, s〉 ≈ 1

4 m(mod1).

(a) Using standard LWE encryption, uniformly sample from Tn to obtain a as the
mask and sample from Dα to obtain e as the error.

(b) Output ciphertext [[m]] = (b, a) ∈ Tn+1, where b + 〈a, s〉 ≈ 1
4 m(mod1).

4. Dec([[m]], {si}i∈[k]): Takes as input the TLWE ciphertext [[m]] = (b, a1, . . . , ak) ∈ Tkn+1

with a set of keys (s1, . . . , sk) and returns the decrypted message m which minimizes
| b + ∑k

i=1〈ai, si〉 − 1
4 m |.

(a) Input [[m]] = (b, a1, . . . , ak) ∈ Tkn+1 with a set of keys (s1, . . . , sk).
(b) Returns the bit m ∈ {0, 1} that minimizes | b + ∑k

i=1〈ai, si〉 − 1
4 m |.

5. NAND([[m1]], [[m2]], {(PKi, BKi, KSi)}i∈[k]): Takes two TLWE ciphertexts and the
public key as input. Expand [[m1]] ∈ Tk1n+1 and [[m2]] ∈ Tk1n+1 to [[m′1]], [[m

′
2]] ∈ Tkn+1

and evaluate the gate homomorphically on encrypted bits. Then the algorithm evalu-



Mathematics 2023, 11, 1784 7 of 20

ates the decryption circuit of the TLWE ciphertext and execute the multi-key switching
algorithm. Finally, returning the TLWE ciphertext of the same message under joint
key encryption.

(a) Given two ciphertexts [[m1]] ∈ Tk1n+1 and [[m2]] ∈ Tk1n+1, let k be the number of
participants, associated with either [[m1]] or [[m2]]. For a public key set, PKi = bi
represents the public key, BKi =

{(
di,j, Fi,j

)}
j∈[n] represents the bootstrap key,

and KSi represents the key transformation key of the j-th participant. Expand
ciphertext [[m1]] and [[m2]] to [[m1]]

′, [[m2]]
′ ∈ Tkn+1, i.e., the same message under

joint key s = (s1, . . . , sk) ∈ Zkn encryption. The process of expansion is the
process of rearrangement, and 0 is put into the empty slot. Using the expanded
ciphertext to perform the calculations. Only the calculation of NAND gate is
supported in the document.

(b) Use the Mux gate to implement the main calculation, for i ∈ [k], let ãi =(
ãi,j
)

j∈[n]. For i ∈ [k] and j ∈ [n], recursively compute

[[c]] ← [[c]] + RLWE.Prod
(
[[c]] · X ãij − [[c]],

(
di,j, Fi,j

)
, {bl}l∈[k]

)
, where

RLWE.Prod
(
[[c]], (di, Fi),

{
bj
}

j∈[k]

)
is a hybrid product algorithm that multi-

plies a single encrypted ciphertext (di, Fi) by a multi-key RLWE ciphertext [[c]].
(c) For [[c]] = (c0, c1, . . . , ck) ∈ Tk+1, let b∗ be a constant term of c0 and for i ∈ [k],

let a∗i be a vector of coefficients of ci. Compute the LWE ciphertext [[m]]∗ =(
b∗, a∗1 , . . . , a∗k

)
∈ Tkn+1. Finally a multi-key key conversion algorithm is exe-

cuted and returns the ciphertext [[m]]′′ ← LWE.MKSwitch
(
[[m]]∗, {KSi}i∈[k]

)
,

where LWE.MKSwitch
(
[[m]]∗, {KSi}i∈[k]

)
inputs the expanded ciphertext

and a series of key conversion keys, returning the ciphertext of the same
message under joint key encryption.

4. System Model and Design Goal
4.1. Problem Formulation

Suppose the receiver Y has a dataset TY, and Y wants to know their intersection with
other data owners but does not want to expose more information. The data owners encrypt
their datasets separately and send them to the cloud server. The cloud server can store this
encrypted information but cannot decrypt it. Data receiver Y encrypts its data and uploads
it to the cloud server, which executes privacy intersection and obtains the intersection
information of dataset TY with other datasets. The cloud server computes and returns
the cryptographic result to receiver Y. Y decrypts the intersection result and obtains the
intersection information. Note that each data owner including the data receiver has their
separate key to encrypt the data.

4.2. System Model

In Section 3.1, we mention the flow of the basic PSI protocol, in which the sender
interacts directly with the receiver for information. Unlike the basic PSI protocol, our
system consists of four entities, which are Parameter Generation Center (PGC), Cloud
Server (CS), Data Receiver (DR), and Data Owners (DOs). DO owns its own dataset and
is able to let other participants obtain information about the intersection of the dataset
but does not want to expose more information. DR wants to query the intersection of
its own dataset with the dataset of other participants and does not want to expose more
information. Specifically, PGC is responsible for generating public parameters in the system
and sending them to other entities. CS can store a large amount of data and has excellent
computing resources. DR needs to query the intersection. DOs provide their encrypted
data to CS. Note that in our system, the data owners can be multiple participants. The
general model of our private set intersection system is shown in Figure 3.



Mathematics 2023, 11, 1784 8 of 20

Figure 3. System model.

1. PGC: PGC generates public parameters for our system and sends them to each entity
involved in the computation (See 1©).

2. CS: CS has huge storage resources to store the encrypted data of the participating
parties. At the same time, CS has large enough computing power to satisfy the
intersection of the datasets of the participating parties.

3. DR: DR generates its own private key and public key set using public parameters,
encrypts its own data using the private key and sends it to CS (See 3©), and receives
the computation results sent by CS (See 4©).

4. DOs: Each DO generates its own private key and public key set using public parame-
ters, encrypts its own dataset using the private key, and sends it to CS (See 2©).

Please note that in our system, the participants do not need to be online all the time.
Since CS can store the encrypted data, the DOs can go offline after they send their encrypted
data to CS. Similarly, DR can be offline after sending data until CS returns the calculation
results. In our scheme, DO can be used as DR for frequent item set queries, and the DR can
query the intersection information with multiple DOs to achieve multi-user query.

4.3. Threat Model

In our system model, the participating entities are curious but honest individuals.
Curious means that the server and the participants try to use existing resources and data
to obtain the data of other participants and are curious about the data of other entities;
honest means that the server and the participants do not falsify the experimental data and
follow the developed protocols to complete the computation. A is the active adversary we
introduce to obtain the real data from other entities. Specifically, A desires to obtain the
real data of DOs and DR. We assume that adversary A has the following capabilities.

1. A can obtain all the data that passes through the public channel.
2. A may collude with CS. Try to obtain the original values of the encrypted data

uploaded by DOs and DR.
3. Amay be a DR used to obtain its dataset information, the cryptographic query results

returned by the CS, and the encryption and decryption capabilities of the DR.
4. A may be a DO used to obtain its dataset information and encryption and decryption

capabilities.



Mathematics 2023, 11, 1784 9 of 20

Note that in our threat model, the attacking adversary A can be a DR. Since the joint
key of multiple participants must be used in decryption to decrypt the computed result of
CS, the final decryption result is also not available when A has only the key of DR. Unlike
existing schemes when the attacking adversaryA is a CSP,A can collude with DR or DO. In
our scheme, decryption requires the keys of all participants to perform; thus, CSP colluding
with some DR or DO still cannot decrypt the computation results.

4.4. Design Goal

According to the system model and threat model proposed above, the design objectives
of this paper are as follows.

1. Data privacy: the original data of DR and the query intersection result as well as the
original dataset of DOs cannot be revealed to adversary A.

2. Calculation accuracy: The accuracy of the calculation results of the system cannot be
reduced compared with other methods.

3. Low overhead: The time and upload overhead of the calculation cannot be too large
compared with other methods.

4. Offline participant: The participant should be able to go offline after encrypting the
data and uploading it to ensure the scalability of the system.

5. Cloud-Assisted Multi-Party Private Set Intersection

In this section, we first introduce the initialization of the system. Then, we design the
secure computing sub-protocol based on MKTFHE. Finally, we describe our private set
intersection scheme.

5.1. System Initialization

Our system can satisfy the DR to query the information of its intersection with multiple
participants, and we assume that there is a DR and n DOs. First, PGC generates public
parameters for each participant and the cloud server and sends the public parameters to
CS, DR, and n DOs. Then, each entity that receives the public parameters generates its own
public key set (PK, BK, KS) and private key s based on the public parameters.

5.2. Security Protocol Design

In this paper, four secure computation protocols are proposed to help complete the
privacy-seeking intersection, which is a secure AND gate computation protocol (SCAND),
secure OR gate computation protocol (SCOR), secure XNOR computation protocol (SCXNOR),
and secure comparison protocol (SCP).

5.2.1. Secure AND Gate Computation Protocol

We implement the AND operation between two MKLwe samples. We implement
the addition between multi-key Lwe samples (MKlweAddTo) to implement this secure
computation protocol. Suppose CS has two MKLwe samples ca and cb: initialize an
intermediate sample temp, add ca and cb using MKlweAddTo twice, and finally return
the result to res (Algorithm 1).

Algorithm 1 Secure AND gate computation protocol (SCAND).

Input: MKLwe Sample ca, cb.
Output: MKLwe Sample res.
1: CS initializes temp using the public parameter pp to hold the intermediate variable

LWE sample.
2: AndConst = modSwitchToTorus32(−1, 8)
3: temp← MKlweNoiselessTrivial(AndConst, pp)
4: temp← MKlweAddTo(temp + ca)
5: res← MKlweAddTo(temp + cb)



Mathematics 2023, 11, 1784 10 of 20

5.2.2. Secure OR Gate Computation Protocol

We implement the OR operation between two MKLwe samples. As with SCAND
above, we use the addition MKlweAddTo between multi-key Lwe samples to implement
this secure computation protocol. Suppose CS has two MKLwe samples ca and cb, initialize
an intermediate sample temp, add ca and cb using MKlweAddTo twice respectively, and
finally, return the result to res to obtain the result of the OR gate operation between ca and
cb (Algorithm 2).

Algorithm 2 Secure OR gate computation protocol (SCOR).

Input: MKLwe Sample ca, cb.
Output: MKLwe Sample res.
1: CS initializes temp using the public parameter pp to hold the intermediate variable

LWE sample.
2: ORConst = modSwitchToTorus32(1, 8)
3: temp← MKlweNoiselessTrivial(ORConst, pp)
4: temp← MKlweAddTo(temp + ca)
5: res← MKlweAddTo(temp + cb)

5.2.3. Secure XNOR Gate Computation Protocol

We implement the XNOR operation between two MKLwe samples. We implement
this secure computation protocol using the addition and multiplication of multi-key Lwe
samples MKlweAddMulTo. Suppose CS has two MKLwe samples ca and cb: initialize an
intermediate sample temp, add 2 ∗ ca and 2 ∗ cb using MKlweAddMulTo twice, return the
result to temp to obtain the XOR gate operation result of ca and cb, and use the multi-key
homomorphic NOT gate SCNOT once to obtain the XNOR gate operation result. Note
that in the cryptographic scheme we use, MKTFHE, the computation of the NOT gate
does not require bootstrapping operations; thus, the computation overhead is very small
(Algorithm 3).

Algorithm 3 Secure XNOR gate computation protocol (SCXNOR).

Input: MKLwe Sample ca, cb.
Output: MKLwe Sample res.
1: CS initializes temp using the public parameter pp to hold the intermediate variable

LWE sample.
2: XNORConst = modSwitchToTorus32(1, 8)
3: temp← MKlweNoiselessTrivial(XNORConst, pp)
4: temp← MKlweAddMulTo(temp + 2 ∗ ca)
5: temp← MKlweAddMulTo(temp + 2 ∗ cb)
6: res← SCNOT(temp)

5.2.4. Secure Comparison Protocol

SCP is important in our protocol and is used to determine whether the two input
ciphertext vectors are equal or not. Suppose DR has its own encrypted data [[x]]sDR

=
([[x1]]sDR , . . . , [[xn]]sDR) sent to CS and DO has its own encrypted data [[y]]sDO

= ([[y1]]sDO , . . . ,
[[yn]]sDO) also sent to CS, where sDR and sDO are the private keys of DR and DO, respec-
tively. For each of [[x]]sDR

= ([[x1]]sDR , . . . , [[xn]]sDR) and [[y]]sDO
= ([[y1]]sDO , . . . , [[yn]]sDO),

the protocol performs SCXNOR and SCAND protocols to finally obtain a ciphertext with a
Boolean value (Algorithm 4).



Mathematics 2023, 11, 1784 11 of 20

Algorithm 4 Secure Comparison Protocol (SCP).

Input: Encrypted data vectors [[x]]sDR
= ([[x1]]sDR , . . . , [[xn]]sDR),[[y]]sDO

=

([[y1]]sDO , . . . , [[yn]]sDO).
Output: Encrypted Boolean values [[z]]si .
1: CS initializes the intermediate data vector [[v]] = ([[v1]], . . . , [[vn]]) using the public

parameter pp.
2: for k = 0 to n− 1 do
3: [[vk]]si ← [[xk]]sDR XNOR[[yk]]sDO
4: [[z]]si ← [[vk]]si AND[[z]]si
5: end for

5.3. Private Set Intersection

CMPSI is performed by CS, DR, and DOs working together. Now DR wants to ob-
tain the intersection information of their dataset and DOs dataset. First DOs encrypt their
dataset with their own private key sDO, send the encrypted dataset
ADO =

{
[[a1]]sDO

, [[a2]]sDO
, . . . , [[am]]sDO

}
with the public key set (PKsDO , BKsDO , KSsDO)

to CS, and then they can go offline. DR encrypts the dataset with its own private key
sDR and then sends the encrypted dataset BDR =

{
[[b1]]sDR

, [[b2]]sDR
, . . . , [[an]]sDR

}
with its

public key set (PKsDR , BKsDR , KSsDR) to CS, and then, it can be offline until CS completes
the calculation. CS receives the encrypted dataset sent by DOs and DR, saves the data,
and performs the secure computation in a secure environment. Finally, DR receives the
encryption result calculated by CS and decrypts it using the joint key to obtain the intersec-
tion. Let there be m items in the encrypted dataset ADO =

{
[[a1]]sDO

, [[a2]]sDO
, . . . , [[am]]sDO

}
of DOs with k Boolean values in each item, and n items in the encrypted dataset BDR ={
[[b1]]sDR

, [[b2]]sDR
, . . . , [[bn]]sDR

}
of DR with k Boolean values in each item.

S1(DOs): Each DO encrypts its dataset using its own key sDO generated by the public
parameter pp issued by PGC and sends it to CS. CS stores the encrypted dataset of all
DOs, and for item i of dataset ADO =

{
[[a1]]sDO

, [[a2]]sDO
, . . . , [[am]]sDO

}
, we have [[ai]]sDO

=

([[a1]]sDO , . . . , [[ak]]sDO).
S2(DR): DR uses the public parameter pp to generate its own key sDR to encrypt its

dataset and sends it to CS. CS uses DR’s encrypted database for secure computation and has
[[bj]]sDR

= ([[b1]]sDR , . . . , [[bk]]sDR) for item j of dataset BDR =
{
[[b1]]sDR

, [[b2]]sDR
, . . . , [[bn]]sDR

}
.

S3(CS): CS receives the encrypted data message BDR =
{
[[b1]]sDR

, [[b2]]sDR
, . . . , [[bn]]sDR

}
from DR and the encrypted data message ADO =

{
[[a1]]sDO

, [[a2]]sDO
, . . . , [[am]]sDO

}
from

DO. For j ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . , m}, each item [[bj]]sDR
= ([[b1]]sDR , . . . , [[bk]]sDR) in

BDR =
{
[[b1]]sDR

, [[b2]]sDR
, . . . , [[bn]]sDR

}
performs SCP with each item

[[ai]]sDO
= ([[a1]]sDO , . . . , [[ak]]sDO) in ADO =

{
[[a1]]sDO

, [[a2]]sDO
, . . . , [[am]]sDO

}
, i.e.,

SCP([[ai]]sDO
, [[bj]]sDR

). The result [[gi]]s = ([[g1]]s, . . . , [[gk]]s) is obtained as the result of
whether the current [[bj]]sDR

= ([[b1]]sDR , . . . , [[bk]]sDR) is the same as each item in ADO ={
[[a1]]sDO

, [[a2]]sDO
, . . . , [[am]]sDO

}
.

S4(CS): For each computed [[gi]]s = ([[g1]]s, . . . , [[gk]]s), CS runs SCOR to obtain [[cj]]s =
([[c1]]s, . . . , [[ck]]s). [[cj]]s = ([[c1]]s, . . . , [[ck]]s) is a cryptographic Boolean value indicating

whether each item in BDR =
{
[[b1]]sDR

, [[b2]]sDR
, . . . , [[bn]]sDR

}
exists in

ADO =
{
[[a1]]sDO

, [[a2]]sDO
, . . . , [[am]]sDO

}
. A value of 1 means it exists and 0 means it

does not.
S5 (CS): For j ∈ {1, 2, . . . , n}, execute S4, and send the calculated result C = {[[c1]]s,

[[c2]]s, . . . , [[cn]]s} to DR.



Mathematics 2023, 11, 1784 12 of 20

S6 (DR): Receive the calculation result from C = {[[c1]]s, [[c2]]s, . . . , [[cn]]s} sent by CS
and decrypt it using the joint key to obtain the result.

Please note that in our PSI scheme, the dense state computation is performed by FHE
cryptography. All the calculations are performed on the cloud server, and the data on the
cloud server are all cryptographic data, so that the privacy of the participants is protected.
During the calculation process, the DR does not obtain any information other than its own
information and the query result. The DOs do not obtain any information other than their
own information and do not expose their information to other participants. The result of
the CS calculation is in cryptographic form and cannot be decrypted by the participants
except by the DR, which protects the privacy of the calculation result.

6. Security Analysis

In this section, we prove that our scheme is secure under a semi-honest model. We
will prove the security of the MKTFHE cryptosystem, SCAND, SCOR, SCXOR, SCP and
PSI schemes separately. We first present the security of the semi-honest model below.

Definition 1 (Security of the semi-honest model). According to protocol π, let ai be the input
of participant Pi and bi be the output of Pi. REALΠ

i (π) is the viewpoint of Pi when protocol π is
actually executed. IDEALΠ

i (π) is the viewpoint of Pi, simulated by ai and bi, executed in the ideal
world of protocol π. If REALΠ

i (π) is computationally indistinguishable from IDEALΠ
i (π), then

protocol π is secure in the semi-fair model [50].

Note that in our protocols, the execution image usually consists of the exchanged data
and the information that can be computed from these data. It follows from Definition (1) that
when proving the security of these protocols, the image we simulate should be indistin-
guishable from the actual execution image when we compute it.

6.1. Security of MKTFHE Cryptosystem

Privacy of LWE Assumption: The j-th component Kj of a key-switching key KS =

{Kj}j∈[N] from t ∈ ZN to s ∈ ZN is generated by adding tj · g′ to the first column of the

Td′×(n+1) matrix, the rows of which are instances of LWE under the secret s. Therefore,
KS ← LWE.KSGen(t, s) is computationally indistinguishable from a uniform distribu-
tion over (Td′×(n+1))N where LWE assumes a parameter of (n, χ, β) and s is sampled
according to χ.

Privacy of RLWE Assumption: Under the assumption that the parameter is (N, ψ, α),
a uniform distribution over Td×5 is computationally indistinguishable from the distribution
D0 = {(a, b, d, F) : ppRLWE ← RLWE · Setup

(
1λ
)
, (z, b) ← RLWE.KeyGen(), (d, F) ←

RLWE ·UniEnc(µ, z)} for any µ ∈ R. We consider the following distribution: First, we
transform F = [f0 | f1] and (b, a) into independent uniform distributions of Td×2 using the
RLWE assumption of a secret z. Therefore, D0 is indistinguishable from D1 in terms of
calculation. D1 = {(a, b, d, F) : a, b ← U

(
Td
)

,

F← U
(

Td×2
)

, r← ψ, e1 ← Dd
α, d = r · a + µ · g + e1 (mod1)

}
.Then, d is made uniformly

distributed using the RLWE assumption with a secret of r. Therefore, D1 is indistinguish-
able from the distributionD2. D2 =

{
(a, b, d, F) : a, b, d← U

(
Td
)

, F← U
(

Td×2
)}

. Since
D2 is independent from µ, our RLWE scheme is semantically private.

In summary, under the (R)LWE assumption, our cryptosystem is semantically private;
thus, we can appropriately choose parameters ppLWE and ppRLWE to achieve a security
level of at least λ-bit.

6.2. Security of Secure Computing Protocols

In this section, we demonstrate the security of our secure computing subprotocols,
including SCAND, SCOR, SCXOR and SCP.



Mathematics 2023, 11, 1784 13 of 20

Theorem 1. The SCAND proposed is secure under the semi-honest model.

Proof of Theorem 1. We use REALΠ
CS(SCAND) to denote the execution view in the real world

of the of CS, where it is specified as REALΠ
CS(SCAND) =

{[[ca]], [[cb]], [[AndConst]], [[temp]], [[res]]}. [[AndConst]] is obtained from [[−1]] and [[8]] by
modSwitchToTorus32. [[temp]] is obtained from [[AndConst]] and [[ca]] by MKlweAddTo and
MKlweNoiselessTrival. We assume that IDEALΠ

CS(SCAND) =
{[[ca′]], [[cb′]], [[temp′]], [[res′]], [[AndConst′]]} is the execution view of the simulation in the ideal
world, where [[ca′]], [[cb′]], [[temp′]], [[res′]] and [[AndConst′]] are chosen randomly from Tn+1.
The semantic privacy of our encryption scheme makes [[ca]], [[cb]], [[temp]] and [[AndConst]]
computationally indistinguishable from [[ca′]], [[cb′]], [[temp′]] and [[AndConst′]] respectively.
In addition, [[res]] is computationally indistinguishable from [[temp′]] and [[AndConst′]] re-
spectively. Thus, it can be concluded that REALΠ

CS(SCAND) and IDEALΠ
CS(SCAND) are com-

putationally indistinguishable. We can obtain that SCAND is secure under the semi-honest
model.

Theorem 2. The SCOR proposed is secure under the semi-honest model.

Proof of Theorem 2. We use REALΠ
CS(SCOR) to denote the execution view in the real world

of CS, where it is specified as REALΠ
CS(SCOR) = {[[ca]], [[cb]], [[temp]], [[ORConst]], [[res]]}.

[[ORConst]] is obtained from [[1]] and [[8]] by modSwitchToTorus32. [[temp]] is obtained
from [[ca]] and [[ORConst]] by MKlweNoiselessTrivial and MKlweAddTo. [[res]] is ob-
tained from [[temp]] and [[cb]] by MKlweAddTo. We assume that IDEALΠ

CS(SCOR) =
{[[ca′]], [[cb′]], [[temp′]], [[ORConst′]], [[res′]]} is the execution view of the simulation in the
ideal world, where [[ca′]], [[cb′]], [[temp′]], [[ORConst′]] and [[res′]] are chosen randomly from
Tn+1. The semantic privacy of our encryption scheme makes [[ca]] and [[cb]] computationally
indistinguishable from [[ca′]], [[cb′]], [[temp′]] and [[ORConst′]], respectively. In addition, [[res]]
is computationally indistinguishable from [[ca′]], [[cb′]], [[temp′]] and [[ORConst′]] respectively.
Thus, it can be concluded that REALΠ

CS(SCOR) and IDEALΠ
CS(SCOR) are computationally

indistinguishable. We can obtain that SCOR is secure under the semi-honest model.

Theorem 3. The SCXOR proposed is secure under the semi-honest model.

Proof of Theorem 3. Since the design ideas of SCAND and SCOR are similar, we can prove
the theorem based on Theorem (1).

Theorem 4. The SCP proposed is secure under the semi-honest model.

Proof of Theorem 4. We use REALΠ
CS(SCP) to denote the execution view in the real world

of the CS, where it is specified as REALΠ
CS(SCP) = {([[x]], [[y]]), [[z]]}. [[x]] and [[y]] are the

encrypted data vectors. [[z]] is the result of determining whether the encrypted data vectors
[[x]] and [[y]] are equal. [[z]] is a random number between 0 and 1 in the ciphertext. We
assume that IDEALΠ

CS(SCP) = {([[x′]], [[y′]]), [[z′]]} is the execution view of the simulation in
the ideal world, where the encrypted data in both [[x′]] and [[y′]] are chosen randomly from
Tn+1. [[z′]] are chosen randomly from Tn+1. The semantic privacy of our encryption scheme
makes [[x]] and [[y]] computationally indistinguishable from [[x′]] and [[y′]], respectively. In
addition, [[z′]] takes 0 or 1 with equal probability. [[z]] are computationally indistinguishable
from [[z′]], respectively. Thus, it can be concluded that REALΠ

CS(SCP) and IDEALΠ
CS(SCP)

are computationally indistinguishable. We can obtain that SCP is secure under the semi-
honest model.

6.3. Security of CMPSI

Theorem 5. The CMPSI proposed is secure under the semi-honest model, and the security of
encrypted data, mining results, and query data can be guaranteed.



Mathematics 2023, 11, 1784 14 of 20

Proof of Theorem 5. We can use the above method to prove that our proposed CMPSI is
secure under the semi-honest model. In S1, CS obtains the encrypted dataset from DOs.
In S2, CS obtains the encrypted dataset from DR. From Section 6.1, our cryptosystem is
semantically secure, and the semi-honest CS cannot distinguish these messages from the
random values of Tn+1. In S3, SCP is executed to obtain the intersection information of
the encryption of individual items in the dataset. Since SCP is secure in our system, it
can be confirmed that the protocol in S3 is secure. In S4, SCOR is used to obtain the final
encryption result. Since SCOR is secure in our system, the protocol in S4 is secure. In S5
and S6, the execution of S4 is repeated, the DR receives the message and decrypts it using
the joint key, and the protocol is secure from the security of MKTFHE.

Theorem 6. The CMPSI proposed is able to resist man-in-the-middle attacks.

Proof of Theorem 6. As shown in Figure 4, the participants represent the DR and DOs in
our scenario. Under normal conditions, the participants can communicate with the CS,
and Figure 4a shows the communication under normal conditions. The man-in-the-middle
attack changes the original communication channel and can access the communication
data between the participant and the cloud server, and Figure 4b shows the impact of the
man-in-the-middle attack on the communication. We will prove that our model is resistant
to man-in-the-middle attacks in three ways. First, DO encrypts its own dataset TDO into
[[TDO]]sDO using its own key sDO and then sends [[TDO]]sDO to CS. Intermediary A obtains
[[TDO]]sDO through the new channel, but A does not have DO’s key, and it is known from
the security of MKTFHE that A cannot decrypt [[TDO]]sDO . Thus, our model can resist
the man-in-the-middle attack during the data transmission from DO to CS. Second, DR
wants to obtain the intersection information and sends the encrypted data [[TDR]]sDR to CS.
Intermediary A obtains [[TDR]]sDR through the illegal channel. By the security of MKTFHE,
A does not have sDR and cannot obtain TDR from [[TDR]]sDR . Thus, our model can resist the
man-in-the-middle attack from DR to CS man-in-the-middle attack during the data transfer.
Finally, CS needs to return the computed intersection information [[TDR∩DO]]s to DR. The
middleman A obtains the information [[TDR∩DO]]s, and it is known from the security of
MKTFHE that A does not have the key to obtain TDR∩DO. Thus, our model can resist the
man-in-the-middle attack during the data transmission from CS to DR.

(a) (b)

Figure 4. Man-in-the-middle attack; (a) normal communication; (b) post-attack communication.

6.4. Security Services

According to the above proof of CMPSI security, Table 3 shows the security services
provided by the scheme and a demonstration from our model of how the method provides
each of these functions.



Mathematics 2023, 11, 1784 15 of 20

Table 3. Security services provided.

Security Services Definition Proof

Confidentiality Network information is not dis-
closed to non-authorized users, enti-
ties, or processes.

In our system, DO uses its own key sDO to encrypt its own dataset
TDO into [[TDO]]sDO and then sends [[TDO]]sDO to CS. An unauthorized
userA illegally obtains [[TDO]]sDO , and according to the security of the
MKTFHE cryptosystem in Section 6.1, it is known that without the
key, sDO cannot perform decryption. Therefore, unauthorized illegal
users A cannot obtain the information of DO’s dataset TDO.

Integrity Information is transmitted, ex-
changed, stored, and processed in
such a way that it remains uncor-
rupted or unmodified, that it is not
lost, and that it cannot be changed
without authorization.

In our system, DR encrypts the dataset TDR as [[TDR]]sDR using the
key sDR and sends [[TDR]]sDR to CS. Attacker A obtains the dataset
[[TDR]]sDR through the intermediate channel, and according to the
definition of the semi-honest model in Section 4.3, A does not modify
or corrupt the data, and CS can obtain the dataset [[TDR]]sDR intact.

Availability Assurance that information is avail-
able to authorized users, i.e., assur-
ance that legitimate users can use the
required information when needed.

In our system, DR is the legal user. When DR wants to obtain the
intersection information of its dataset TDR, DR sends [[TDR]]sDR to CS,
and CS sends the computed intersection result [[TDR∩DO]]s to DR. The
legitimate user DR can obtain the required data when needed, which
proves the usability of our system.

Non-repudiation The two parties of information ex-
change cannot deny that they send
or receive information in the ex-
change process.

In our system, DO sends its encrypted dataset [[TDO]]sDO to CS. Ac-
cording to the definition of the semi-honest model in Section 4.3,
DO will not deny that the dataset [[TDO]]sDO is its data, proving the
non-repudiation of our system.

7. Performance Analysis

In this section, we evaluate the time overhead and communication overhead of our
proposed scheme. The experimental parameters we used [51] are shown in Table 4 below.
According to one study [52], the parameters we use reach a privacy level of at least 110 bits,
which is a common reference in this field.

Table 4. Parameter sets.

LWE-n LWE-α LWE-B′ LWE- d′ RLWE-N RLWE-β RLWE-B RLWE-d

560 3.05× 10−5 22 8 1024 3.72× 10−9 29 3

The test environment used for our experiments was as follows: a 2.30 GHz Intel (R)
Core(TM) i5-8300H Dell laptop. The programming language we used was C++, and our
system was based on the MKTFHE library. First, we tested the efficiency of the security
subprotocols separately. Then, we tested the communication overhead of our scheme and
compared it with existing schemes. Finally, we tested our scheme.

7.1. Experiments on Security Computing Protocols

Our secure subprotocol experiments were performed using the MKTFHE library
(https://github.com/ilachill/MK-TFHE) (1 February 2023). MKTFHE is a proof-of-concept
implementation of a multi-key version of TFHE. The code is written on top of the TFHE
library (https://tfhe.github.io/tfhe/) (1 February 2023). The computation of secure NAND
gates is given in the MKTFHE library. In the MKTFHE-based implementation, our goal
is to implement the MKLwe sample addition and multiplication operations as a way to
implement the other circuit gates needed in our scheme in addition to the NADN gate.
We first performed experiments on single circuit gates, including experiments on secure
AND gate computation protocol, secure OR gate computation protocol, and secure XNOR
computation protocol, and the experimental results are shown in Table 5. We compared
these with NAND gates and found that the efficiency of individual gate computation
is close.

https://github.com/ilachill/MK-TFHE
https://tfhe.github.io/tfhe/


Mathematics 2023, 11, 1784 16 of 20

Table 5. Experimental results for single circuit gates.

Gate Circuit Key Generation Time (s) FFT Conversion Time (s) Bootstrapping Time (s)

AND 1.973 0.039 0.226
NAND 1.982 0.038 0.227
OR 1.956 0.040 0.227
XNOR 1.975 0.039 0.220

Then, as shown in Table 6, we tested the experimental time overhead of SCP for k = 8,
16, and 32, where k is the bits of data. The results show that the time overhead of the SCP
protocol is linearly related to the number of bits of input.

Table 6. Running time of SCP.

k 8 16 32

Running time (s) 3.52 7.17 14.20

7.2. Overhead Evaluation

In our scenario, DOs and DRs are resource-constrained users; thus, it is important
to have a smaller communication overhead. In our scheme, each participant uses their
key to encrypt the data and uploads it to the cloud server; thus, the total communication
overhead is related to the total data size. We tested the communication overhead of
our scheme on datasets with aggregate sizes of 28, 212, 216, and 220. We compared our
scheme with the scheme based on RSA [53] and the scheme based on pseudorandom
permutation (PRP) [48]. As shown in Figure 5, our scheme is significantly superior to the
privacy intersection scheme based on RSA. For the server-assisted scheme with limited
security [48], the communication cost of our scheme is also lower. Our experimental results
are the average of ten experiments.

Figure 5. Communication overhead.

Our scheme is based on the underlying PSI protocol, and the computation of the
ciphertext is performed directly on the cloud server. To the best of our knowledge, our
proposed scheme is the first scheme that uses MKTFHE to achieve the ideal PSI, and the
time overhead of the scheme is a very important metric. For users with limited resources,



Mathematics 2023, 11, 1784 17 of 20

low overhead in the process of data encryption and decryption is necessary. We tested the
time cost of using encryption and decryption and the size of ciphertext on datasets with
sizes of 28, 212, 216 and 220. Table 7 shows that for DOs and DR with limited resources, the
cost of our scheme in data encryption and decryption is very small. Finally, we tested the
computing cost of the cloud server. In the experiment, we used data from 16, 32, and 64 bit
systems to test the performance of our proposed scheme. Table 8 shows our experimental
results. The results show that the time cost of the scheme is linearly related to the size of the
dataset and the number of bits of data. Please note that the cloud has excellent computing
power, so that the efficiency of the solution can be faster in actual use.

Table 7. Cost during encryption.

28 212 216 220

Encryption time (ms) 13.5 208.2 3162.2 47,987.1
Cipher size (kb) 3.5 57.3 917.5 15,083.6

Table 8. Cloud computing time (min).

Data Set Size 16bit 32bit 64bit

22 0.51 0.99 1.98
24 8.47 16.02 31.70
26 137.68 273.83 547.66

8. Conclusions

In this paper, we proposed CMPSI, a cloud-assisted private set intersection via
multi-key fully homomorphic encryption, which allows the participants to outsource
the encrypted data to cloud servers for storage and computation. We also designed some
MKTFHE-based secure computing protocols to complete the design of our system. We
analytically demonstrated the security of our scheme under a semi-honest model. Through
experiments, we tested the performance of our proposed scheme and proved that our
scheme has less communication overhead by comparing it with existing schemes. We also
proved the feasibility of the scheme.

As future research work, we plan to apply our proposed MKTFHE to a wider range of
areas, such as association rule mining systems in large shopping malls. In addition, we will
improve our framework to handle more complex computations and further improve the
performance of our system.

Author Contributions: Conceptualization, C.F.; Methodology, X.L.; Software, C.F. and P.J.; Validation,
P.J.; Formal analysis, M.L.; Investigation, M.L. and P.G.; Data curation, X.Z.; Writing—original draft,
X.Z.; Writing—review & editing, L.W. and X.L.; Visualization, P.G.; Supervision, L.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Key Technology Research and Development
Program of China (grant nos. 2021YFB3901000 and 2021YFB3901005); the Civil Aerospace Technology
Advance Research Project of China (D040405); the Application Pilot Plan of Fengyun Satellite (FY-
APP-2021.0501).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 1784 18 of 20

Abbreviations
The following abbreviations are used in this manuscript:

PSI Private set intersection
CMPSI Cloud-assisted multi-key private set intersection
TFHE Fully homomorphic encryption over toru
MKTFHE Multi-key fully homomorphic encryption over toru

References
1. Abdulsalam, Y.S.; Hedabou, M. Security and privacy in cloud computing: technical review. Future Internet 2022, 14, 11. [CrossRef]
2. Aburukba, R.; Kaddoura, Y.; Hiba, M. Cloud Computing Infrastructure Security: Challenges and Solutions. In Proceedings of

the 2022 International Symposium on Networks, Computers and Communications (ISNCC), Shenzhen, China, 19–22 July 2022;
pp. 1–7.

3. Shao, Z.; Bo, Y. Private set intersection via public key encryption with keywords search. Secur. Commun. Netw. 2015, 8, 396–402.
[CrossRef]

4. Shi, R.H.; Mu, Y.; Zhong, H.; Cui, J.; Zhang, S. An efficient quantum scheme for Private Set Intersection. Quantum Inf. Process.
2016, 15, 363–371. [CrossRef]

5. Yang, X.; Luo, X.; Xu, A.W.; Zhang, S. Improved outsourced private set intersection protocol based on polynomial interpolation.
Concurr. Comput. Pract. Exp. 2018, 30, e4329. [CrossRef]

6. Tajima, A.; Sato, H.; Yamana, H. Outsourced Private Set Intersection Cardinality with Fully Homomorphic Encryption. In Pro-
ceedings of the 2018 6th International Conference on Multimedia Computing and Systems (ICMCS), Rabat, Morocco, 10–12 May
2018.

7. Ruan, O.; Huang, X.; Mao, H. An efficient private set intersection protocol for the cloud computing environments. In Proceedings
of the 2020 IEEE 6th International Conference on Big Data Security on Cloud (BigDataSecurity), Baltimore, MD, USA, 25–27 May
2020; pp. 254–259.

8. Jiang, Y.; Wei, J.; Pan, J. Publicly Verifiable Private Set Intersection from Homomorphic Encryption. In Proceedings of the Security
and Privacy in Social Networks and Big Data: 8th International Symposium, SocialSec 2022, Xi’an, China, 16–18 October 2022;
pp. 117–137.

9. Debnath, S.K.; Kundu, N.; Choudhury, T. Efficient post-quantum private set-intersection protocol. Int. J. Inf. Comput. Secur. 2022,
17, 405–423. [CrossRef]

10. Wang, Q.; Zhou, F.; Xu, J.; Peng, S. Tag-based verifiable delegated set intersection over outsourced private datasets. IEEE Trans.
Cloud Comput. 2020, 10, 1201–1214. [CrossRef]

11. Pinkas, B.; Rosulek, M.; Trieu, N.; Yanai, A. SpOT-light: lightweight private set intersection from sparse OT extension.
In Proceedings of the Advances in Cryptology—CRYPTO 2019: 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, 18–22 August 2019; pp. 401–431.

12. Pinkas, B.; Rosulek, M.; Trieu, N.; Yanai, A. PSI from PaXoS: fast, malicious private set intersection. In Proceedings of
the Advances in Cryptology—EUROCRYPT 2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, 10–14 May 2020; pp. 739–767.

13. Chase, M.; Miao, P. Private set intersection in the internet setting from lightweight oblivious PRF. In Proceedings of the Advances
in Cryptology—CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,
17–21 August 2020; pp. 34–63.

14. Rindal, P.; Schoppmann, P. VOLE-PSI: fast OPRF and circuit-psi from vector-ole. In Proceedings of the Advances in Cryptology—
EUROCRYPT 2021: 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, 17–21 October 2021; pp. 901–930.

15. Shi, R.H.; Li, Y.F. Quantum private set intersection cardinality protocol with application to privacy-preserving condition query.
IEEE Trans. Circuits Syst. Regul. Pap. 2022, 69, 2399–2411. [CrossRef]

16. Zhou, Q.; Zeng, Z.; Wang, K.; Chen, M. Privacy Protection Scheme for the Internet of Vehicles Based on Private Set Intersection.
Cryptography 2022, 6, 64. [CrossRef]

17. Qian, Y.; Xia, X.; Shen, J. A profile matching scheme based on private set intersection for cyber-physical-social systems.
In Proceedings of the 2021 IEEE Conference on Dependable and Secure Computing (DSC), Aizuwakamatsu, Japan, 30 January–2
February 2021; pp. 1–5.

18. Demmler, D.; Rindal, P.; Rosulek, M.; Trieu, N. PIR-PSI: Scaling Private Contact Discovery; Cryptology ePrint: Archive, CA, USA, 2018.
19. Liu, F.; Ng, W.K.; Zhang, W.; Han, S.; et al. Encrypted set intersection protocol for outsourced datasets. In Proceedings of the

2014 IEEE International Conference on Cloud Engineering, Boston, MA, USA, 11–14 March 2014; pp. 135–140.
20. De Cristofaro, E.; Tsudik, G. Practical private set intersection protocols with linear complexity. In Proceedings of the Financial

Cryptography and Data Security: 14th International Conference, FC 2010, Tenerife, Canary Islands, 25–28 January 2010; pp. 143–159.
21. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Symposium on Theory of

Computing, Bethesda, MA, USA, 31 May–2 June 2009; pp. 169–178.

http://doi.org/10.3390/fi14010011
http://dx.doi.org/10.1002/sec.988
http://dx.doi.org/10.1007/s11128-015-1165-z
http://dx.doi.org/10.1002/cpe.4329
http://dx.doi.org/10.1504/IJICS.2022.122381
http://dx.doi.org/10.1109/TCC.2020.2968320
http://dx.doi.org/10.1109/TCSI.2022.3152591
http://dx.doi.org/10.3390/cryptography6040064


Mathematics 2023, 11, 1784 19 of 20

22. Brakerski, Z.; Perlman, R. Lattice-based fully dynamic multi-key FHE with short ciphertexts. In Proceedings of the Advances in
Cryptology—CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2016;
pp. 190–213.

23. López-Alt, A.; Tromer, E.; Vaikuntanathan, V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing, New York, NY, USA, 20–22 May 2012;
pp. 1219–1234.

24. Gentry, C.; Sahai, A.; Waters, B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Proceedings of the Annual Cryptology Conference, Barbara, CA, USA, 18–22 August 2013; pp. 75–92.

25. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans.
Comput. Theory (TOCT) 2014, 6, 1–36. [CrossRef]

26. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachene, M. Faster fully homomorphic encryption: Bootstrapping in less than 0.1
seconds. In Proceedings of the International Conference on the Theory And Application of Cryptology and Information Security,
Taipei, Taiwan, 5–9 December 2016; pp. 3–33.

27. Chen, H.; Laine, K.; Rindal, P. Fast private set intersection from homomorphic encryption. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1243–1255.

28. Chen, H.; Huang, Z.; Laine, K.; Rindal, P. Labeled PSI from fully homomorphic encryption with malicious security. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 1223–1237.

29. Cong, K.; Moreno, R.C.; da Gama, M.B.; Dai, W.; Iliashenko, I.; Laine, K.; Rosenberg, M. Labeled PSI from homomorphic
encryption with reduced computation and communication. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, Copenhagen, Denmark, 15–19 November 2021; pp. 1135–1150.

30. Freedman, M.J.; Nissim, K.; Pinkas, B. Efficient private matching and set intersection. In Proceedings of the Advances
in Cryptology-EUROCRYPT 2004: International Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, 2–6 May 2004; pp. 1–19.

31. Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (SFCS 1982), Chicago, IL, USA, 3–5 November 1982; pp. 160–164.

32. Micali, S.; Goldreich, O.; Wigderson, A. How to play any mental game. In Proceedings of the 19th ACM Symposium on Theory
of Computing, New York, NY, USA, 1 January 1987; pp. 218–229.

33. Kolesnikov, V. Gate evaluation secret sharing and secure one-round two-party computation. In Proceedings of the Advances in
Cryptology-ASIACRYPT 2005: 11th International Conference on the Theory and Application of Cryptology and Information
Security, Chennai, India, 4–8 December 2005; pp. 136–155.

34. Even, S.; Goldreich, O.; Lempel, A. A randomized protocol for signing contracts. Commun. ACM 1985, 28, 637–647. [CrossRef]
35. Hazay, C.; Nissim, K. Efficient Set Operations in the Presence of Malicious Adversaries. In Proceedings of the Public Key

Cryptography, Paris, France, 26–28 May 2010; Volume 6056; pp. 312–331.
36. Huang, Y.; Evans, D.; Katz, J. Private set intersection: Are garbled circuits better than custom protocols? In Proceedings of the

NDSS, San Diego, CA, USA, 5–8 February 2012.
37. Dong, C.; Chen, L.; Wen, Z. When private set intersection meets big data: An efficient and scalable protocol. In Proceedings of the

2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany, 4–8 November 2013; pp. 789–800.
38. Pinkas, B.; Schneider, T.; Zohner, M. Faster Private Set Intersection based on OT Extension (Full Version). In Proceedings of the

USENIX Security Symposium, San Diego, CA, USA, 20–22 August 2014.
39. Freedman, M.J.; Hazay, C.; Nissim, K.; Pinkas, B. Efficient set intersection with simulation-based security. J. Cryptol. 2016,

29, 115–155. [CrossRef]
40. Pinkas, B.; Schneider, T.; Zohner, M. Scalable private set intersection based on OT extension. ACM Trans. Priv. Secur. (TOPS) 2018,

21, 1–35. [CrossRef]
41. Orrù, M.; Orsini, E.; Scholl, P. Actively secure 1-out-of-N OT extension with application to private set intersection. In Proceedings

of the Topics in Cryptology–CT-RSA 2017: The Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA, USA,
14–17 February 2017; pp. 381–396.

42. Kerschbaum, F. Collusion-resistant outsourcing of private set intersection. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing, Trento, Italy, 25–29 March 2012; pp. 1451–1456.

43. Kerschbaum, F. Outsourced private set intersection using homomorphic encryption. In Proceedings of the Proceedings of the 7th
ACM Symposium on Information, Computer and Communications Security, Hong Kong, 7–11 June 2012; pp. 85–86.

44. Abadi, A.; Terzis, S.; Dong, C. O-PSI: delegated private set intersection on outsourced datasets. In Proceedings of the ICT Systems
Security and Privacy Protection: 30th IFIP TC 11 International Conference, SEC 2015, Hamburg, Germany, 26–28 May 2015;
Proceedings 30; pp. 3–17.

45. Abadi, A.; Terzis, S.; Dong, C. VD-PSI: verifiable delegated private set intersection on outsourced private datasets. In Proceedings
of the Financial Cryptography and Data Security: 20th International Conference, FC 2016, Christ Church, Barbados, 22–26
February 2016; Revised Selected Papers 20; pp. 149–168.

46. Ali, M.; Mohajeri, J.; Sadeghi, M.R.; Liu, X. Attribute-based fine-grained access control for outscored private set intersection
computation. Inf. Sci. 2020, 536, 222–243. [CrossRef]

http://dx.doi.org/10.1145/2633600
http://dx.doi.org/10.1145/3812.3818
http://dx.doi.org/10.1007/s00145-014-9190-0
http://dx.doi.org/10.1145/3154794
http://dx.doi.org/10.1016/j.ins.2020.05.041


Mathematics 2023, 11, 1784 20 of 20

47. Abadi, A.; Terzis, S.; Metere, R.; Dong, C. Efficient Delegated Private Set Intersection on Outsourced Private Datasets. IEEE Trans.
Dependable Secur. Comput. 2019, 16, 608–624. [CrossRef]

48. Kamara, S.; Mohassel, P.; Raykova, M.; Sadeghian, S. Scaling private set intersection to billion-element sets. In Proceedings of the
Financial Cryptography and Data Security: 18th International Conference, FC 2014, Christ Church, Barbados, 3–7 March 2014;
Revised Selected Papers 18; pp. 195–215.

49. Chen, H.; Chillotti, I.; Song, Y. Multi-key homomorphic encryption from TFHE. In Proceedings of the International Conference
on the Theory and Application of Cryptology and Information Security, Kobe, Japan, 8–12 December 2019; pp. 446–472.

50. Oded, G. Foundations of Cryptography: Volume 2, Basic Applications; Cambridge University Press: Cambridge, MA, USA, 2009.
51. Pradel, G.; Mitchell, C. Privacy-Preserving Biometric Matching Using Homomorphic Encryption. In Proceedings of the 2021

IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Shenyang,
China, 18–20 August 2021; pp. 494–505.

52. Albrecht, M.R.; Player, R.; Scott, S. On the concrete hardness of learning with errors. J. Math. Cryptol. 2015, 9, 169–203. [CrossRef]
53. Ciampi, M.; Orlandi, C. Combining private set-intersection with secure two-party computation. In Proceedings of the Security

and Cryptography for Networks: 11th International Conference, SCN 2018, Amalfi, Italy, 5–7 September 2018; pp. 464–482.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TDSC.2017.2708710
http://dx.doi.org/10.1515/jmc-2015-0016

	Introduction
	Related Work
	Preliminaries
	Private Set Intersection
	MKTFHE Cryptosystem

	System Model and Design Goal
	Problem Formulation
	System Model
	Threat Model
	Design Goal

	Cloud-Assisted Multi-Party Private Set Intersection
	System Initialization
	Security Protocol Design
	Secure AND Gate Computation Protocol
	Secure OR Gate Computation Protocol
	Secure XNOR Gate Computation Protocol
	Secure Comparison Protocol

	Private Set Intersection

	Security Analysis
	Security of MKTFHE Cryptosystem
	Security of Secure Computing Protocols
	Security of CMPSI
	Security Services

	Performance Analysis
	Experiments on Security Computing Protocols
	Overhead Evaluation

	Conclusions
	References

