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Abstract: In this paper, the environmental uncertainties are taken into account when designing a
robotic manipulator to balance the shaking force, shaking moment, and torque. The proposed robust
balancing design approach does not consider the probability distributions of the uncertainties and is
addressed without dependence on specific trajectories. This is expressed as a nonlinear constrained
multiobjective optimization problem in which the nominal performance in the time-independent
terms of the shaking force balancing, the shaking moment balancing, and the torque delivery, as
well as their three sensitivities to uncertainties, are simultaneously optimized to provide a set of
link shapes that match link mass distributions in a single stage. The proposal is applied to a three-
degree-of-freedom serial-parallel manipulator, and the Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) is used to solve the associated problem. Comparative results with other design approaches
reveal that the selected design achieves a suitable tradeoff in balancing the shaking force balancing,
the shaking moment balancing, and the torque delivery and their sensitivities, leading to a reduction
in their values and variations under mass changes in the manipulator end-effector with different
operating conditions (tasks).

Keywords: dynamic balancing; torque delivery; robustness; optimization; evolutionary computing

MSC: 74P10; 74G15; 90C56; 90C29

1. Introduction

Robotic manipulators create forces and moments related to the change in position in
the mass centers of its components when the application is performed. These generated
forces and moments can yield undesired movements in the task (inaccuracies and vibra-
tions), resulting in a loss of precision and the necessity of significant support to keep the
manipulator fixed to the base. Furthermore, these cause deterioration in the robot (wear
and fatigue), reducing the lifetime and leading to sudden failures, which result in pausing
the production (a one-day halt due to failure may cost up to EUR 100,000 or 200,000 [1]). In
addition, the equilibrium between these forces and moments may significantly influence
energy consumption. Finally, all these issues restrict the manipulator’s functionality in
terms of speed, workspace, and application.

The energy exchange must be studied to obtain robotic manipulators (mechanisms)
that perform the appropriate tasks with the minimum generation of undesired forces and
moments. When the application speed is low, designers can only balance the gravitational
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and elastic energies by performing a static balance (gravity compensation) [2,3] or reducing
the shaking force balancing [4]. High-speed manipulators are more likely to exhibit un-
desirable disturbances due to shaking moments [5]. Dynamic balancing, or the balancing
of forces and moments, is a way to reduce or eliminate the harmful effects of high-speed
mechanisms. In mechanical engineering, balancing mechanisms constitute an important
topic that focuses on reducing these forces.

From the studies of Berkof in 1968 [6–9], several researchers have proposed different
approaches to balancing the shaking force and the shaking moment in mechanisms. The
importance of studying equilibrium in such forces and moments (reactionless conditions)
in the robotic field began with the work in [10]. The main objective of dynamic balancing is
to promote a synergy in the shaking force balancing and the shaking moment balancing,
thereby reducing, as much as possible, the dynamic reactions at the base of the manipulator
(mechanism or machine) caused by the structure’s motion [11,12]. The design tradeoff
between shaking force balancing and shaking moment balancing is a challenging but
important goal [13] since the first can affect the quality of the second and vice versa [14,15].

The dynamic balancing has been tackled by adding counter-mass systems to min-
imize the shaking force and including counter-rotating systems to reduce the shaking
moment [5,9,16–23]. The counterweight systems can also include an equimomental system
of point masses for creating a mass redistribution method [24,25]. These counterweight sys-
tems move the mass center of the whole system (robot). Similarly, auxiliary or duplicated
mechanisms in a mirror manner have been added to the robot in order to perform dynamic
balancing and thus counteract such forces and moments [13,26,27]. Other works also
include a proper choice of trajectories for moment balancing with the use of an auxiliary
mechanism to promote force balancing [28,29]. In [30], a pantograph mechanism is dynami-
cally balanced in two sequential steps. First, the balancing conditions for keeping the linear
momentum constant are found by using complementary components. Later, the force bal-
ancing conditions are determined by using Fisher’s method. Similarly, in [26,31], dynamic
balancing is given by using specific trajectories, passive joints, and Fisher’s method. Other
works include four-bar mechanisms in the development of the balancing of planar and
spatial parallel robots [32–34]. Nevertheless, counterweight systems and auxiliary mecha-
nisms add more mass to balance the mechanism. This results in a heavier mechanism that
consumes more energy and incorporates more complexity into the kinematics and dynam-
ics of the system (robot). Other alternative approaches have addressed the instantaneous
balancing conditions for planar and spatial mechanisms by using the screw-theory-based
methodology in the necessary instantaneous dynamic balancing conditions [23]. The use
of higher-order derivatives of the balance conditions [35] is another approach that could
result in easier and less expensive methods for the dynamic balancing of a small group
of closed-loop linkages. Anther approach to fulfilling the necessary conditions for the
complete shaking force and shaking moment is using the equivalence method [36], where
complex planar mechanisms are transformed into simple equivalent links and cranks as the
equivalence method [36]. On the other hand, fulfilling the dynamic balancing conditions
assumes strict constraints on the dimensional parameters of linkages or sets very restrictive
conditions that are sometimes difficult to achieve in practice.

On the other hand, optimization approaches have been incorporated in the balancing
of mechanisms. In [37], both a counterweight system and a spring are simultaneously
designed to minimize the reaction forces of a planar five-bar parallel robot subject to the
static balancing conditions (equations that fulfill constant potential energy), and the limits
in the design variable vector. Matlab’s Sequential Quadratic Programming (SQP) is used to
solve the problem. In this case, the minimization of the shaking force produces a lighter
robot than those designed using only counterweight systems (without springs). However,
this approach does not consider shaking moment conditions. A reactionless, two-degree-
of-freedom, planar parallel mechanism is designed in [38] to reduce mass and inertia by
optimizing a counter-mechanism to moment balance a force-balanced mechanism. The
force balancing conditions and the dynamic balancing conditions are set as constraints.
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The Lagrange multipliers are used to solve the optimization problem. In [39], the location
and orientation of the task to be performed by an orthoglide parallel robot are optimized
according to the shaking force changes, the shaking force maximum value, the maximum
actuator torques, and the energy consumption subject to the geometric, kinematic, and
dynamic constraints. A multiobjective optimization problem is proposed and solved by
using the Multiobjective Genetic Algorithm (MOGA), where the obtained design solutions
depend on the trajectory to be performed by the robot. In [40], a reduced number of
equivalent dynamic parameters of a set of three point-masses dynamically equivalent
to the dynamic parameters of rigid links of a mechanism are designed for balancing
the shaking force and shaking moment subject to the limits of the equivalent dynamic
parameters (equimomental system [41,42]). The approach is stated as a mono-objective
optimization problem tackled as a weighted sum approach. The Genetic Algorithm (GA)
of Matlab is used to solve it. As the solution to this problem does not provide the shape
of the link, another optimization problem is proposed to match the optimal link mass
distribution. For this purpose, the dynamic parameters of the link are obtained from a
link shape parameterized through cubic B-splines. Then, the second optimization problem
consists of finding the Cartesian coordinates of the links formed by B-spline curves that
minimize the error of the link inertia subject to the fulfillment of the other link dynamic
parameters (mass and Cartesian mass center position). Matlab’s GA is also used to solve
the second optimization problem. This two-stage optimization approach can lead to the
degradation of the dynamic balancing due to the error detected between the link shape
and the equivalent dynamic parameters. In [43], the forces, torques, and shaking moment
sensitivity with respect to position, velocity, and acceleration changes are selected as a
weighted performance function in the optimization problem. The constraints are related to
the fulfillment of the shaking force balancing requirements. This approach is applied to a
two-degree-of-freedom parallel manipulator to follow a cycloidal motion. The obtained
design is achieved by SQP, concluding that the shaking moment sensitivities can also
reduce the shaking moment. In [44], to fully balance the force of the mechanism while
minimizing the shaking moment, the counterweight approach and the adjusting kinematic
parameters [45,46] are integrated to provide a unified strategy for partial moment balancing.
This is applied to a spherical parallel robot. The AKP technique is used to change the length
of the links with the CW method to discover the extra masses and their positions, to
minimize the shaking moment while still meeting the requirements of force balancing.
The problem is solved by using the SQP algorithm of Matlab. The main drawback of the
approach is the requirement of some kinematic relations to fulfill the balancing conditions,
which may be difficult to satisfy. In [47], the time-independent terms of the shaking moment
and shaking force are simultaneously optimized by using a weighted sum approach to
suggest a balancing design for various operating conditions (tasks). This results in a unified
design approach for the mass distribution scheme and the link shape. Nevertheless, the
a priori selected tradeoffs based on the objective performance weights require precise
knowledge of the importance of each objective and a process called normalization to scale
different orders of magnitude in the objectives. Unfortunately, these requirements are
not easy to fulfill because, in the former case, a set of uniformly distributed weights does
not result in a set of Pareto solutions that are also uniformly distributed, which makes it
challenging to set weights in order to achieve a Pareto solution in a desired area of the
objective space. Moreover, in the second case, the normalization must be performed by
solving several single-objective optimization problems, one for each objective function.
This is a very time-consuming task. In addition, the weighted sum approach has problems
in non-convex Pareto fronts (it cannot find solutions in this type of front).

Through the reviewed literature, it is observed that both deterministic and stochastic
algorithms have been used to explore the design space of the balancing problem. Within
deterministic algorithms, gradient-based ones [48] might become stuck in local solutions,
while convex optimization [49] requires extensive mathematical analysis to transform
a multimodal optimization problem into a convex optimization one. In recent years,
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evolutionary algorithms (a type of stochastic algorithm inspired by natural evolution) have
been used to solve the balancing problem due to their insensitivity to the initial condition
that tends to leave local regions, their practical implementation (simple and effective) in a
variety of optimization problem domains, and their ability to combine different operators
into the search. Algorithms based on Genetic Algorithm (GA) [40,50–52] and Differential
Evolution (DE) [53] are the most commonly used in the reviewed literature.

1.1. Contributions

The approaches to dynamic balancing have been laid out for a specific kinematic
structure or a family of mechanisms, where it may be challenging to identify design
solutions to maintain balancing in a mechanism that has not been discussed in the literature.
Moreover, the requirement of assumptions such as having a smaller design space in the
optimization problem due to the requirement of certain operational conditions (trajectories),
the inclusion of auxiliary devices (mechanisms, counterweights, or transmissions), and
the setting of strict constraints on the link parameters could reduce the effectiveness of
dynamic balancing, and the use of a constant load limit the search for potential design
solutions. These issues restrict the benefits that may be achievable.

Recently, the need to provide a dynamic balancing solution for general-purpose ap-
plications in manipulators in a single design step has led to the search for other multitask
dynamic balancing approaches that take into account the tradeoff between shaking force
balancing and shaking moment balancing. Nevertheless, to the best of the authors’ knowl-
edge, this issue is only addressed in [47].

In addition to adopting a balancing approach for multipurpose applications as in [47],
the varied load management in the robot’s end-effector is a significant factor in manipulator
tasks, which, to the authors’ knowledge, is not addressed in the state-of-the-art. Clearly,
managing different loads can deteriorate the balance of the shaking force, shaking moment,
and torque delivery. In order to reduce the impacts of load fluctuations on the shaking force,
shaking moment, and torque delivery, a robust balancing strategy for robotic manipulators
is proposed in this paper. This is the first contribution of the paper.

The proposed robust balancing approach is based on optimization in which the shaking
force balancing, shaking moment balancing, and torque delivery of the obtained design
are as insensitive as possible to uncertainties in the environment (such as the load) and are
also independent of the operating conditions (such as different tasks). This is formulated
as a constrained multiobjective optimization problem in which the sensitivity of the time-
independent parameters of the shaking force, the shaking momentum, the torque, and
their nominal values are all optimized at the same time to provide a set of design tradeoffs.
One benefit of the proposal is that the optimization process does not need to know the
uncertainty variations (the probability distributions of the variations). Instead, it only needs
to know the nominal values of these variations. As a result, the obtained design solutions
provide the most competitive performance function tradeoffs for various end-effector loads
and trajectories. In this framework, it is also possible to find a set of Pareto solutions in a
single algorithm execution, and the decision maker for a single tradeoff is chosen from the
design solutions found.

The Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) [54] is used to solve
the constrained multiobjective optimization problem formulated in the proposal. The
proposal’s efficacy is applied to a three-degree-of-freedom planar manipulator where both
the shape and the optimal mass distribution of links are designed to fulfill designs with
less sensitivity in the shaking force, the shaking momentum, and the torque under load
variations. Thus, the effectiveness of the proposal is empirically validated. This last result
represents the last contribution of the work.

1.2. Paper Organization

The remainder of the paper is structured as follows: Section 2 states the robust bal-
ancing problem. The practical application (case study), its associated multiobjective opti-
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mization problem, and the evolutionary optimization technique to solve it are presented in
Section 3. The results and discussion are given in Section 4, and, finally, the conclusions are
drawn in Section 5.

2. Design Approach Based on Multiobjective Optimization for Shaking Force,
Shaking Moment, and Torque Robust Balancing

The proposed design approach consists of the robust balancing of the shaking force,
the shaking moment, and the torque of robotic manipulators, assuming that there are uncer-
tainties that are not modeled in the proposal. The proposed robust approach for balancing
robotic manipulators is stated as a nonlinear constrained multiobjective optimization prob-
lem (NLC-MOP). The solutions provide a set of tradeoffs that perform different synergies
among the design criteria and reduce their variations in the presence of uncertainties, i.e.,
the shaking force, the shaking moment, and the torque are as insensitive as possible to
such changes.

The application of the robust balancing approach requires the following simplifying
assumptions:

(1) The i-th objective function (design criterion) Ji ∀ i ∈ [1, nJ ] must be of at least class
C1(Υ) for developing the design objective variations J̃.

(2) The nominal value of the uncertainty parameter is known, but its variations and
bounds are not (probability distributions of the variations are not known).

(3) The design criteria related to the shaking force, the shaking moment, and the torque
can be divided into time-dependent and time-independent terms.

In addition, the non-robust balancing approach given in [47] is considered to be
generally stated as follows:

min
p∈Rnp

J(p, Υ) (1)

J =
nJ

∑
i=1

µi Ji(p, Υ) (2)

subject to

gj(p) ≤ 0, j ∈ [1, ng] (3)

pmin ≤ p ≤ pmax (4)

The problem formulation (1)–(4) is related to a multiobjective optimization problem
that has been transformed into a single-objective optimization one by using the weighted
sum approach [55], where term µi represents the i-th design objective weight. It includes
nJ design criteria (each one in Ji, i ∈ [1, . . . , nJ ]) that are weighted in J and ng inequality
constraints (3) inherent to the balancing problem. The design criteria are related to the time-
independent terms of the shaking force, shaking moment, and torque to make the design
not dependent on the operating conditions (performed trajectories) of the robot [47]. The
design parameters allow the distribution of the link masses to fulfill the design objective
and constraints. These parameters are related to the link shape and grouped in the vector
p ∈ Rnp with the lower and upper limits pmin and pmax, respectively. In contrast to [47],
the formulation includes the uncertain parameter vector Υ = Ῡ + ε ∈ RnΥ . The uncertain
parameter Υ differs from its nominal value Ῡ by ε units and is associated with parameters
that can change depending on the application. In the case reported in [47], the uncertain
parameter vector is not considered (it does not appear in the optimization problem), and
this vector is assumed to be at its nominal value, i.e., Υ = Ῡ. Nonetheless, the uncertainties
can deteriorate the optimal solution in the balancing problem such that the performance
function can be negatively affected, or even the solution can leave the feasible region. For
this reason, the formulation of a robust balancing approach is proposed in this work.

The robust balancing approach is formulated as a multiobjective optimization problem
where the nominal design objectives and their variations with respect to unknown changes
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ε are considered objective functions. The nominal objectives involve the terms Ji in (2)
associated with the design objectives of the non-robust balancing approach. In the proposed
formulation, the uncertainties Υ present a known nominal value Ῡ but their variations ε
are not known. The previous assumption is common in several applications. For example,
considering friction as uncertainty, the friction of the robot joint can increase with the
operating time and the environment, among others, and, for this case, the designer knows
the initial joint friction (nominal value) and does not know the friction when time goes by
(variation value). Thus, the design objective variations refer to the rate of change in the
terms Ji with respect to the uncertainty variations Υ (which are assumed to be infinitesimal)
considering the nominal value of uncertainties Ῡ. The i-th design objective variation with
respect to the j-th uncertainty (sensitivity) can be expressed as in (5).

J̃i,j =
∂Ji
∂Υj

∣∣∣∣∣
Υj=Ῡj

(5)

Therefore, the general formulation of the robust balancing approach is stated as
the multiobjective optimization problem in (6)–(8). It consists of finding the set of link
shapes grouped in the design variable vector p that satisfy different tradeoffs among the
nominal design criteria related to the shaking force, shaking moment, and torque, as well
as variations in these criteria subject to inherited constraints in the balancing problem.

min
p∈Rnp

J : min
p∈Rnp

[J1, . . . , JnJ , J̃1,1, . . . , J̃n J̃ ,nΥ ] (6)

subject to

gj(p) ≤ 0, j = 1, . . . , ng (7)

pmin ≤ p ≤ pmax (8)

It is important to point out in the proposal whether J̃i,j (5) is decreased, the changes in
the design objectives Ji due to variations in the uncertainties Υ are reduced, and, then, the
minimization of J̃i,j can provide solutions as insensible as possible to uncertainty variations
in the design objectives Ji. Moreover, the minimization of the nominal design objectives Ji
can provide solutions with better performance. Then, when the robust balancing problem
formulation is solved, the proposal can search for different solutions that fulfill different
tradeoffs in minimizing the nominal performance functions and their variations due to
the multiobjective nature of the problem formulation. Section 3 gives the details of the
optimization problem for the robust balancing approach in a specific application.

Multiobjective Optimization Algorithm

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [54] is implemented to
solve the robust balancing optimization problem (6)–(8). The NSGA-II is chosen because it
can identify a better distribution of solutions and convergence around the true Pareto-optimal
front in benchmark optimization problems. Furthermore, as mentioned in the Introduction,
GA-based algorithms are more commonly utilized to solve balancing problems.

The pseudocode of the NSGA-II is shown in Algorithm 1. Considering constrained
multiobjective optimization problems, the NSGA-II starts with a random parent population
sorted based on the non-domination level (using constrained domination). Similar to the
GA algorithm, it uses binary tournament selection, recombination, and mutation operators
to create the offspring population from the parent population. Both populations are
combined and sorted according to the non-domination level. The new parent population is
formed by selecting the solutions from the best domination levels until this population is
filled. The crowded-comparison operator (based on non-domination level and crowding
distance) is used to prune the solutions in the last front of the combined population. The
same procedure is done (recombination and mutation) in the new parent population, but
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now the selection criterion in the binary tournament selection is based on the crowded-
comparison operator. This process is repeated until the desired generation is reached.

In the implementation, the simulated binary crossover (SBX) operator and polynomial
mutation are used as in the original work [54]. Nevertheless, the technique to handle bound
constraints in the generation of the offspring population is changed to the random bound
constraint-handling method [56]. This method substitutes random values for variables
outside the bounds.

Algorithm 1 Pseudocode of the NSGA-II.
1: G ← 0
2: Generate the initial population PG=0 ← randi[pimin , pimax ] ∀ i = 1, 2, . . . , NP− 1 with

NP− 1 chromosomes.
3: Obtain the last chromosome (chromosome NP) of the initial population using a promis-

ing solution (elite solution).
4: Evaluate the performance function vector J(pi) ∀ i = 1, 2, . . . , NP for the population
PG=0.

5: Evaluate the constraints gj(pi) ∀ j = 1, . . . , ng ∧ ∀ i = 1, 2, . . . , NP. Sum the normalized

violated constraints Φi, i.e., Φi = ∑
j

max(0,gj(pi))

max(gi
j(p

i),··· ,gN
j P(pi))

.

6: Set the constrained domination, the non-dominance level, and the crowding distance
in the parent population PG=0.

7: while G < Gmax do
8: for i = 1 to NP do
9: Select two parents pa and pb from PG by binary tournament for each of them. The

selected criterion in the tournament is based on the rank and crowding distance
(crowded-comparison operator).

10: Generate two children’s chromosomes ca and cb through SBX (see Algorithm 2).
11: Generate two mutant chromosomes va and vb through polynomial mutation (see

Algorithm 3).
12: Apply random technique in the bound constraint-handling method for the mutant

chromosomes va and vb and store them in VG.
13: end for
14: Evaluate the performance function vector J(v) of the child population, i.e., v ∈ VG.
15: Evaluate the constraints gj(v) ∀ v ∈ VG ∧ ∀ j = 1, . . . , ng. Sum the normalized

violated constraints Φi
v.

16: Set the constrained domination, the non-dominance level, and the crowding distance
for the combined population of the parent population PG and the child population
VG.

17: Select the chromosomes in the combined population that pass to the next population
PG+1 based on the crowded-comparison operator, i.e., based on the non-domination
level (the minimum is better) and at the same time based on the crowding distance
(the larger distance is preferred).

18: G ← G + 1
19: end while
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Algorithm 2 Simulated Binary Crossover (SBX).
1: function SBX(pa, pb)
2: if rand[0, 1] ≤ pc then
3: for i = 1 to D do
4: if rand[0, 1] ≤ 0.5 then
5: if |pi

a − pi
b| > ε then

6: y1 = min(pi
a, pi

b)

7: y2 = max(pi
a, pi

b)
8: u = rand[0, 1]
9: Compute β1 and β2:

β1 = 1 + 2 y1−yl
y2−y1

β2 = 1 + 2 yu−y2
y2−y1

10: Compute α1 and α2:
αj = 2− β

−(ηc+1)
j ∀ j = 1, 2

11: Compute β1
q and β2

q:

β
j
q =

(uαj)
1

ηc+1 If u ≤ 1
αj

( 1
2−uαj

)
1

ηc+1 Otherwise
12: Generate the genes c1 and c2:

c1 = 0.5(y1 + y2 − β1
q(y2 − y1))

c2 = 0.5(y1 + y2 + β2
q(y2 − y1))

13: Store c1 and c2 in ci
a and ci

b, respectively.
14: else
15: Store pi

a and pi
b in ci

a and ci
b, respectively.

16: end if
17: else
18: Store pi

a and pi
b in ci

a and ci
b, respectively.

19: end if
20: end for
21: else
22: Set ca = pa and cb = pb.
23: end if
24: return ca and cb
25: endfunction

On the other hand, the search space for the robust balancing problem is complicated
because there are many design variables, many constraints, and many performance func-
tions that need to be optimized. Thus, an elite solution (promising solution) is added to the
random parent population to be used in the search for exploration and exploitation in the
elite region. Furthermore, the entire region is explored and exploited, as described in the
original work. The method of obtaining this elite solution and its parameters are detailed
in Section 4.1.1.

With the aforementioned changes, the NSGA-II is used to find solutions to the robust
balancing problem.
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Algorithm 3 Polynomial mutation.
1: function Polynomial mutation(c)
2: for i = 1 to D do
3: if rand[0, 1] ≤ pm then
4: y = ci
5: Determine ∆1 and ∆2:

∆1 = y−yl
yu−yl

∆2 = yu−y
yu−yl

6: u = rand[0, 1]
7: Determine ∆q:

∆j
q =

(2u + (1− 2u)(1− ∆1)
ηm+1)

1
ηm+1 − 1 If u ≤ 0.5

1− (2(1− u) + 2(u− 0.5)(1− ∆2)
ηm+1)

1
ηm+1 Otherwise

8: Set vi:
vi = y + ∆q(yu − yl)

9: else
10: vi = ci
11: end if
12: end for
13: return v

3. Application

The proposed robust balancing problem is applied to a hybrid serial-parallel robotic
manipulator. In the proposed approach, the dynamic balancing conditions, the torque, and
their variations are simultaneously considered to provide a suitable mass distribution of
the manipulator links that keeps robust solutions. In what follows, the robotic manipulator,
as well as the terms associated with the optimization problem (6)–(8) of the proposal,
are presented.

3.1. Robot Description

The schematic diagram of the considered robotic manipulator is shown in Figure 1.
This robot presents a hybrid architecture based on a parallel and serial structure with
three degrees of freedom (n = 3 d.o. f ) in the joint space. It develops the task in the plane
X−Y considering the Cartesian position (xe, ye) and orientation φe of the end-effector. The
angular position and velocity of links are expressed as q = [q1, q2, q3]

T and q̇ = [q̇1, q̇2, q̇3]
T ,

respectively; the input torque vector is given by τ = [τ1, τ2, τ3]
T and the gravity acceleration

is set as g.

Figure 1. Schematic diagram of the robotic manipulator.
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3.2. Design Variables

Before setting the design variables, it is important to note that each link Qi, i = 1, . . . , 5
has its own coordinate system [xi, yi] to describe the position of the link mass center at
the origin of such a system, through the polar coordinates [lci , γi] (see Figure 1). Given
the polar coordinates above, the Cartesian coordinates of each link can be calculated as
lcix = lci cos(γi) and lciy = lci sin(γi). On the contrary, given the Cartesian coordinates of

the link, the polar ones result in lci =
√

l2
cix

+ l2
ciy

and γi = atan2(lciy , lcix ).

Moreover, for each link, there is information about the inertia tensor Ii, the mass mi,
and the link lengths ai. The actuator of the fifth link Q5 with mass m̂3 is located at the
coordinate (xm̂3 , ym̂3) from the coordinate system x4 − y4 (link Q4) with a 1:1 pulley and
belt transmission. In general, the actuator has a relatively high weight. Unlike when the
actuator of the fifth link Q5 is placed in a specific location, the mass distribution of the robot
can be more precisely configured by moving the actuator’s weight to different locations.

The design parameters to fulfill the design objectives in the proposal are the link mass
distribution considering constant link lengths. Each link mass distribution is modified
according to the independent geometric variables of octagonal link shapes (bi, ci, di, ei, fi, gi,
hi, ni, ji, ki). In the case of the link Q4, the position (xm̂3 , ym̂3) of the motor that provides the
movement in the link Q5 is also adjusted as observed in Figure 2 because it can influence its
mass distribution. Then, the design variable vector p ∈ R52 can be grouped and presented
in (9).

p = [bi, ci, di, ei, fi, gi, hi, ni, ji, ki, xm̂3 , ym̂3 ] ∈ R52 (9)

Figure 2. Design variables of the i-th link. The distance a′i2 of the fourth link Q4 (i = 4) is set as a
fixed length a′i2 = a2 and the cylinder (hole) L4 is included. For the rest of the links (∀ i 6= 4), the fixed
length a′i2 = 0, the cylinder Li, and the actuator placed in (xm̂3 , ym̂3 ) are removed (the length, the hole,
and the actuator are not considered).

The octagonal link shape is a proposal given in [47] to promote different configurations
of the link to change its mass, inertia, and mass center length, i.e., with different values of
its independent geometric variables, the links can form rectangular, trapezoidal, hexagonal,
octagonal prisms, or irregular forms. The main advantage is that the increment in the
link mass and system complexity in the mass redistribution by using the link shape is less
likely as in the case of the counterweight approach [25], because it is necessary to add
counterweight systems to fulfill a specific mass redistribution in a given link. Meanwhile,
the links are designed from scratch using the link shape for mass redistribution.
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The relationships between the mass mi, the inertia Izzi, and the mass center length
(lcix , lciy) of the robot links with respect to the design variable vector p are then depicted
next [47].

Considering that the mass, the mass center position, and the inertia of the i-th link
can be formed from simple geometries, Ωi = {Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi, Ni} (see Figure 2).
The mass, the mass center position, and the inertia of the i-th link can be expressed as a
function of p as expressed in (10)–(13).

mi = ∑
Ωi

mΩi (10)

lcix =
1

mi
∑
Ωi

lcxΩi
mΩi (11)

lciy =
1

mi
∑
Ωi

lcyΩi
mΩi (12)

Izzi = ∑
Ωi

(
IΩi + mΩi

((
lcxΩi
− lcix

)2
+
(

lcyΩi
− lciy

)2
))

(13)

In addition, each simple geometry in Ωi has a mass mΩi , a mass center length expressed
in Cartesian coordinates (lcxΩi

, lcyΩi
) (with respect to the coordinate system xi − yi), and an

inertia moment IΩi in the z axis, and these are expressed in Appendix A.

3.3. Nominal Performance Function

In this section, the performance functions related to the shaking force, shaking moment,
and torque are detailed. In all design objectives, the time-dependent terms are removed to
promote design objectives free of specific applications.

3.3.1. Shaking Force

The robotic manipulator’s total mass center vector rcT multiplied by the manipulator
total mass mT can be expressed as in (14), where mi and rci are the mass and mass center
position of the i-th link, respectively.

mTrcT =
5

∑
i=1

mirci (14)

Then, the shaking force vector FSh (15) can be formulated using the second derivative
of (14), where r̈ci and r̈cT are the linear acceleration of the i-th link mass center and the total
mass center vector, respectively.

FSh =
5

∑
i=1

mi r̈ci

= mT r̈cT (15)

When the Global Center of Mass (G.C.M.) of a robot remains constant regardless of
the motion of the manipulator, the total force applied by the robot to the fixed base remains
constant as well [57]. In this case, the forces acting on the manipulator frames should
ideally add up to zero, and the shaking (force) balancing condition is satisfied [7].

By using complex numbers and the Euler identity to represent a two-dimensional vec-
tor to a complex number, and separating the time-dependent vector Γ(q) =

[
ejq1 , ejq2 , ejq2q3

]T

related to the generalized coordinates q(t), the mass Equation (14) results in (16) [47].

mTrcT = [Φ11 + ĵΦ21, Φ12 + ĵΦ22, Φ13 + ĵΦ23]Γ(q) (16)
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Using (16), the shaking force vector (15) can also be formulated as in (17).

FSh = mT r̈cT

FSh = [Φ11 + ĵΦ21, Φ12 + ĵΦ22, Φ13 + ĵΦ23]
d2Γ(q)

dt2 (17)

Let us consider that the real and imaginary part of the time-independent complex number
in (16) is grouped in the matrix Φ = [Φi,k] ∈ R2×3 where Φ11 = m1lc1 cosγ1 + m3lc3 cosγ3 +
m4a1 + m5a1, Φ12 = m2lc2 cosγ2 + m3a2 − m4lc4 cosγ4 − a4m5, Φ13 = −m5lc5 cosγ5, Φ21 =
m1lc1 sinγ1 + m3lc3 sinγ3, Φ22 = m2lc2 sinγ2 − m4lc4 sinγ4 and Φ23 = −m5lc5 sinγ5. The
Frobenius norm of the matrix Φ (18) is chosen as the design objective J1 to reduce the time-
independent terms of the shaking force balancing (17). Minimizing this objective function will
reduce the shaking force balancing.

It is important to note that the objective function (18) represents the square of the
terms Φi,k and it does not depend on a specific application (i.e., it does not depend on q(t),
q̇(t) and q̈(t)).

J1 = ||Φ̄||2F

=
2

∑
i=1

3

∑
j=1

(Φ̄i,j)
2 (18)

3.3.2. Shaking Moment

According to [47], let us consider that the angular momentum Hz ∈ R (19) in the
z axis can be expressed in the time-independent and time-dependent vectors named as
∆ = [∆l ] ∈ R9 and ∆̄(q, q̇) = [∆̄l ] ∈ R9, respectively.

Hz =
5

∑
i=1

ẑT
(

mi(rci × ṙci ) + Ii
iwi

)
Hz = ∆T∆̄(q, q̇) (19)

where ṙci ,
iwi, Ii represent the mass center velocity vector, the angular velocity vector, and

the inertia tensor of the i-th link. ẑ = [0, 0, 1]T is a unit vector in the z direction. The terms
of the vectors ∆ and ∆̄ are ∆1 = m1l2

cx + m1l2
cy + Iz1 + Iz3 + m3l2

c3x
+ m3l2

c3y
+ a2

1m4 + a2
1m5,

∆2 = m2l2
c2x

+ m2l2
c2y

+ Iz2 + a2
2m3 + Iz4 + m4l2

c4x
+ m4l2

c4y
+ Iz5 + m5l2

c5x
+ m5l2

c5y
+ a2

4m5,

∆3 = Iz5 + m5l2
c5x

+ m5l2
c5y

, ∆4 = a2m3lc3x − a1m4lc4x − a1a4m5, ∆5 = −a2m3lc3y − a1m4lc4y ,
∆6 = a4m5lc5x , ∆7 = −a4m5lc5y , ∆8 = −a1m5lc5x , ∆9 = a1m5lc5y , ∆̄1 = q̇1, ∆̄2 = q̇2,
∆̄3 = q̇3, ∆̄4 = (q̇1 + q̇2) cos(q1 − q2), ∆̄5 = (q̇1 + q̇2) sin(q1 − q2), ∆̄6 = (2q̇2 + q̇3) cos q3,
∆̄7 = (2q̇2 + q̇3) sin q3, ∆̄8 = (q̇1 + q̇2 + q̇3) cos(q2 − q1 + q3), and ∆̄9 = (q̇1 + q̇2 + q̇3)
sin(q2 − q1 + q3).

Assuming that the mass, mass center length, inertia, and length of links do not vary
with respect to time, the shaking moment MShz in the z axis is expressed in (20).

MShz = ∆T d∆̄(q, q̇)
dt

(20)

Then, the second objective function is related to the Euclidean norm of ∆ (21), i.e., the
time-independent terms of the shaking moment (20). By minimizing such an objective, the
shaking moment is reduced in spite of different robotic tasks (i.e., it does not depend on
q(t), q̇(t), and q̈(t)).

J2 = ||∆||2

=
9

∑
i=1

∆2
i (21)
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3.3.3. Torque Delivery

Since the joint actuator provides the applied torque to fulfill the task, i.e., the motor
torque τC must compensate the load τL (due to the manipulator dynamics with its end-
effector load) for governing it (τC = τL ), minimizing the manipulator load can reduce the
applied torque and thus the energy consumption.

Then, the closed-form dynamic model derived from the Lagrange equations [58]
is (22), where M(q) = [Mi,j] ∈ Rn×n is the symmetric and positive, definite inertia matrix;
C(q, q̇) = [Ci,j] ∈ Rn×n is a matrix that relates the centrifugal and Coriolis forces when
multiplied by the angular velocity q̇, and G(q) = [Gj] ∈ Rn is the vector of gravity.
Appendix B provides information about the terms included in the matrices and vectors of
the dynamic model.

τ(t) = M(q)q̈ + C(q, q̇)q̇ + G(q) (22)

Considering that the robot dynamics (22) are linear in the inertia parameters [58], the
robotic dynamics can be expressed as the product of a time-dependent matrix (referred
to as the regressor), and a vector called the inertia parameters (constant vector). With the
linearity property in the inertia parameters of the robotic manipulator dynamics, there
can also exist matrices ∆iq(q) ∈ Rk̂i×n and ∆jq(q, q̇) ∈ Rk̂j×n ∀ i ∈ {M, G} ∧ j ∈ {C},
which contain the time-dependent terms (the state vector), and also a matrix ∆i ∈ Rn×k̂i

that contains the inertia parameters of the robot. In these matrices, k̂i and k̂ j represent the

number of columns or rows in such matrices. For instance, the matrix ∆iq(q) ∈ Rk̂i×n when

i = M results in ∆Mq(q) ∈ Rk̂M×n.
Hence, it is possible to rewrite the matrices M(q) and C(q, q̇) and the vector G(q) as

in (23), (24), and (25), respectively. See Appendix C for the details of these matrices.

M(q) =∆M ∆Mq(q) (23)

C(q, q̇) =∆C ∆Cq(q, q̇) (24)

G(q) =∆G ∆Gq(q) (25)

The squares of the Frobenius norms of the matrices ∆M ∈ R3×15, ∆C ∈ R3×16, and
∆G ∈ R3×6 are proposed as the other design objective J3 (26). The minimization of such
time-independent terms (design objective) can reduce the applied torque (22) exerted by
the robotic manipulator without a dependency on a specific robotic application, i.e, without
relying on the generalized coordinates q, velocities q̇, and accelerations q̈.

J3 = ||∆M||F + ||∆C||F + ||∆G||F

=
3

∑
i=1

15

∑
j=1

(∆Mi,j)
2 +

3

∑
i=1

16

∑
j=1

(∆Ci,j)
2 +

3

∑
i=1

6

∑
j=1

(∆Gi,j)
2 (26)

3.4. Variations in the Performance Function (Sensitivities)

This section explains the performance function related to the decrement in the variation
in the nominal objective function with respect to uncertainties. As commented previously,
these objectives are expressed without dependence on time to promote design objectives
free of specific applications.

In this case, the end-effector load applied in the Cartesian coordinate (xe, ye) of the fifth
link (see Figure 1) is considered as the parameter that changes in different applications of
the robot manipulator. Then, the mass of the fifth link is chosen as the uncertain parameter
(Υ = m5) due to the changes in the end-effector load directly modifying the corresponding
link’s mass distribution.

It is important to note that the first through third objective functions (18), (21), and (26)
depend on m5, lc5x , lc5y , Izz5, i.e., these are composite functions Ji = fi(m5, lc5x , lc5y , Izz5) ∀
i = 1, 2, 3. Their variations ΛJi are computed by differentiating composite functions.
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3.4.1. Shaking Force Variation

The variation in the Time-Independent Terms of the Shaking Force Balancing
(TITShFB) (18) with respect to the fifth mass m5 is named ΛJ1. The square of ΛJ1 (27)
is selected as another objective function to be minimized. Minimizing this objective func-
tion will promote robust solutions for the TITShFB and, therefore, it reduces the shaking
force balancing variations.

J4 = (ΛJ1)
2 (27)

The term ΛJ1 can be obtained as in (28).

ΛJ1 =
∂J1

∂m5
+

∂J1

∂lc5x

∂lc5x

∂m5
+

∂J1

∂lc5y

∂lc5y

∂m5
+

∂J1

∂Izz5

∂Izz5

∂lc5y

∂lc5y

∂m5
+

∂J1

∂Izz5

∂Izz5

∂lc5x

∂lc5x

∂m5
(28)

where

∂J1

∂m5
=

∂Φ̄2
11

∂m5
+

∂Φ̄2
12

∂m5
+

∂Φ̄2
13

∂m5
+

∂Φ̄2
21

∂m5
+

∂Φ̄2
22

∂m5
+

∂Φ̄2
23

∂m5

= 2m5l2
c5x

+ 2m5l2
c5y

+ 2a1(a1m4 + a1m5 + lc1x m1 + lc3x m3)

− 2a4(a2m3 − a4m5 + lc2x m2 − lc4x m4) (29)

∂J1

∂lc5x
=

∂Φ̄2
11

∂lc5x
+

∂Φ̄2
12

∂lc5x
+

∂Φ̄2
13

∂lc5x
+

∂Φ̄2
21

∂lc5x
+

∂Φ̄2
22

∂lc5x
+

∂Φ̄2
23

∂lc5x

= 2lc5xm2
5 (30)

∂J1

∂lc5y
=

∂Φ̄2
11

∂lc5y
+

∂Φ̄2
12

∂lc5y
+

∂Φ̄2
21

∂lc5y
+

∂Φ̄2
22

∂lc5y
+

∂Φ̄2
31

∂lc5y
+

∂Φ̄2
32

∂lc5y

= 2lc5ym2
5 (31)

∂J1

∂Izz5
=

∂Φ̄2
11

∂Izz5
+

∂Φ̄2
12

∂Izz5
+

∂Φ̄2
13

∂Izz5
+

∂Φ̄2
21

∂Izz5
+

∂Φ̄2
22

∂Izz5
+

∂Φ̄2
23

∂Izz5

= 0 (32)

The rest of the terms in (28) are obtained by deriving (11)–(13), and this results in

∂Izz5

∂lc5y
= mB5(2lBx − 2lc5x )−mA5(2lAx − 2lc5x ) + mC5(2lCx − 2lc5x )

−mD5(2lDx − 2lc5x )−mE5(2lEx − 2lc5x )−mF5(2lFx − 2lc5x )

−mG5(2lGx − 2lc5x )−mH5(2lHx − 2lc5x )−mN5(2lNx − 2lc5x ) (33)
∂Izz5

∂lc5x
= mB5(2lBy − 2lc5y)−mA5(2lAy − 2lc5y) + mC5(2lCy − 2lc5y)

−mD5(2lDy − 2lc5y)−mE5(2lEy− 2lc5y)−mF5(2lFy − 2lc5y)

−mG5(2lGy − 2lc5y)−mH5(2lHy − 2lc5y)−mN5(2lNy − 2lc5y) (34)

∂lc5y

∂m5
= −(mA5 lAy −mB5 lBy −mC5 lCy + mD5 lDy + mE5 lEy + mF5 lFy + mG5 lGy

+ mH5 lHy + mN5 lNy)/m2
5 (35)

∂lc5x

∂m5
= −(mA5 lAx −mB5 lBx −mC5 lCx + mD5 lDx + mE5 lEx + mF5 lFx + mG5 lGx

+ mH5 lHx + mN5 lNx)/m2
5 (36)
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Therefore, the objective function related to the TITShFB (27) is expressed in (37).

J4 = (2lc5x (mA5 lcAx −mB5 lcBx −mC5 lcCx + mD5 lcDx + mE5 lcEx + mF5 lcFx + mG5 lcGx

+ mH5 lcHx + mN5 lcNx ) + 2lc5y (mA5 lcAy −mB5 lcBy −mC5 lcCy + mD5 lcDy + mE5 lcEy + mF5 lcFy

+ mG5 lcGy + mH5 lcHy + mN5 lcNy )− 2l2
c5x

m5 − 2l2
c5y

m5 − 2a1(a1m4 + a1m5 + lc1x m1 + lc3x m3)

+ 2a4(a2m3 − a4m5 + lc2x m2 − lc4x m4))
2 (37)

3.4.2. Shaking Moment Variation

The variation in the Time-Independent Terms of the Shaking Moment Balancing
(TITShMB) (21) with respect to the fifth mass m5 is named ΛJ2. The square of ΛJ2 (38) is
selected as another objective function to be minimized. Minimizing this objective function
will promote robust solutions for the TITShMB and, therefore, it reduces the shaking
moment balancing variations

J5 = (ΛJ2)
2 (38)

The term ΛJ2 can be obtained as follows:

ΛJ2 =
∂J2

∂m5
+

∂J2

∂lc5x

∂lc5x

∂m5
+

∂J2

∂lc5y

∂lc5y

∂m5
+

∂J2

∂Izz5

∂Izz5

∂lc5y

∂lc5y

∂m5
+

∂J2

∂Izz5

∂Izz5

∂lc5x

∂lc5x

∂m5
(39)

where

∂J2

∂m5
=

∂∆2
1

∂m5
+

∂∆2
2

∂m5
+

∂∆2
3

∂m5
+

∂∆2
4

∂m5
+

∂∆2
5

∂m5
+

∂∆2
6

∂m5
+

∂∆2
7

∂m5
+

∂∆2
8

∂m5
+

∂∆2
9

∂m5

= 2(l2
c5x

+ l2
c5y

)(m5l2
c5x

+ m5l2
c5y

+ Izz5) + 2a2
1(Izz1 + Izz3 + a2

1m4 + a2
1m5

+ l2
c1x

m1 + l2
c1y

m1 + l2
c3x

m3 + l2
c3y

m3) + 2(a2
4 + l2

c5x
+ l2

c5y
)(m3a2

2 + m5a2
4

+ m2l2
c2x

+ m2l2
c2y

+ m4l2
c4x

+ m4l2
c4y

+ m5l2
c5x

+ m5l2
c5y

+ Izz2 + Izz4 + Izz5)

+ 2a1a4(a1a4m5 − a2lc3x m3 + a1lc4x m4) + 2a2
1l2

c5x
m5 + 2a2

1l2
c5y

m5

+ 2a2
4l2

c5x
m5 + 2a2

4l2
c5y

m5 (40)

∂J2

∂lc5x
=

∂∆2
1

∂lc5x
+

∂∆2
2

∂lc5x
+

∂∆2
3

∂lc5x
+

∂∆2
4

∂lc5x
+

∂∆2
5

∂lc5x
+

∂∆2
6

∂lc5x
+

∆2
7

∂lc5x
+

∂∆2
8

∂lc5x
+

∂∆2
9

∂lc5x

= 4lc5x m5(m5l2
c5x

+ m5l2
c5y

+ Izz5) + 4lc5x m5(m3a2
2 + m5a2

4 + m2l2
c2x

+ m2l2
c2y

+ m4l2
c4x

+ m4l2
c4y

+ m5l2
c5x

+ m5l2
c5y

+ Izz2 + Izz4 + Izz5) + 2a2
1lc5x m2

5 + 2a2
4lc5x m2

5 (41)

∂J2

∂lc5y
=

∂∆2
1

∂lc5y
+

∂∆2
2

∂lc5y
+

∂∆2
3

∂lc5y
+

∂∆2
4

∂lc5y
+

∂∆2
5

∂lc5y
+

∂∆2
6

∂lc5y
+

∆2
7

∂lc5y
+

∂∆2
8

∂lc5y
+

∂∆2
9

∂lc5y

= 4lc5y m5(m5l2
c5x

+ m5l2
c5y

+ Izz5) + 4lc5y m5(m3a2
2 + m5a2

4 + m2l2
c2x

+ m2l2
c2y

+ m4l2
c4x

+ m4l2
c4y

+ m5l2
c5x

+ m5l2
c5y

+ Izz2 + Izz4 + Izz5) + 2a2
1lc5y m2

5 + 2a2
4lc5y m2

5 (42)

∂J2

∂Izz5
=

∂∆2
1

∂Izz5
+

∂∆2
2

∂Izz5
+

∂∆2
3

∂Izz5
+

∂∆2
4

∂Izz5
+

∂∆2
5

∂Izz5
+

∂∆2
6

∂Izz5
+

∆2
7

∂Izz5
+

∂∆2
8

∂Izz5
+

∂∆2
9

∂Izz5

= 2m3a2
2 + 2m5a2

4 + 2m2l2
c2x

+ 2m2l2
c2y

+ 2m4l2
c4x

+ 2m4l2
c4y

+ 4m5l2
c5x

+ 4m5l2
c5y

+ 2Izz2 + 2Izz4 + 4Izz5 (43)

Substituting (33)–(36) and (40)–(43) in (39) and squaring this term, the objective func-
tion related to the variation in the TITShMB (38) can be obtained, but this is not explicitly
expressed due to the large expression of this function.



Mathematics 2023, 11, 1776 16 of 54

3.4.3. Torque Variation

As commented previously, the torque delivery is related in this work to the Time-
Independent Terms of the Applied Torque (TITAT). Then, the variation in the TITAT (26)
with respect to the fifth mass m5 is named ΛJ3. The square of ΛJ3 (44) is selected as another
objective function to be minimized. Minimizing this objective function will promote robust
solutions for the TITAT and, therefore, it reduces the torque variations

J6 = (ΛJ3)
2 (44)

The term ΛJ3 can be obtained as follows:

ΛJ3 =
∂J3

∂m5
+

∂J3

∂lc5x

∂lc5x

∂m5
+

∂J3

∂lc5y

∂lc5y

∂m5
+

∂J3

∂Izz5

∂Izz5

∂lc5y

∂lc5y

∂m5
+

∂J3

∂Izz5

∂Izz5

∂lc5x

∂lc5x

∂m5
(45)

where

∂J3
∂m5

=
3

∑
i=1

15

∑
j=1

2∆Mi,j

∂(∆Mi,j )

∂m5
+

3

∑
i=1

18

∑
j=1

2∆Ci,j

∂(∆Ci,j )

∂m5
+

3

∑
i=1

6

∑
j=1

2∆Gi,j

∂(∆Gi,j )

∂m5

= 6(l2
c5x

+ l2
c5y
)(m5l2

c5x
+ m5l2

c5y
+ Izz5 ) + 2a2

1(Izz1 + Izz3 + a2
1m4 + a2

1m5 + l2
c1x

m1

+ l2
c1y

m1 + l2
c3x

m3 + l2
c3y

m3) + 4l2
c5x

m5 + 4l2
c5y

m5 + 2a1(a1m4 + a1m5 + lc1x m1

+ lc3x m3)− 2a4(a2m3 − a4m5 + lc2x m2 − lc4x m4) + 2(a2
4 + l2

c5x
+ l2

c5y
)(m3a2

2+

m5a2
4 + m2l2

c2x
+ m2l2

c2y
+ m4l2

c4x
+ m4l2

c4y
+ m5l2

c5x
+ m5l2

c5y
+ Izz2 + Izz4 + Izz5 )

+ 8a1a4(a1a4m5 − a2lc3x m3 + a1lc4x m4) + 20a2
1l2

c5x
m5 + 20a2

1l2
c5y

m5 + 24a2
4l2

c5x
m5

+ 24a2
4l2

c5y
m5 (46)
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15
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2∆Mi,j

∂(∆Mi,j )
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+

3

∑
i=1
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∑
j=1

2∆Ci,j

∂(∆Ci,j )

∂lc5x
+

3

∑
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6

∑
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∂(∆Gi,j )

∂lc5x

= 4lc5x m2
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2 + m5a2
4
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c2x

+ m2l2
c2y

+ m4l2
c4x

+ m4l2
c4y

+ m5l2
c5x

+ m5l2
c5y

+ Izz2 + Izz4 + Izz5 )

+ 20a2
1lc5x m2

5 + 24a2
4lc5x m2

5 (47)

∂J3
∂lc5y

=
3

∑
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∑
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2∆Mi,j

∂(∆Mi,j )

∂lc5y
+

3

∑
i=1

18

∑
j=1

2∆Ci,j

∂(∆Ci,j )

∂lc5y
+

3

∑
i=1

6

∑
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2∆Gi,j

∂(∆Gi,j )
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= 4lc5y m2
5 + 12lc5y m5(m5l2

c5x
+ m5l2

c5y
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c2x

+ m2l2
c2y

+ m4l2
c4x
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c4y
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5 (48)

∂J3
∂Izz5

=
3

∑
i=1

15

∑
j=1

2∆Mi,j

∂(∆Mi,j )

∂Izz5
+

3

∑
i=1

18

∑
j=1

2∆Ci,j

∂(∆Ci,j )

∂Izz5
+

3

∑
i=1

6

∑
j=1

2∆Gi,j

∂(∆Gi,j )

∂Izz5

= 2m3a2
2 + 2m5a2

4 + 2m2l2
c2x

+ 2m2l2
c2y

+ 2m4l2
c4x

+ 2m4l2
c4y

+ 8m5l2
c5x

+ 8m5l2
c5y

+ 2Izz2 + 2Izz4 + 8Izz5 (49)

Substituting (33)–(36) and (46)–(49) in (45) and squaring this term, the objective func-
tion related to the TITAT (44) can be obtained, but this is not explicitly expressed due to the
large expression of this function.

3.5. Design Constraints

The design approach requires that the link shapes form prisms and the location of the
third motor (xm̂3 , ym̂3) is also placed inside the fourth link Q4 [47].



Mathematics 2023, 11, 1776 17 of 54

The link shape requirements are related to the following twenty constraints (50)–(53),
where hmax,i and wmax,i are the maximum allowed height and width, respectively.

g1−5(p) : gi + ci + fi − hmax,i ≤ 0 (50)

g6−10(p) : ai + bi + di + a′2 − wmax,i ≤ 0 (51)

g11−15(p) : −ai − bi − a′2 − di + hi + ni ≤ 0 (52)

g16−20(p) : −ai − bi − a′2 − di + ji + ki ≤ 0 (53)

The motor position requirements involve the following nine constraints (54)–(62),
which restrict the mass center of the motor to be outside the green area of the fourth link, as
is observed in Figure 3. In these equations, rtol = r + rm̂3 is the tolerance radius and rm̂3 is
the minimum distance from the motor coordinates (xm̂3 , ym̂3) to the diagonal lines zdi = 0.

g21(p) : r2
tol − x2

m̂3
− y2

m̂3
≤ 0 (54)

g22(p) : rm̂3 − ym̂3 − g4 −
c4

2
≤ 0 (55)

g23(p) : rm̂3 + ym̂3 − f4 −
c4

2
≤ 0 (56)

g24(p) : rm̂3 + r− xm̂3 − a2 ≤ 0 (57)

g25(p) : rm̂3 + xm̂3 − a4 − d4 ≤ 0 (58)

g26(p) : −

−zd1︷ ︸︸ ︷
2 f4(b4 + a2) + c4h4 + 2 f4xm̂3 − 2h4ym̂3

2
√

f 2
4 + h2

4

+ rm̂3 ≤ 0 (59)

g27(p) : −

−zd2︷ ︸︸ ︷
2 f4(a4 + d4) + c4n4 − 2 f4xm̂3 − 2n4ym̂3

2
√

f 2
4 + n2

4

+ rm̂3 ≤ 0 (60)

g28(p) : −

−zd3︷ ︸︸ ︷
2g4(a4 + d4) + c4k4 − 2g4xm̂3 + 2k4ym̂3

2
√

g2
4 + k2

4

+ rm̂3 ≤ 0 (61)

g29(p) : −

−zd4︷ ︸︸ ︷
2g4(b4 + a2) + c4 j4 + 2g4xm̂3 + 2j4ym̂3

2
√

g2
4 + j24

+ rm̂3 ≤ 0 (62)

Figure 3. Graphical representation of the allowed area for placing the motor in the fourth link.
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The last constraints involve the bounds of the design variable vector stated in (63)
and (64).

g30−81(p) : p− pmax ≤ 0 (63)

g82−153(p) : pmin − p ≤ 0 (64)

For a detailed description of the above constraints and the design variable limits (pmax
and pmin), consult [47].

3.6. Statement of the Robust Balancing Optimization Problem

The robust balancing of the shaking force, shaking moment, and torque is formulated
as a constrained nonlinear multiobjective optimization problem. This consists of finding
the link shapes and the motor placement that fulfill a set of tradeoffs for balancing the
shaking force, shaking moment, and torque, as well as their variations under the effects
of mass changes in the end-effector of a hybrid robotic manipulator. The design variables
are also constrained by the link shape, the motor location, and their limits. The formal and
general description of the optimization problem is set in (65) and (66).

min
p∈R52

J : min
p∈R52

[J1, J2, J3, J4, J5, J6] (65)

subject to

gj(p) ≤ 0 j = 1, . . . , 153 (66)

4. Results

This section is divided into two parts to analyze the obtained design with the proposed
robust balancing. The first part of this section establishes the conditions for optimizing the
robust balancing problem. Subsequently, the resulting Pareto front is presented. Afterward,
the decision making is detailed, and the selected solution is analyzed and discussed. Finally,
in the second part, the selected design is compared with other design approaches to discuss
the advantages of the proposed robust balancing.

4.1. Optimization Process
4.1.1. Experiment Conditions

The NSGA-II solves the optimization problem with a population size of 200 chro-
mosomes and a maximum number of 100,000 generations. The algorithm parameters
are chosen according to Table 1 and they are set empirically. The constant optimization
problem parameters are also shown in Table 1 and the limits of the design variable vector
in Table 2. The structural material of the links is chosen in the optimization process, and
the material density is constant. Aluminum is used for the link design in the study case.
Ten independent executions are performed, and all obtained Pareto solutions are filtered
by the crowded-comparison operator [54] to set a single Pareto front among all executions.

The difficulty of the proposed balancing problem is finding a useful tradeoff to handle
the six performance functions. This leads to the inclusion of a promising individual (elite
solution) in the NSGA-II’s initial population to promote the search in this region as well
as other random regions. The selected promising individual is obtained from [47]. The
elite solution is the design that comes from solving the dynamic balancing design in [47]
using the differential evolution algorithm, while taking into account both the shaking force
and shaking moment. The design variable vector of the selected promising individual is
presented in Table 3.

The experiments described in the following section are performed on a personal
computer equipped with an Intel(R) Core(TM) i5-63000 CPU running at 2.4 GHz and 16 GB
of RAM. The NSGA-II is programmed using Matlab. The convergence time of the ten
independent executions is 43.72 h.
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Table 1. Parameters of the NSGA-II and the optimization problem.

NSGA-II

Parameter Value

pc 1/2
pm 1/52
ηc 20
ηm 100

Optimization Problem

Parameter Value

r 0.005 m
ρAl 2698.4 kg/m3

rm̂3 0.0184 m
mm̂3 0.21 kg

a1, a3 0.2 m
a2, a′2 0.05 m

a4 0.25 m
a5 0.072 m

hmax,i ∀ i = 1, . . . , 5 0.4 m
wmax,i ∀ i = 1, . . . , 5 0.4 m

Table 2. Boundaries of the design variable vector.

Link i = 1 Link i = 2 Link i = 3 Link i = 4 Link i = 5

pjmin pjmax pjmin pjmax pjmin pjmax pjmin pjmax pjmin pjmax

∀ j = (i− 1)10 + 1

bi 0.02 0.18 0.02 0.33 0.02 0.18 0.02 0.08 0.02 0.353
ci 0.04 0.4 0.04 0.4 0.04 0.4 0.04 0.4 0.04 0.4
di 0.02 0.18 0.02 0.33 0.02 0.18 0.02 0.08 0.02 0.353
ei 0.004 0.03 0.004 0.03 0.004 0.03 0.004 0.012 0.004 0.03
fi 0 0.36 0 0.36 0 0.36 0 0.36 0 0.36
gi 0 0.36 0 0.36 0 0.36 0 0.36 0 0.36
hi 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4
ii 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4
ji 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4
ki 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4

p51min p51max

xm̂3 −0.23 0.43

p52min p52max

ym̂3 −0.48 0.48

4.1.2. Pareto Front

The Pareto front obtained by filtering the ten independent executions is presented
in two-dimensional spaces in Figures 4–6. In total, 1023 Pareto solutions are obtained. In
the figure, the solutions of other design approaches reported in [47] are displayed, and
these designs are compared with the obtained robust balancing design in the next section.
These solutions include the Dynamic Balancing Design (DBD), where the time-independent
terms of the shaking force balancing and the shaking moment balancing are simultaneously
optimized by stating a weighted sum mono-objective optimization approach. The other
solution is related to a Shaking Force Balancing Design (SFBD) where the main performance
function is the time-independent term of the shaking force, and the last solution is a Shaking
Moment Balancing Design (SMBD) that only minimizes the time-independent terms of the
shaking moment. One more solution is introduced in the Pareto front of Figures 4–6. This
solution is obtained by optimizing the nominal performance functions by a multiobjective
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optimization approach without considering its variation, i.e., the optimization problem is
related to the minimization of the objective function vector given by the time-independent
terms of the shaking force balancing, the shaking moment balancing, and the torque. The
obtained solution is named Dynamic and Torque Balancing Design (DTBD). It is important
to point out that the RBD, DBD, and DTBD stay in the same region of the Pareto front
from Figures 4–6, whereas SMBD and SFBD present different performance. The latter is
confirmed in Figure 7, where the radar plot is given for the six design approaches, and
similarities between the DBD and the DTBD arise. On the other hand, the two-dimensional
space of the Pareto front suggests a strong correlation between two performance functions
(see, for instance, J1 − J3 in Figure 4b), and then the possibility of reducing the problem
dimension. Nevertheless, other non-reported experiments in this paper were developed
where only two performance functions (for instance, J1 and J3) are considered in a new
bi-objective optimization problem with the same design variables and constraints stated
before. The obtained solutions indicate that the dimensionality of the optimization problem
cannot be reduced because of the existence of tradeoffs between performance functions.

Table 3. The design variable vector (elite solution) included in the initial population.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
0.1850 0.0300 0.0150 0.0058 0.1091 0.1097 9.45× 10−8 0.3995 1.03× 10−7 0.3994

p11 p12 p13 p14 p15 p16 p17 p18 p19 p20
0.0150 0.0300 0.0150 0.0753 7.45× 10−7 0.0213 0.0595 0.0126 0.0354 0.0432

p21 p22 p23 p24 p25 p26 p27 p28 p29 p30
0.1850 0.0300 0.0150 0.0040 0.1040 0.1030 9.96× 10−8 0.3997 1.03× 10−7 0.3998

p31 p32 p33 p34 p35 p36 p37 p38 p39 p40
0.0150 0.0300 0.0150 0.0040 3.47× 10−8 0.0200 0.2762 0.0492 0.1746 0.1553

p41 p42 p43 p44 p45 p46 p47 p48 p49 p50
0.1095 −0.0165 0.0150 0.0300 0.0150 0.0040 1.22× 10−8 3.01× 10−8 0.0510 0.0151

p51 p52
0.0223 0.0708

4.1.3. Decision Maker

The decision making among all Pareto solutions (1023 Pareto solutions) shown in
Figures 4–6 is a challenging task. The following steps are used to choose a competitive
robust balancing design (RBD).

First, the Pareto solutions that improve the norm of the performance variations (given
by the objective functions J4− J6) of the selected promising solution (DBD solution included
in the initial population of the optimization process) are only considered.

Once these solutions are grouped, the second stage consists of selecting, from this
group, the solution that approximates the DBD solution in the first three objective functions
J1− J3 (nominal objective functions) with and without variations in the dynamic parameters
of the fifth link. In this stage, the variations in the nominal objective functions with respect to
changes in the fifth link (Q5) mass, its mass center position, and inertia are considered. The
modification of the fifth link is attributed to a possible load in the robot end-effector placed
in (x̂, ŷ) in Figure 1, named its mass as me and the inertia moment as Ime . This load is given
by a cylindrical disk that modifies both the fifth link mass as m5 + me, the coordinate of the

mass center length as
[

m5lc5x+mea5
m5+me

, lc5y

]
, and the inertia as I5 + Ime + me((a5 − lc5x )

2 + l2
c5y

).
Thus, the time-independent terms of the shaking force J1, shaking moment J2, and torque
J3 vary with respect to the mass me.
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Figure 4. Pareto front in two-dimensional spaces (1/3).
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Figure 6. Pareto front in two-dimensional spaces (3/3).



Mathematics 2023, 11, 1776 24 of 54

 J
1

 J
2

 J
3

 J
4

 J
5

 J
6

0

0.2

0.4

0.6

0.8

1
RBD

DBD

DTBD

SMBD

SFBD

 J
1

 J
2

 J
3

 J
4

 J
5

 J
6

0

0.05

0.1

0.15RBD

DBD

DTBD

(a) (b)

Figure 7. Performance functions of the design approaches. (a) Radar plot. (b) Close-up view.

Hence, twelve different disks (different me and Ime ) are incorporated into the robot end-
effector (one at a time) of the obtained designs from the group. The corresponding nominal
objective functions are compared with respect to that of a selected promising solution
(DBD solution shown in Table 3, included in the initial population of the optimization
process in the RBD). Then, the solution in the group that sums more wins in the nominal
objective functions, considering different disks, is selected. At the end of the second stage,
the decision making is done, and a single design solution of the robust balancing design
approach is obtained. The design variable vector obtained from the RBD and the dynamic
parameters of the links are shown in Tables 4 and 5, respectively.

The obtained robust balancing design (RBD) given in Table 4 is analyzed according to
variations in the nominal objective functions with respect to twelve changes in the disk, as
described above. The values of the objective functions of such comparisons are given in
Table 6. It is observed in such a table that without a disk (me = 0), the DBD presents smaller
values in the nominal objective functions (the three first objective functions), but it has more
value in the last three objective functions. An increase in the last three objective functions
indicates a growth in the sensitivity of the nominal objective functions. This increment
implies that when the disk is added (me 6= 0) in the DBD, the variation in the nominal
objective functions is more affected by its magnification. In the case of RBD, this is less
influenced by the disk parameters (me, Ime ) because it presents the smaller difference in the
interval [0.5%, 89%] of the objective function variations (see J4 − J6 columns) with respect
to the DBD. As a consequence, the values of the nominal objective functions (see J1 − J3
columns) present smaller values with respect to the DBD, concluding that the obtained
solution with the RBD approach presents a reduction among [0.61, 3.53]%, [0.48, 2.91]%,
[0.67, 4.16]% in the time-independent terms of the shaking force balancing, shaking moment
balancing, and torque, respectively.

4.2. Comparative Results with Other Design Approaches

This section compares the obtained robust balancing design with other design ap-
proaches. The approaches to be compared are the DBD, the DTBD, the SFBD, and the
SMBD, which are detailed in Section 4.1.2. The main objective is to know the performance
of the RBD in the shaking force balancing (15), the shaking moment balancing (20), and
the torque (22) with different tasks (trajectories), execution times, and end-effector weights.
In this case, the time-dependent and the time-independent terms of such functions are
simultaneously considered in the analysis, i.e., the Root Mean Square (RMS) value of the
resultant force vector in the shaking force balancing (RMS(‖FSh‖)), the RMS value of the
shaking moment balancing in the Ẑ axis (RMS(MShz)), and the RMS value of the torque
(∑3

i=1 RMS(τi)) are examined.
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The experiment consists of using four trajectories (hypocycloid, circle, lemniscate,
and line) with three different execution times (T = 1 s, T = 3 s, and T = 15 s) and four
variations in the end-effector load (me = 0.5 kg, me = 3 kg, me = 10 kg, and me = 20 kg). A
total of 60 numerical simulations are developed for each compared design. The dynamic
parameters of the designs to be compared are presented in Table 7, and the Computer-
Aided Designs (CADs) are shown in Figure 8. It is observed that the mass of the SMBD
decreases its mass in 77%, the DTBD in 4%, the DBD in 2%, and the SFBD increases its mass
in 159% with respect to the RBD. Thus, the RBD presents a suitable total mass (2.59 kg)
concerning state-of-the-art designs.

Tables 8–11 present the comparative results of the proposed RBD with respect to DBD,
DTBD, SMBD, SFBD, respectively. The first column indicates the type of trajectory, the
second one shows the applied mass to the end-effector, the third to fifth columns include the
RMS values of the indicators stated above, and the last column sums the number of wins in
the comparison for each indicator per row (the smallest value in the comparison wins). The
values in boldface indicate an improvement with respect to the counterpart (the winner
in the comparison). Furthermore, the shadowed rows “Mean variations” in Tables 8–11
indicate the average of the difference between the RMS value of the indicators with two
different masses me in the end-effector. The computation of such rows is illustrated with a
particular example. For the hypocycloid trajectory, the RMS value of the DBD in the third
column (shaking force) of Table 8 presents a value of 10.1169 when the end-effector mass is
me = 0 kg. On the other hand, when this mass changes to me = 0.5 kg, it produces a value
of 86.911. Thus, the difference (variation) in the RMS value for this particular mass change
is 76.79. Similarly, four different variations are computed in this example (76.79, 384.49,
1076.6, 1538), and the average of the variations in the shaking force RMS value for the DBD
is set in the shadowed row, i.e., the value of 768.9886. The same procedure is done for the
next data to complete the three columns (from third to fifth). It is clear that the smallest
value in the comparison of the mean variations indicates a reduction in the indicator’s
sensitivity with respect to mass changes. Thus, more wins in the mean variations result in a
design that is more robust under mass variations. The shaking force, shaking moment, and
torque behavior for the five designs executing the four trajectories with the two different
end-effector masses are shown in Figures 9–12. Each trajectory in these figures sequentially
has the three periods (execution times) mentioned above.

The overall findings on the number of wins for each indicator shown in Tables 8–11 are
summarized in Table 12. The first term (XX%) of the results given in the form (XX%−YY%)
indicates the percentage sum of the win number for the RMS value comparative results
for every indicator (shaking force, shaking moment, and torque) on each execution time
for the four trajectories. The second term (YY%) provides the percentage sum of the win
number in the mean variations of such indicators. The numerical results of the summarized
Table 12 show the following:

• The proposed RBD presents the slightest variations for the three indicators in the
comparison with DBD, DTBD, and SMBD (see YY% values for the RBD in the three
columns of indicators), but not the comparison with SFBD, which is only robust in the
shaking force balancing. Thus, the RBD obtained a high degree of robustness under
the effect of mass variations.

• Regarding the torque indicator, the RBD significantly decreases the torque in compari-

son to the other designs (see XX% values for the RBD in the third column
3
∑

i=1
RMS(τi)).

• As expected, the RBD outperforms the SMBD in the shaking force indicator with
61.66% but performs poorly in the shaking moment indicator with 20% because the
latter is only concerned with fulfilling the shaking moment. Similar behavior emerges
with the comparative results of the RBD with respect to the SFBD, where the former
is better in the shaking moment indicator with 76.66%, and the latter is better in
the shaking force indicator with 71.66% (which is the main objective to satisfy in
the SFBD).
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• It is also observed that the proposed RBD presents the worst performance in the shak-
ing force and shaking moment with respect to the DBD and the DTBD (see the first and
second columns), but, as commented previously, the RBD has superior performance
in the torque and their three mean variations (in four out of the six indicators). This
behavior is expected because the DBD and the DTBD simultaneously incorporate two
or three of the design’s performance functions. Nevertheless, in spite of the DBD and
the DTBD having a smaller value in those indicators without end-effector mass, these
indicators present a similar value when the mass changes, indicating that the RBD
presents suitable performance in such indicators under mass variations.

• Considering the three indicators and their three mean variations in Table 12 (related
to the six objective functions to be optimized in the proposal), the RBD presents a
superior percentage in four out of the six indicators when it is compared with the DBD
and DTBD. In the case of the comparison with the SMBD, the RBD shows a percentage
improvement in five out of the six indicators. When the RBD is compared with the
SFBD, four metrics show a superior value or an equal percentage (in one of them, it
ties). These results indicate that the proposed RBD shows improved behavior with
shifting masses, and the proposed formulation can also handle different trajectories
and speeds.

Table 4. Design variable vector p obtained from the robust balancing design (RBD) approach.

p1 p2 p3 p4 p5 p6 p7 p8 p9
0.185 0.03 0.015 0.006451 0.06644 0.07501 1.055× 10−9 0.3973 6.603× 10−9

p10 p11 p12 p13 p14 p15 p16 p17 p18
0.4 0.015 0.03 0.015 0.09719 8.491× 10−8 0.000676 0.02033 0.0002123

p19 p20 p21 p22 p23 p24 p25 p26 p27
0.05778 0.0002387 0.1768 0.03001 0.015 0.009546 0.05483 0.05008 0.0002694

p28 p29 p30 p31 p32 p33 p34 p35 p36
0.3754 1.614× 10−7 0.3657 0.05821 0.03 0.015 0.004 9.881× 10−8 0.03594

p37 p38 p39 p40 p41 p42 p43 p44 p45
0.3577 1.796× 10−5 0.05958 0.2489 0.02535 −0.02929 0.015 0.03 0.015

p46 p47 p48 p49 p50 p51 p52
0.004 2.158× 10−8 3.613 0.00171 1.768× 10−5 5.372× 10−6 0.01392

Table 5. Dynamic parameters of the RBD.

Link mi [kg] lci [m] γ [rad] Izzi [kgm2]

1 0.70017 0.032465 −3.06400 0.0086462
2 0.59725 0.025177 −0.009179 0.0003630
3 0.85638 0.023542 3.09340 0.0100770
4 0.41326 0.048731 −0.44092 0.0022586
5 0.031333 0.036000 3.084× 10−7 2.8894× 10−5

Total mass: 2.598393
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Table 6. Performance functions of the RBD and the DBD under the effect of mass variations.

me Ime J1 J2 J3 J4 J5 J6

[kg] [kgm2] DBD/RBD DBD/RBD DBD/RBD DBD/RBD DBD/RBD DBD/RBD

0 0 0.000532/0.00322 0.00152/0.00155 0.00237/0.00491 9.94× 10−5/1.05× 10−5 2.6× 10−5/2.2× 10−5 0.000329/9.68× 10−5

0.5 6.25× 10−4 0.0315/0.0308 0.00609/0.00591 0.0410/0.0393 0.0126/0.0112 0.000173/0.000162 0.0185/0.0164
1 0.00125 0.1140/0.1100 0.0147/0.0143 0.1390/0.1330 0.0462/0.0434 0.000447/0.00043 0.0646/0.0605

1.5 0.00187 0.2490/0.242 0.0272/0.0266 0.2950/0.2850 0.1010/0.0966 0.00085/0.000826 0.1390/0.1320
2 0.0025 0.4360/0.4250 0.0438/0.0430 0.5110/0.4970 0.1760/0.1710 0.00138/0.00135 0.2400/0.2320

2.5 0.00313 0.6740/0.6600 0.0644/0.0634 0.7850/0.7670 0.2730/0.2660 0.00204/0.0020 0.37/0.3600
3 0.00375 0.9650/0.9470 0.0890/0.0878 1.1200/1.100 0.3910/0.3820 0.00283/0.00278 0.5270/0.5150

3.5 0.00438 1.3100/1.2900 0.1180/0.1160 1.51/1.4900 0.5290/0.5190 0.00374/0.00369 0.7130/0.6990
4 0.005 1.7000/1.6800 0.1500/0.1490 1.96/1.9300 0.689/0.6780 0.00479/0.00473 0.9260/0.9100

4.5 0.00562 2.1480/2.1200 0.187/0.1850 2.4740/2.4390 0.8690/0.8570 0.00596/0.00589 1.1700/1.1500
5 0.00625 2.6460/2.6150 0.2270/0.2250 3.0430/3.0040 1.0700/1.0600 0.00726/0.00719 1.4400/1.4200
10 0.0125 10.4800/10.4200 0.8540/0.8490 11.9800/11.9000 4.2430/4.2160 0.0273/0.0272 5.656/5.6170

The boldface number indicates the best performance (minimum value) between the DBD and RBD.

Table 7. Dynamic parameters of the DBD, the DTBD, the SFBD, and the SMBD.

Link mi [kg] lci [m] γci [rad] Izzi [kgm2]

i DBD/DTBD/SFBD/SMBD DBD/DTBD/SFBD/SMBD DBD/DTBD/SFBD/SMBD DBD/DTBD/SFBD/SMBD

1 0.8648/0.98113/0.1996/0.0728 0.0377/0.037557/0.0185/0.1000 −3.1363/−3.093/0.2421/−1.67× 10−8 0.0114/0.012863/0.0023/0.0003
2 0.6322/0.58226/3.0080/0.0242 0.0254/0.022898/0.0277/0.0250 −0.2466/−0.25498/−3.0955/1.75× 10−5 0.0004/0.00038095/0.0610/1.46× 10−5

3 0.5751/0.53383/3.0984/0.0728 0.0371/0.036027/0.0305/0.1000 3.1329/3.0869/−3.1323/−1.85× 10−8 0.0075/0.0068056/0.0559/0.0003
4 0.3500/0.35572/0.3834/0.3728 0.1070/0.093392/0.1408/0.0457 −0.1135/−0.15085/−0.0712/0.4622 0.0012/0.0011985/0.0018/0.0020
5 0.0313/0.031333/0.0714/0.0313 0.0360/0.036/0.0001/0.0360 −1.18× 10−7/−5.33× 10−7/2.2745/3.17× 10−9 2.88× 10−5/2.88× 10−5/0.0002/2.88× 10−5

Total mass: 2.4534/2.484273/6.7536/0.5739
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Table 8. Comparative results of the RBD with respect to the DBD with different tasks, speeds, and
end-effector loads.

Trajectory me kg RMS(‖FSh‖) N RMS(MShz ) Nm
3
∑

i=1
RMS(τi) Nm Win

DBD/RBD DBD/RBD DBD/RBD DBD/RBD
Execution time T = 1 s

Hypocycloid

0 10.1169/12.2179 11.6157/13.1349 25.7456/23.6062 2/1
0.5 86.911/87.4915 10.6229/12.142 59.1786/57.0391 2/1
3 471.409/471.8042 5.6503/7.1695 226.3433/224.2038 2/1

10 1548.0338/1548.3997 8.2732/6.7541 694.4044/692.265 1/2
20 3086.0713/3086.4309 28.164/26.6448 1363.0632/1360.9237 1/2

Mean variations 768.9886/768.5532 7.1198/6.5679 334.3294/334.3294 0/2

Circle

0 1.4671/3.9953 1.6049/2.0136 2.2241/2.3862 3/0
0.5 5.5529/7.877 1.7209/2.1297 3.3003/3.4624 3/0
3 26.4207/28.5706 2.3029/2.7117 8.6812/8.8433 3/0

10 84.9158/87.0204 3.9328/4.3415 23.7477/23.9098 3/0
20 168.4858/170.5795 6.261/6.6698 45.2713/45.4334 3/0

Mean variations 41.7547/41.646 1.164/1.164 10.7618/10.7618 0/1

Lemniscate

0 3.6033/10.0456 4.4013/5.4507 5.3394/5.4892 3/0
0.5 11.4454/17.7887 4.4205/5.4699 6.489/6.6388 3/0
3 50.8693/57.1023 4.5209/5.5704 12.2328/12.3826 3/0

10 161.2983/167.497 4.8022/5.8516 28.3151/28.4649 3/0
20 319.0578/325.2478 5.2041/6.2535 51.2898/51.4396 3/0

Mean variations 78.8636/78.8006 0.20071/0.20071 11.4876/11.4876 0/1

Line

0 0.42498/1.3343 0.40764/0.53085 0.32777/0.47859 3/0
0.5 1.4491/2.2936 0.41566/0.53886 0.82521/0.67439 2/1
3 6.7274/7.4983 0.45669/0.5799 6.592/6.4412 2/1

10 21.5331/22.2822 0.57162/0.69483 22.7393/22.5884 2/1
20 42.6866/43.4303 0.73582/0.85903 45.8067/45.6559 2/1

Mean variations 10.5654/10.524 0.08204/0.08204 11.3697/11.2943 0/2
Execution time T = 3 s

Hypocycloid

0 1.1134/3.5513 1.2178/1.5771 1.4023/1.6073 3/0
0.5 2.7409/4.7531 1.3133/1.6726 2.0564/2.1861 3/0
3 12.4624/13.7452 1.793/2.1522 6.4361/6.5658 3/0

10 40.0192/41.0738 3.1361/3.4953 18.6994/18.8291 3/0
20 79.415/80.4141 5.0548/5.4141 36.2185/36.3482 3/0

Mean variations 19.5754/19.2157 0.95926/0.95926 8.704/8.6852 0/2

Circle

0 0.19917/0.60961 0.17557/0.22761 0.16664/0.2886 3/0
0.5 0.8736/1.162 0.18277/0.23482 0.89095/0.74158 2/1
3 4.5231/4.7246 0.21926/0.27131 5.2791/5.1571 2/1

10 14.7703/14.9532 0.32146/0.37351 17.9286/17.8066 2/1
20 29.4114/29.59 0.46746/0.51951 35.9993/35.8774 2/1

Mean variations 7.3031/7.2451 0.07297/0.07297 8.9582/8.8972 0/2

Lemniscate

0 0.43005/1.394 0.41802/0.54779 0.21621/0.35574 3/0
0.5 1.3084/2.272 0.42686/0.55662 1.5816/1.442 2/1
3 5.7023/6.6653 0.47224/0.60201 10.4435/10.3039 2/1

10 18.0058/18.9686 0.59937/0.72914 35.2568/35.1173 2/1
20 35.5824/36.5451 0.78098/0.91075 70.7044/70.5649 2/1

Mean variations 8.7881/8.7878 0.09073/0.09073 17.622/17.5523 0/2

Line

0 0.15826/0.5002 0.07385/0.09718 0.2361/0.66227 3/0
0.5 0.83429/1.007 0.10433/0.12766 1.5311/1.4261 2/1
3 4.5785/4.6631 0.25697/0.2803 8.0341/7.9291 2/1

10 15.0884/15.1572 0.68438/0.70771 26.2426/26.1376 2/1
20 30.1044/30.1697 1.295/1.3183 52.2546/52.1496 2/1

Mean variations 7.4865/7.4174 0.30528/0.30528 13.0046/12.8718 0/2
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Table 8. Cont.

Trajectory me kg RMS(‖FSh‖) N RMS(MShz ) Nm
3
∑

i=1
RMS(τi) Nm Win

DBD/RBD DBD/RBD DBD/RBD DBD/RBD
Execution time T = 15 s

Hypocycloid

0 0.10337/0.32598 0.04788/0.06318 0.02957/0.21693 3/0
0.5 0.54027/0.65667 0.03926/0.05456 1.045/0.93735 2/1
3 2.9553/3.0153 0.00364/0.01165 6.1223/6.0147 2/1

10 9.7343/9.784 0.1238/0.1085 20.3389/20.2313 1/2
20 19.4198/19.4673 0.29544/0.28014 40.6484/40.5407 1/2

Mean variations 4.8291/4.7853 0.084/0.08 10.1547/10.0809 0/3

Circle

0 0.08438/0.26876 0.00629/0.00846 0.06285/0.23316 3/0
0.5 0.49929/0.55576 0.00972/0.00756 0.98911/0.88789 1/2
3 2.8273/2.833 0.08984/0.08767 5.6204/5.5192 1/2

10 9.3601/9.3577 0.31417/0.312 18.5882/18.487 0/3
20 18.6935/18.6894 0.63463/0.63247 37.1136/37.0124 0/3

Mean variations 4.6523/4.6052 0.15708/0.15645 9.2627/9.1948 0/3

Lemniscate

0 0.23163/0.69683 0.00812/0.01067 0.2514/0.78903 3/0
0.5 1.1887/1.6395 0.00557/0.00812 2.3162/2.2283 2/1
3 6.0072/6.448 0.00716/0.00461 12.6401/12.5522 1/2

10 19.5024/19.9408 0.04281/0.04026 41.5469/41.459 1/2
20 38.7815/39.2193 0.09375/0.0912 82.8425/82.7546 1/2

Mean variations 9.6375/9.6306 0.02268/0.02316 20.6478/20.4914 1/2

Line

0 0.18455/0.59754 0.13154/0.17288 0.30094/0.73771 3/0
0.5 0.86766/1.0541 0.16762/0.20896 1.6114/1.5127 2/1
3 4.8005/4.8559 0.34845/0.38979 8.1933/8.0945 2/1

10 15.8508/15.8833 0.85479/0.89613 26.6225/26.5237 2/1
20 31.6397/31.6672 1.5781/1.6195 52.9499/52.8512 2/1

Mean variations 7.8638/7.7674 0.36165/0.36165 13.1622/13.0284 0/2

The boldface number indicates the best performance between the design approaches. The shadowed rows “Mean
variations” indicate the average of the difference between the RMS value of the indicators with two different
masses me in the end-effector.

Table 9. Comparative results of the RBD with respect to the DTBD with different tasks, speeds, and
end-effector loads.

Trajectory me kg RMS(‖FSh‖) N RMS(MShz ) Nm
3
∑

i=1
RMS(τi) Nm Win

DTBD/RBD DTBD/RBD DTBD/RBD DTBD/RBD
Execution time T = 1 s

Hypocycloid

0 2.6179/3.2642 3.2962/3.458 6.6426/6.2526 2/1
0.5 22.7917/23.0294 3.037/3.1992 15.5087/15.0737 2/1
3 123.9682/124.1549 1.7575/1.9224 59.9451/59.502 2/1
10 407.2796/407.4583 2.1046/1.9753 184.3958/183.9518 1/2
20 812.0115/812.1884 7.3268/7.1787 362.1858/361.7417 1/2

Mean variations 202.3484/202.2311 1.777/1.698 88.8858/88.8723 0/3

Circle

0 0.40585/1.1984 0.47161/0.55516 0.67944/0.98033 3/0
0.5 1.6663/2.3076 0.51099/0.59521 1.9077/1.7904 2/1
3 8.3343/8.854 0.72096/0.80617 8.7771/8.6756 2/1
10 27.0492/27.5403 1.3481/1.4321 28.1914/28.0929 2/1
20 53.7882/54.2726 2.2663/2.3489 55.9464/55.8486 2/1

Mean variations 13.3456/13.2686 0.44867/0.44845 13.8167/13.7171 0/3

Lemniscate

0 0.93237/2.7038 1.2429/1.443 1.4904/1.6945 3/0
0.5 3.0928/4.787 1.2519/1.4524 2.4767/2.3253 2/1
3 14.1253/15.7296 1.3117/1.5123 8.6745/8.5627 2/1
10 45.0577/46.635 1.575/1.765 26.8448/26.7436 2/1
20 89.2506/90.8211 2.1008/2.2684 52.9402/52.8408 2/1

Mean variations 22.0795/22.0293 0.21449/0.20635 12.8625/12.7866 0/3

Line

0 0.20707/0.67489 0.17161/0.2175 0.30797/0.72414 3/0
0.5 0.91717/1.1824 0.19997/0.24642 1.5787/1.4786 2/1
3 4.9556/5.083 0.35987/0.40581 8.109/8.0104 2/1
10 16.3054/16.4063 0.83982/0.88369 26.42/26.3213 2/1
20 32.5224/32.6174 1.5359/1.5787 52.581/52.4823 2/1

Mean variations 8.0788/7.9856 0.34108/0.34031 13.0683/12.9395 0/3
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Table 9. Cont.

Trajectory me kg RMS(‖FSh‖) N RMS(MShz ) Nm
3
∑

i=1
RMS(τi) Nm Win

DTBD/RBD DTBD/RBD DTBD/RBD DTBD/RBD
Execution time T = 3 s

Hypocycloid

0 0.50039/1.6834 0.60143/0.72565 0.73057/1.0272 3/0
0.5 1.4338/2.3352 0.65026/0.77478 1.8379/1.7435 2/1
3 7.0381/7.5499 0.90372/1.0283 8.5117/8.4353 2/1

10 22.8786/23.2871 1.6408/1.7636 27.6388/27.5608 2/1
20 45.5195/45.9038 2.7103/2.8315 55.0127/54.9339 2/1

Mean variations 11.2548/11.0551 0.52723/0.52647 13.5705/13.4767 0/3

Circle

0 0.18523/0.6 0.14504/0.18525 0.28619/0.67522 3/0
0.5 0.86684/1.0768 0.17381/0.21444 1.6053/1.5116 2/1
3 4.744/4.8296 0.32838/0.36892 8.2887/8.1962 2/1

10 15.6367/15.6998 0.77825/0.81788 27.0145/26.9221 2/1
20 31.2005/31.2585 1.4261/1.4653 53.7668/53.6743 2/1

Mean variations 7.7538/7.6646 0.32028/0.32001 13.3701/13.2498 0/3

Lemniscate

0 0.2483/0.82321 0.23376/0.29069 0.29499/0.69615 3/0
0.5 0.96824/1.3892 0.25471/0.31219 1.6379/1.5382 2/1
3 4.9918/5.272 0.38492/0.441 8.8381/8.7396 2/1

10 16.3054/16.5534 0.8145/0.86498 29.0757/28.9764 2/1
20 32.4713/32.7118 1.4562/1.5034 57.9929/57.8933 2/1

Mean variations 8.0558/7.9722 0.30561/0.30318 14.4245/14.2993 0/3

Line

0 0.17809/0.57918 0.12282/0.16049 0.28767/0.72341 3/0
0.5 0.8597/1.0448 0.15768/0.19527 1.5937/1.4959 2/1
3 4.7553/4.8176 0.33289/0.37028 8.1599/8.0621 2/1

10 15.6986/15.7392 0.82415/0.86137 26.5461/26.4483 2/1
20 31.3343/31.3703 1.5261/1.5633 52.8121/52.7143 2/1

Mean variations 7.7891/7.6978 0.35082/0.3507 13.1311/12.9977 0/3
Execution time T = 15 s

Hypocycloid

0 0.09795/0.32598 0.05163/0.06318 0.01757/0.21693 3/0
0.5 0.53583/0.65667 0.04301/0.05456 1.0208/0.93735 2/1
3 2.9514/3.0153 0.0001/0.01165 6.0981/6.0147 2/1

10 9.7305/9.784 0.12005/0.1085 20.3147/20.2313 1/2
20 19.416/19.4673 0.2917/0.28014 40.6241/40.5407 1/2

Mean variations 4.8295/4.7853 0.08578/0.08 10.1516/10.0809 0/3

Circle

0 0.07979/0.26876 0.00683/0.00846 0.04487/0.23316 3/0
0.5 0.49637/0.55576 0.00918/0.00756 0.96848/0.88789 1/2
3 2.8249/2.833 0.0893/0.08767 5.5998/5.5192 1/2

10 9.3577/9.3577 0.31363/0.312 18.5676/18.487 0/2
20 18.6912/18.6894 0.63409/0.63247 37.0929/37.0124 0/3

Mean variations 4.6529/4.6052 0.15681/0.15645 9.262/9.1948 0/3

Lemniscate

0 0.22162/0.69683 0.00871/0.01067 0.24336/0.78903 3/0
0.5 1.1779/1.6395 0.00615/0.00812 2.3081/2.2283 2/1
3 5.9963/6.448 0.00657/0.00461 12.632/12.5522 1/2

10 19.4914/19.9408 0.04223/0.04026 41.5389/41.459 1/2
20 38.7705/39.2193 0.09316/0.0912 82.8344/82.7546 1/2

Mean variations 9.6372/9.6306 0.02239/0.02316 20.6478/20.4914 1/2

Line

0 0.17455/0.59754 0.14167/0.17288 0.29465/0.73771 3/0
0.5 0.86031/1.0541 0.17774/0.20896 1.6051/1.5127 2/1
3 4.7944/4.8559 0.35857/0.38979 8.187/8.0945 2/1

10 15.845/15.8833 0.86491/0.89613 26.6162/26.5237 2/1
20 31.6339/31.6672 1.5883/1.6195 52.9436/52.8512 2/1

Mean variations 7.8648/7.7674 0.36165/0.36165 13.1622/13.0284 0/2

The boldface number indicates the best performance between the design approaches. The shadowed rows “Mean
variations” indicate the average of the difference between the RMS value of the indicators with two different
masses me in the end-effector.



Mathematics 2023, 11, 1776 31 of 54

Table 10. Comparative results of the RBD with respect to the SMBD with different tasks, speeds, and
end-effector loads.

Trajectory me kg RMS(‖FSh‖) N RMS(MShz ) Nm
3
∑

i=1
RMS(τi) Nm Win

SMBD/RBD SMBD/RBD SMBD/RBD SMBD/RBD
Execution time T = 1 s

Hypocycloid

0 12.2366/3.2642 1.5954/3.458 3.1326/6.2526 2/1
0.5 32.433/23.0294 1.3395/3.1992 12.013/15.0737 2/1
3 133.5977/124.1549 0.34658/1.9224 56.4593/59.502 2/1

10 416.9061/407.4583 3.7349/1.9753 180.9126/183.9518 1/2
20 821.6373/812.1884 9.0024/7.1787 358.7032/361.7417 1/2

Mean variations 202.3502/202.2311 2.4762/1.698 88.8927/88.8723 0/3

Circle

0 1.4593/1.1984 0.28018/0.55516 0.36895/0.98033 2/1
0.5 2.645/2.3076 0.32416/0.59521 1.7325/1.7904 2/1
3 9.2171/8.854 0.55045/0.80617 8.6644/8.6756 2/1

10 27.9056/27.5403 1.196/1.4321 28.094/28.0929 1/2
20 54.6382/54.2726 2.1227/2.3489 55.8527/55.8486 1/2

Mean variations 13.2947/13.2686 0.46064/0.44845 13.8709/13.7171 0/3

Lemniscate

0 3.5457/2.7038 0.59429/1.443 0.54048/1.6945 2/1
0.5 5.6564/4.787 0.60811/1.4524 1.7518/2.3253 2/1
3 16.6008/15.7296 0.70112/1.5123 8.2408/8.5627 2/1

10 47.5019/46.635 1.0789/1.765 26.5185/26.7436 2/1
20 91.6865/90.8211 1.7238/2.2684 52.6413/52.8408 2/1

Mean variations 22.0352/22.0293 0.28237/0.20635 13.0252/12.7866 0/3

Line

0 0.40755/0.67489 0.15015/0.2175 0.33903/0.72414 3/0
0.5 1.0474/1.1824 0.18313/0.24642 1.6128/1.4786 2/1
3 5.0475/5.083 0.354/0.40581 8.1516/8.0104 2/1

10 16.3904/16.4063 0.84109/0.88369 26.4644/26.3213 2/1
20 32.6058/32.6174 1.5395/1.5787 52.6258/52.4823 2/1

Mean variations 8.0496/7.9856 0.34735/0.34031 13.0717/12.9395 0/3
Execution time T = 3 s

Hypocycloid

0 1.7763/1.6834 0.34191/0.72565 0.39235/1.0272 2/1
0.5 2.5284/2.3352 0.39397/0.77478 1.6796/1.7435 2/1
3 7.8123/7.5499 0.65925/1.0283 8.4998/8.4353 1/2

10 23.5579/23.2871 1.4105/1.7636 27.6629/27.5608 1/2
20 46.1759/45.9038 2.487/2.8315 55.0452/54.9339 1/2

Mean variations 11.0999/11.0551 0.53628/0.52647 13.6632/13.4767 0/3

Circle

0 0.33477/0.6 0.13462/0.18525 0.31898/0.67522 3/0
0.5 0.95996/1.0768 0.16621/0.21444 1.6243/1.5116 2/1
3 4.8101/4.8296 0.32694/0.36892 8.3107/8.1962 2/1

10 15.6982/15.6998 0.78058/0.81788 27.0371/26.9221 2/1
20 31.2608/31.2585 1.4297/1.4653 53.7895/53.6743 1/2

Mean variations 7.7315/7.6646 0.32377/0.32001 13.3676/13.2498 0/3

Lemniscate

0 0.63408/0.82321 0.16285/0.29069 0.49284/0.69615 3/0
0.5 1.2689/1.3892 0.19116/0.31219 1.8926/1.5382 2/1
3 5.2203/5.272 0.3445/0.441 9.1156/8.7396 2/1

10 16.5182/16.5534 0.79419/0.86498 29.3571/28.9764 2/1
20 32.6805/32.7118 1.4434/1.5034 58.2751/57.8933 2/1

Mean variations 8.0116/7.9722 0.32013/0.30318 14.4456/14.2993 0/3

Line

0 0.27114/0.57918 0.12802/0.16049 0.46691/0.72341 3/0
0.5 0.90591/1.0448 0.16218/0.19527 1.7217/1.4959 2/1
3 4.7847/4.8176 0.33606/0.37028 8.2768/8.0621 2/1

10 15.7252/15.7392 0.82659/0.86137 26.6606/26.4483 2/1
20 31.3604/31.3703 1.5283/1.5633 52.9261/52.7143 2/1

Mean variations 7.7723/7.6978 0.35008/0.3507 13.1148/12.9977 1/2
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Table 10. Cont.

Trajectory me kg RMS(‖FSh‖) N RMS(MShz ) Nm
3
∑

i=1
RMS(τi) Nm Win

SMBD/RBD SMBD/RBD SMBD/RBD SMBD/RBD
Execution time T = 15 s

Hypocycloid

0 0.32226/0.32598 0.02768/0.06318 0.35634/0.21693 2/1
0.5 0.69515/0.65667 0.01907/0.05456 1.3717/0.93735 1/2
3 3.0686/3.0153 0.02384/0.01165 6.4491/6.0147 0/3

10 9.8394/9.784 0.14399/0.1085 20.6657/20.2313 0/3
20 19.523/19.4673 0.31564/0.28014 40.9751/40.5407 0/3

Mean variations 4.8002/4.7853 0.07629/0.08 10.1547/10.0809 1/2

Circle

0 0.26701/0.26876 0.00342/0.00846 0.32286/0.23316 2/1
0.5 0.59667/0.55576 0.0126/0.00756 1.2491/0.88789 0/3
3 2.8833/2.833 0.09272/0.08767 5.8805/5.5192 0/3

10 9.4089/9.3577 0.31704/0.312 18.8482/18.487 0/3
20 18.7407/18.6894 0.63751/0.63247 37.3736/37.0124 0/3

Mean variations 4.6184/4.6052 0.15852/0.15645 9.2627/9.1948 0/3

Lemniscate

0 0.69091/0.69683 0.00443/0.01067 1.1113/0.78903 2/1
0.5 1.6488/1.6395 0.00188/0.00812 3.1761/2.2283 1/2
3 6.4654/6.448 0.01085/0.00461 13.5/12.5522 0/3

10 19.96/19.9408 0.0465/0.04026 42.4069/41.459 0/3
20 39.239/39.2193 0.09744/0.0912 83.7024/82.7546 0/3

Mean variations 9.637/9.6306 0.02452/0.02316 20.6478/20.4914 0/3

Line

0 0.59303/0.59754 0.07677/0.17288 0.85447/0.73771 2/1
0.5 1.1302/1.0541 0.11285/0.20896 2.1649/1.5127 1/2
3 4.9602/4.8559 0.29368/0.38979 8.7468/8.0945 1/2

10 15.9907/15.8833 0.80002/0.89613 27.176/26.5237 1/2
20 31.7752/31.6672 1.5234/1.6195 53.5034/52.8512 1/2

Mean variations 7.7955/7.7674 0.36165/0.36165 13.1622/13.0284 0/2

The boldface number indicates the best performance between the design approaches. The shadowed rows “Mean
variations” indicate the average of the difference between the RMS value of the indicators with two different
masses me in the end-effector.

Table 11. Comparative results of the RBD with respect to the SFBD with different tasks, speeds, and
end-effector loads.

Trajectory me kg RMS(‖FSh‖) N RMS(MShz ) Nm
3
∑

i=1
RMS(τi) Nm Win

SFBD/RBD SFBD/RBD SFBD/RBD SFBD/RBD
Execution time T = 1 s

Hypocycloid

0 0.63482/3.2642 1.7912/3.458 19.2851/6.2526 2/1
0.5 20.2008/23.0294 1.5315/3.1992 28.1339/15.0737 2/1
3 121.3755/124.1549 0.35869/1.9224 72.527/59.502 2/1
10 404.6868/407.4583 3.5269/1.9753 196.9583/183.9518 1/2
20 809.4187/812.1884 8.7956/7.1787 374.7429/361.7417 1/2

Mean variations 202.196/202.2311 2.4674/1.698 88.8645/88.8723 2/1

Circle

0 0.58061/1.1984 1.5861/0.55516 1.8241/0.98033 1/2
0.5 1.6181/2.3076 1.6188/0.59521 2.8902/1.7904 1/2
3 8.225/8.854 1.7907/0.80617 9.5806/8.6756 1/2

10 26.9299/27.5403 2.3284/1.4321 28.9326/28.0929 1/2
20 53.6668/54.2726 3.1703/2.3489 56.6711/55.8486 1/2

Mean variations 13.2715/13.2686 0.39605/0.44845 13.7117/13.7171 2/1

Lemniscate

0 0.59707/2.7038 4.0615/1.443 4.1516/1.6945 1/2
0.5 2.4139/4.787 4.0678/1.4524 4.6418/2.3253 1/2
3 13.4037/15.7296 4.1026/1.5123 10.0241/8.5627 1/2

10 44.3303/46.635 4.2377/1.765 27.7982/26.7436 1/2
20 88.5219/90.8211 4.5182/2.2684 53.7726/52.8408 1/2

Mean variations 21.9812/22.0293 0.11418/0.20635 12.4053/12.7866 3/0

Line

0 0.57547/0.67489 0.50827/0.2175 0.9975/0.72414 1/2
0.5 1.1411/1.1824 0.51667/0.24642 2.1939/1.4786 1/2
3 5.0875/5.083 0.58856/0.40581 8.6708/8.0104 0/3
10 16.4198/16.4063 0.94551/0.88369 26.9672/26.3213 0/3
20 32.6329/32.6174 1.5835/1.5787 53.1246/52.4823 0/3

Mean variations 8.0144/7.9856 0.2688/0.34031 13.0318/12.9395 1/2
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Table 11. Cont.

Trajectory me kg RMS(‖FSh‖) N RMS(MShz ) Nm
3
∑

i=1
RMS(τi) Nm Win

SFBD/RBD SFBD/RBD SFBD/RBD SFBD/RBD
Execution time T = 3 s

Hypocycloid

0 0.55358/1.6834 2.4892/0.72565 2.6858/1.0272 1/2
0.5 1.4482/2.3352 2.5336/0.77478 3.5535/1.7435 1/2
3 7.036/7.5499 2.7598/1.0283 9.7101/8.4353 1/2

10 22.8735/23.2871 3.4265/1.7636 28.6313/27.5608 1/2
20 45.5138/45.9038 4.4281/2.8315 55.952/54.9339 1/2

Mean variations 11.24/11.0551 0.48472/0.52647 13.3165/13.4767 2/1

Circle

0 0.53327/0.6 0.36945/0.18525 0.90638/0.67522 1/2
0.5 1.0812/1.0768 0.37998/0.21444 2.1946/1.5116 0/3
3 4.8744/4.8296 0.46404/0.36892 8.8561/8.1962 0/3

10 15.7514/15.6998 0.83335/0.81788 27.5758/26.9221 0/3
20 31.3116/31.2585 1.4477/1.4653 54.3265/53.6743 1/2

Mean variations 7.6946/7.6646 0.26957/0.32001 13.355/13.2498 1/2

Lemniscate

0 0.54106/0.82321 0.90765/0.29069 1.233/0.69615 1/2
0.5 1.1285/1.3892 0.91484/0.31219 2.3373/1.5382 1/2
3 5.0773/5.272 0.966/0.441 9.3314/8.7396 1/2

10 16.3767/16.5534 1.2184/0.86498 29.5219/28.9764 1/2
20 32.5394/32.7118 1.7301/1.5034 58.4282/57.8933 1/2

Mean variations 7.9996/7.9722 0.20562/0.30318 14.2988/14.2993 2/1

Line

0 0.53439/0.57918 0.18191/0.16049 0.79612/0.72341 1/2
0.5 1.0875/1.0448 0.20826/0.19527 2.0151/1.4959 0/3
3 4.8995/4.8176 0.36298/0.37028 8.5579/8.0621 1/2

10 15.827/15.7392 0.8408/0.86137 26.9389/26.4483 1/2
20 31.4592/31.3703 1.5383/1.5633 53.2037/52.7143 1/2

Mean variations 7.7312/7.6978 0.3391/0.3507 13.1019/12.9977 1/2
Execution time T = 15 s

Hypocycloid

0 0.10159/0.32598 0.24078/0.06318 0.3479/0.21693 1/2
0.5 0.58063/0.65667 0.23224/0.05456 1.1026/0.93735 1/2
3 3.0012/3.0153 0.18934/0.01165 6.18/6.0147 1/2

10 9.781/9.784 0.06918/0.1085 20.3966/20.2313 2/1
20 19.4667/19.4673 0.10246/0.28014 40.706/40.5407 2/1

Mean variations 4.8413/4.7853 0.05121/0.08 10.0895/10.0809 1/2

Circle

0 0.09288/0.26876 0.03147/0.00846 0.14424/0.23316 2/1
0.5 0.55497/0.55576 0.01546/0.00756 1.0099/0.88789 1/2
3 2.8877/2.833 0.06465/0.08767 5.6412/5.5192 1/2

10 9.4211/9.3577 0.28898/0.312 18.609/18.487 1/2
20 18.7547/18.6894 0.60944/0.63247 37.1343/37.0124 1/2

Mean variations 4.6654/4.6052 0.1525/0.15645 9.2475/9.1948 1/2

Lemniscate

0 0.22214/0.69683 0.03954/0.01067 0.09677/0.78903 2/1
0.5 1.1834/1.6395 0.037/0.00812 2.1013/2.2283 2/1
3 6.0027/6.448 0.02426/0.00461 12.4252/12.5522 2/1

10 19.498/19.9408 0.01138/0.04026 41.3321/41.459 3/0
20 38.7771/39.2193 0.06232/0.0912 82.6277/82.7546 3/0

Mean variations 9.6387/9.6306 0.01977/0.02316 20.6327/20.4914 1/2

Line

0 0.16306/0.59754 0.65931/0.17288 0.6703/0.73771 2/1
0.5 0.94275/1.0541 0.6956/0.20896 1.2706/1.5127 2/1
3 4.8885/4.8559 0.87644/0.38979 7.8524/8.0945 1/2

10 15.9408/15.8833 1.3828/0.89613 26.2816/26.5237 1/2
20 31.7301/31.6672 2.1061/1.6195 52.6091/52.8512 1/2

Mean variations 7.8918/7.7674 0.36171/0.36165 12.9847/13.0284 1/2

The boldface number indicates the best performance between the design approaches. The shadowed rows “Mean
variations” indicate the average of the difference between the RMS value of the indicators with two different
masses me in the end-effector.
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(a) RBD. (b) DBD.

(c) DTBD. (d) SFBD.

Figure 8. Cont.
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(e) SMBD. (f) RBD.

Figure 8. CAD of the different design approaches. Lateral views of the obtained links (a–e). Isometric view (f) of the RBD with base.
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(a) Shaking force in X̂. (d) Torque τ1.
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(b) Shaking force in Ŷ. (e) Torque τ2.

Figure 9. Cont.
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(c) Shaking moment in Ẑ. (f) Torque τ3.

Figure 9. Behavior of the shaking force FSh, shaking moment MShz , and torque τ for the designs with different velocities and two different end-effector masses in the
linear trajectory. The design behaviors associated with me = 0 kg are described in lines as RBD, − · − · − DBD, −−−− DTBD, · · · · ·· SMBD, − ·− ·− SFBD.
The design behaviors associated with me = 0.5 kg are described in lines as RBD, − · − · − DBD, −−−− DTBD, · · · · ·· SMBD, − ·− ·− SFBD.
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(a) Shaking force in X̂. (d) Torque τ1.

0 1 2 3 4 5 6

-10

-5

0

5

10

15

0 1 2 3 4 5 6

-10

-5

0

5

10

(b) Shaking force in Ŷ. (e) Torque τ2.

Figure 10. Cont.
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(c) Shaking moment in Ẑ. (f) Torque τ3.

Figure 10. Behavior of the shaking force FSh, shaking moment MShz , and torque τ for the designs with different velocities and two different end-effector masses in
the circular trajectory. The design behaviors associated with me = 0 kg are described in lines as RBD, − · − · − DBD, −−−− DTBD, · · · · ·· SMBD, − ·− ·−
SFBD. The design behaviors associated with me = 0.5 kg are described in lines as RBD, − · − · − DBD, −−−− DTBD, · · · · ·· SMBD, − ·− ·− SFBD.
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(a) Shaking force in X̂. (d) Torque τ1.
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Figure 11. Cont.



Mathematics 2023, 11, 1776 41 of 54

0 1 2 3 4 5 6

-10

-5

0

5

10

15

0 1 2 3 4 5 6

-8

-6

-4

-2

0

2

4

6

(c) Shaking moment in Ẑ. (f) Torque τ3.

Figure 11. Behavior of the shaking force FSh, shaking moment MShz , and torque τ for the designs with different velocities and two different end-effector masses
in the lemniscate trajectory. The design behaviors associated with me = 0 kg are described in lines as RBD, − · − · − DBD, −−−− DTBD, · · · · ·· SMBD,
− ·− ·− SFBD. The design behaviors associated with me = 0.5 kg are described in lines as RBD, − · − · − DBD, −−−− DTBD, · · · · ·· SMBD, − ·− ·−
SFBD.
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(a) Shaking force in X̂. (d) Torque τ1.
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(b) Shaking force in Ŷ. (e) Torque τ2.

Figure 12. Cont.
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(c) Shaking moment in Ẑ. (f) Torque τ3.

Figure 12. Behavior of the shaking force FSh, shaking moment MShz , and torque τ for the designs with different velocities and two different end-effector masses in
the hypocycloid trajectory. The design behaviors associated with me = 0 kg are described in lines as RBD, − · − · − DBD, −−−− DTBD, · · · · ·· SMBD,
− ·− ·− SFBD. The design behaviors associated with me = 0.5 kg are described in lines as RBD, − · − · − DBD, −−−− DTBD, · · · · ·· SMBD, − ·− ·−
SFBD.
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Table 12. Overall performance of the proposed RBD with other design approaches with respect to
the indicators presented in Tables 8–11.

RMS(‖FSh‖) N RMS(MShz ) Nm 3
∑

i=1
RMS(τi) Nm

DBD/RBD DBD/RBD DBD/RBD

(96.66–0%)/(3.33–100%) (81.66–8.33%)/(18.33–25%) (38.33–0%)/(61.66–75%)
DTBD/RBD DTBD/RBD DTBD/RBD

(96.66–0 %)/(1.66–100% ) (81.66–8.33 %)/(18.33–83.33%) (18.33–0 %)/(81.66–100%)
SMBD/RBD SMBD/RBD SMBD/RBD

(38.33–0%)/(61.66–100%) ( 80–16.66%)/(20–75% ) ( 31.66–0%)/( 68.33–100%)
SFBD/RBD SFBD/RBD SFBD/RBD

(71.66–16.66%)/(28.33–83.33%) (23.33–83.33%)/(76.66–16.66% ) (18.33–50%)/(81.66–50%)

The boldface number indicates the best percentage where one design approach outperforms the other one.

5. Conclusions

In this work, a robust design approach is proposed for balancing the shaking force,
the shaking moment, and the torque of robotic manipulators. This approach is stated as
a constrained multiobjective optimization problem, where the time-independent terms
of the shaking force balancing, shaking moment balancing, and torque as well as their
variations are proposed as objective functions. The link shape requirement, the motor
position condition, and the limits of the design variable vector are the design constraints.
The design approach is applied to a particular three-degree-of-freedom parallel-serial
manipulator, where 1023 Pareto solutions are obtained through NSGA-II.

The comparative results of the performance function changes with different loads
(me 6= 0) in the end-effector of the robot indicate that the RBD presents an outstanding
reduction in the time-independent terms of the shaking force balancing around [0.61, 3.53]%,
shaking moment balancing around [0.48, 2.91]%, and torque around [0.67, 4.16]% with
respect to DBD. Thus, the performance function is less influenced by the load parameters
because of the reductions in their sensitivities.

On the other hand, the comparative empirical evidence with the RMS values of
the shaking force, shaking moment, and torque indicates the following with respect to
other design approaches. The selected tradeoff in the obtained Pareto front (named RBD)
considerably reduces the variations (sensitivities) in the shaking force, the shaking moment,
and the torque with changes in the end-effector mass and through applications that require
different speeds and shapes of the trajectory to be performed. In particular, under 60
numerical simulations per design, when the RBD is compared with the DBD, an average
of 66% of the results improve the sensitivities in the shaking force, the shaking moment,
and the torque. When the RBD is compared with the DTBD, an average of 94% of results
decrease their sensitivities. When the RBD is compared with the SFBD, it obtains a tie (50%)
in the average of the decrement in the sensitivity. The comparison of the RBD with respect
to the SMBD indicates that an average of 91% of the results have improved the sensitivities
in the shaking force, the shaking moment, and the torque.

It is also observed that the RBD reduces the applied torque in the interval [61.66, 81.66]%
with respect to the compared mechanisms.

The results also show that the obtained RBD exceeds the performance in the shaking
force, the shaking moment, the torque, and its variations when it is compared with the
approaches of SFBD or SMBD, i.e., the RBD reduces the torque in 81.66%, the shaking
moment in 76.66%, and provides competitive average sensitivities in 50%, or the torque
in 68.33%, the shaking force in 61.66%, and the sensitivities in 91%, when it is compared
with approaches that focus on the fulfillment of one balancing condition (shaking force or
shaking moment), respectively.

In the case of the comparative results with the DBD and DTBD, the proposed RBD
presents superior performance in the torque delivery and in the robustness of the shaking
force, shaking moment, and torque (in four out of the six indicators). Thus, the RBD
presents a better tradeoff among metrics.
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Finally, the proposed design approach can be extended to mechanisms and other
robotic manipulators with more degrees of freedom.

One limitation of the proposal is that the tradeoff is tied to how well and efficiently the
optimizer works. Thus, future work will include the addition of operators to multiobjective
evolutionary algorithms that encourage exploration and exploitation to find different and
notable tradeoffs that are better than the obtained metrics in the DBD and DTBD. Another
future work option is to come up with a design strategy in which the size of loads or
linkages is usually spread around a known mean value and variance. This is also a safe
assumption in real-world situations. Future research may also examine the incorporation
of vibration sources connected to the elastodynamics of the transmission, couplings, and
mechanism components [59,60]. Experimental verification of the proposed RBD approach
is also another area for future work.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronyms
TITShFB The Time-Independent Terms of the Shaking Force Balancing
TITShMB The Time-Independent Terms of the Shaking Moment Balancing
TITAT The Time-Independent Terms of the Applied Torque
RBD Robust Balancing Design
DBD Dynamic Balancing Design
SFBD Shaking Force Balancing Design
SMBD Shaking Moment Balancing Design
DTBD Dynamic and Torque Balancing Design
GA Genetic Algorithm
SQP Sequential Quadratic Programming
MOGA Multiobjective Genetic Algorithm
G.C.M. Global Center of Mass
NLC-MOP Nonlinear Constrained Multiobjective Optimization Problem
DE Differential Evolution
NSGA-II Non-Dominated Sorting Genetic Algorithm II
RMS Root Mean Square
SBX Simulated Binary Crossover
NP Number of Individuals in the Population
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Nomenclature
J The weighted objective function for the

non-robust balancing approach
Ji The i-th objective function for the

non-robust balancing approach
J The objective function vector for the

robust balancing approach
J̃i,j The i-th design objective variation with respect

to the j-th uncertainty
nJ Design objective number
p Design variable vector
gj(p) The j-th constraint
ng Inequality constraint number
q Angular position vector
q̇ Angular velocity vector
q̈ Angular acceleration vector
τ Torque vector
τi The i-th torque
Qi The i-th link
(γi, lci ) Polar coordinates of the i-th link mass center

with respect to xi − yi coordinate system
(lcix , lciy ) Cartesian coordinate of the i-th link

mass center with respect to xi − yi coordinate system
Ii The i-th inertia tensor
mi The i-th mass
ai The i-th fixed link length
rci The mass center of the i-th link
rcT Total mass center vector
FSh Shaking force vector
MSh Shaking moment vector
Φ Total mass center time-independent terms

grouped in a matrix
Γ(q) Total mass center time-dependent terms

grouped in a vector
Hz Angular momentum in the z axis
∆ Shaking moment time-independent terms

grouped in a vector
∆̄(q, q̇) Angular momentum time-dependent terms

grouped in a vector
∆Mq (q) Inertia matrix time-dependent terms

grouped in a matrix
∆M Inertia matrix time-independent terms

grouped in a matrix
∆Cq (q) Centrifugal and Coriolis forces time-dependent

terms grouped in a matrix
∆C Centrifugal and Coriolis forces time-independent

terms grouped in a matrix
∆Gq (q) Gravity time-dependent terms

grouped in a vector
∆G Gravity time-independent terms

grouped in a matrix
Ii The i-th inertia tensor
T Period of a trajectory
iwi The angular velocity vector of the i-th link
me Extra mass in the end-effector
Ime Inertia tensor of the extra mass
n Number of degrees of freedom
M(q) Inertia matrix of the robot
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C(q, q̇) Centrifugal and Coriolis forces matrix of
the robot

G(q) Gravity vector of the robot
ΛJi Variation in the i-th objective function
pc Crossover probability
pm Mutation probability
ηc Distribution index for crossover
ηm Distribution index for mutation
Ωi Set of simple geometries of the i-th link
µi Design objective weight
pmin Lower limit of the design parameter vector
pmax Upper limit of the design parameter vector
Υ Uncertain parameter vector
Ῡ Uncertain parameter nominal value vector
ε Variation in Υ from Ῡ

Ῡi The i-th uncertain parameter nominal value
εi The i-th uncertain parameter change
(xe, ye), φe Cartesian position and orientation

of the robot end-effector with respect to X−Y
coordinate system

g Gravity acceleration
q̇i The i-th angular velocity
qi The i-th angular position
xi, yi The i-th coordinate of the link system
m̂3 Mass of the third actuator
(xm̂3 , ym̂3 ) Cartesian position of the third actuator
a′2 Distance added to the fourth link
bi, ci, di, ei, fi, Geometric variables of the shape
gi, hi, ni, ji, ki for the i-th link
Ai, Bi, Ci, Di, Ei, Simple geometries of the shape for the i-th link
Fi, Gi, Hi, Ni Those that form the set Ωi
L4 A hole (cylinder) in the fourth link. For Li ∀ i 6= 4,

the hole Li is not considered.
|| • ||F Frobenius norm of the matrix •
hmax,i Maximum allowed link height
wmax,i Maximum allowed link width
rtol Tolerance of the link radius
r The hole radius in the cylinder (holes) L4, Ci

and Bi, ∀i = 1, . . . , 5
ρAl The aluminum density
rm̂3 The motor radius
mm̂3 The motor mass
zdi

The i-th diagonal line that constrains
the motor placement

PG Parent population at the generation G
randi[pimin , pimax ] The i-th random variable between [pimin , pimax ]

Φi Sum of normalized constraint distance
of the i-th chromosome

max(a, b), min(a, b) Maximum or minimum number between a and b
G Generation number
Gmax Maximum generation number
va Child vector a
VG Child population

Appendix A. Parameters of the Simple Geometry in Ωi

The mass mΩi , the mass center length expressed in Cartesian coordinates (lcxΩi
, lcyΩi

)

(with respect to the coordinate system xi − yi), and the inertia moment IΩi in the z axis of
each simple geometry in Ωi are given as follows.
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mAi = ρAleici
(
bi + a′2 + ai + di

)
mBi = −ρAleiπr2

mCi = −ρAleiπr2

mDi = ρAlei fi
(
bi + a′2 + ai + di − hi − ni

)
mEi = ρAleigi

(
bi + a′2 + ai + di − ki − ji

)
mFi = ρAleihi fi/2

mGi = ρAlei ji fi/2

mHi = ρAlei jigi/2

mNi = ρAleikigi/2

mLi = −ρAle4πr2

xAi =
bi + a′2 + ai + di

2
− bi − a′2

xBi = ai

xCi = 0

xDi =
ai + di − bi − a′2 + hi − ni

2

xEi =
ai + di − bi − a′2 + ji − ki

2

xFi =
2hi
3
− bi − a′2

xGi = ai + di −
2ni
3

xHi = −bi − a′2 +
2ji
3

xNi = ai + di −
2ki
3

xLi = −a′2
yAi = yBi = yCi = yLi = 0

yDi =
ci + fi

2

yEi = −
ci + gi

2

yFi =
ci
2
+

fi
3

yGi =
ci
2
+

fi
3

yHi = −
ci
2
− fi

3

yNi = −
ci
2
− fi

3

IAi = mAi

(
(ai + bi + a′2 + di)

2 + c2
i

12

)

IBi = mBi

(
r2

4

)
ICi = mCi

(
r2

4

)
IDi = mDi

(
(ai + bi + a′2 + di − hi − ni)

2 + f 2
i

12

)

IEi = mEi

(
(ai + bi + a′2 + di − ji − ki)

2 + g2
i

12

)

IFi = mFi

(
h2

i + f 2
i

18

)

IGi = mGi

(
n2

i + f 2
i

18

)

IHi = mHi

(
j2i + g2

i
18

)

INi = mIi

(
k2

i + g2
i

18

)

ILi = mLi

(
2r2

8

)

(A1)

Appendix B. Detailed Description of the Matrices M, C and the Vector G

The elements Mi,j, Ci,j and Gi ∀ i = 1, . . . 3, j = 1, . . . , 3 associated with the closed-form
dynamic model (22) are detailed below.
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M11 = Izz1 + Izz3 + a2
1m4 + a2

1m5 + l2
c1x

m1 + l2
c1y

m1 + l2
c3x

m3 + l2
c3y

m3

M12 = M21 = a1lc5y m5 sin(q2 − q1 + q3)− a1lc5x m5 cos(q2 − q1 + q3)− a1a4m5 cos(q1 − q2)

+ a2lc3x m3 cos(q1 − q2)− a1lc4x m4 cos(q1 − q2)− a2lc3y m3 sin(q1 − q2)− a1lc4y m4 sin(q1 − q2)

M13 = M31 = a1lc5y m5 sin(q2 − q1 + q3)− a1lc5x m5 cos(q2 − q1 + q3)

M22 = m3a2
2 + m5a2

4 + 2m5 cos(q3)a4lc5x − 2m5 sin(q3)a4lc5y + m2l2
c2x

+ m2l2
c2y

+ m4l2
c4x

+ m4l2
c4y

+ m5l2
c5x

+ m5l2
c5y

+ Izz2 + Izz4

M23 = M32 = m5l2
c5x

+ a4m5 cos(q3)lc5x + m5l2
c5y
− a4m5 sin(q3)lc5y

M33 = m5l2
c5x

+ m5l2
c5y

+ Izz5

C11 = 0

C12 = a1m5(lc5y
q̇2cos(q2 − q1 + q3) + lc5x

q̇2sin(q2 − q1 + q3)) + a2lc3y
m3q̇2cos(q1 − q2)

+ a1lc4y
m4q̇2 cos(q1 − q2)− a1a4m5q̇2sin(q1 − q2) + a2lc3x

m3q̇2sin(q1 − q2)

E− a1lc4xm4sin(q1 − q2)

C13 = 2a1m5(lc5x
q̇2sin(q2 − q1 + q3) + lc5y

q̇3cos(q2 − q1 + q3)) + a1m5q̇3(lc5y
cos(q2 − q1 + q3)

+ lc5x
sin(q2 − q1 + q3))

C21 = a1a4m5q1sin(q1 − q2)− a1lc5x
m5q̇1sin(q2 − q1 + q3)− a2lc3y

m3q̇1cos(q1 − q2)

− a1lc4y
m4q̇1cos(q1 − q2)− a1lc5y

m5q̇1cos(q2 − q1 + q3)− a2lc3x
m3q̇1sin(q1 − q2)

+ a1lc4xm4q̇1sin(q1 − q2)

C22 = −2a4lc5y
m5q̇3cos(q3)− 2a4lc5x

m5q̇3sin(q3)

C23 = −a4lc5y
m5q̇3cos(q3)− a4lc5x

m5q̇3sin(q3)

C31 = −a1m5q̇1(lc5x
sin(q2 − q1 + q3)− lc5y

cos(q2 − q1 + q3))

C32 = a4lc5y
m5q̇2cos(q3) + a4lc5x

m5q̇2sin(q3)

C33 = 0

G1 = ga1m4 cos(q1) + ga1m5 cos(q1) + glc1x m1 cos(q1) + glc3x m3 cos(q1)− glc1y m1 sin(q1)

− glc3y m3 sin(q1)

G2 = gm5(lc5y sin(q2 + q3)− lc5x cos(q2 + q3)) + ga2m3 cos(q2)− ga4m5 cos(q2)

+ glc2x m2 cos(q2)− glc4x m4 cos(q2)− glc2y m2 sin(q2) + glc4y m4 sin(q2)

G3 = −gm5(lc5x cos(q2 + q3)− lc5y sin(q2 + q3))
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Appendix C. Detailed Description of the Sub-Matrices in the Matrices M, C and the
Vector G

The elements of the matrices ∆M ∈ R3×15, ∆C ∈ R3×16, ∆Mq(q) ∈ R15×3, and
∆Cq(q, q̇) ∈ R16×3 in (23) and (24) and the vectors ∆G ∈ R3×6 and ∆Gq(q) ∈ R6 are de-
tailed in this section.

∆M1,1 = Izz1 + Izz3 + a2
1m4 + a2

1m5

l2
c1x

m1 + l2
c1y

m1 + l2
c3x

m3

∆M1,2 = a1lc5y m5

∆M1,3 = a1lc5x m5

∆M1,4 = a1a4m5 + a2lc3x m3 − a1lc4x m4

∆M1,5 = a2lc3y m3 − a1lc4y m4

∆M1,6 = . . . = ∆M1,15 = 0

∆M2,1 = . . . = ∆M2,5 = 0

∆M2,6 = a1lc5y m5

∆M2,7 = a1lc5x m5

∆M2,8 = a1a4m5 + a2lc3x m3 − a1lc4x m4

∆M2,9 = a2lc3y m3 − a1lc4y m4

∆M2,10 = m3a2
2 + m5a2

4 + m2l2
c2x

+ m2l2
c2y

m4l2
c4x

+ m4l2
c4y

+ m5l2
c5x

+ m5l2
c5y

Izz2 + Izz4 + Izz5

∆M2,11 = 2m5a4lc5x

∆M2,12 = −2m5a4lc5y

∆M2,13 = m5l2
c5x

+ m5l2
c5y

+ Izz5

∆M2,14 = a4m5lc5x

∆M2,15 = a4m5lc5y

∆M3,1 = . . . = ∆M3,5 = 0

∆M3,6 = a1lc5y m5

∆M3,7 = −a1lc5x m5

∆M3,8 = ∆M3,9 = 0

∆M3,10 = m5l2
c5x

+ m5l2
c5y

+ Izz5

∆M3,11 = a4m5lc5x

∆M3,12 = −a4m5lc5y

∆M3,13 = m5l2
c5x

+ m5l2
c5y

+ Izz5

∆M3,14 = ∆M3,15 = 0

∆Mq1,1
= 1

∆Mq2,1
= . . . = ∆Mq5,1

= 0

∆Mq6,1
= sin(q2 − q1 + q3)

∆Mq7,1
= cos(q2 − q1 + q3)

∆Mq8,1
= cos(q1 − q2)

∆Mq9,1
= sin(q1 − q2)

∆Mq10,1
= . . . = ∆Mq15,1

= 0

∆Mq1,2
= 0

∆Mq2,2
= sin(q2 − q1 + q3)

∆Mq3,2
= cos(q2 − q1 + q3)

∆Mq4,2
= cos(q1 − q2)

∆Mq5,2
= sin(q1 − q2)

∆Mq6,2
= . . . = ∆Mq9,2

= 0

∆Mq10,2
= 1

∆Mq12,2
= cos(q3)

∆Mq13,2
= sin(q3)

∆Mq14,2
= . . . = ∆Mq15,2

= 0

∆Mq1,3
= 0

∆Mq2,3
= sin(q2 − q1 + q3)

∆Mq3,3
= cos(q2 − q1 + q3)

∆Mq4,3
= . . . = ∆Mq12,3

= 0

∆Mq13,3
= 1

∆Mq14,3
= cos(q3)

∆Mq15,3
= sin(q3)
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∆C1,1 = a1lc5y m5

∆C1,1 = a1lc5x m5

∆C1,2 = a2lc3y m3 + a1lc4y m4

∆C1,3 = −a1a4m5 + a2lc3x m3 − a1lc4x m4

∆C1,4 = 2a1lc5x m5

∆C1,5 = 2a1lc5y m5

∆C1,6 = . . . = ∆C1,16 = 0

∆C2,1 = . . . = ∆C2,6 = 0

∆C2,7 = a1a4m5 − a2lc3x m3 + a1lc4x m4

∆C2,8 = −a1lc5x m5

∆C2,9 = −a2lc3y m3 − a1lc4ym4

∆C2,10 = −a1lc5y m5

∆C2,11 = −2a4lc5y m5

∆C2,12 = −2a4lc5x m56

∆C2,13 = −a4lc5y m5

∆C2,14 = −a4lc5x m5

∆C2,15 = ∆C2,16 = 0

∆C3,1 = . . . = ∆C1,7 = 0

∆C3,8 = −a1lc5x m5

∆C3,9 = 0

∆C3,10 = −a1lc5y m5

∆C3,11 = . . . = ∆C3,13 = 0

∆C3,14 = a4lc5y m5

∆C3,15 = a4lc5x m5

∆C3,16 = 0

∆G1,1 = ga1m4 + ga1m5 + glc3x m3 + glc1x m1

∆G1,2 = −glc1y m1 − glc3y m3

∆G1,3 = . . . = ∆G1,6 = 0

∆G2,1 = ∆G22 = 0

∆G2,3 = −glc1y m1 − glc3y m3

∆G2,4 = −glc2y m2 + glc4y m4

∆G2,5 = −gm5lc5x

∆G2,6 = gm5lc5y

∆G3,1 = . . . = ∆G3,4 = 0

∆G3,5 = −gm5lc5x

∆G3,6 = gm5lc5y

∆Cq1,1
= . . . = ∆Cq6,1

= 0

∆Cq7,1
= q̇1sin(q1 − q2)

∆Cq8,1
= q̇1sin(q2 − q1 + q3)

∆Cq9,1
= q̇1cos(q1 − q2)

∆Cq10,1
= q̇1cos(q2 − q1 + q3)

∆Cq11,1
= . . . = ∆Cq14,1

= 0

∆Cq15,
= q̇1sin(q2 − q1 + q3)

∆Cq16,1
= q̇1sin(q2 − q1 + q3)

∆Cq1,2
= q̇2cos(q2 − q1 + q3)

∆Cq2,2
= q̇2sin(q2 − q1 + q3)

∆Cq3,2
= q̇2cos(q1 − q2)

∆Cq4,2
= q̇2sin(q1 − q2)

∆Cq5,2
= . . . = ∆Cq10,2

= 0

∆Cq11,2
= q̇3cos(q3)

∆Cq12,2
= q̇3sin(q3)

∆Cq13,2
= 0

∆Cq14,2
= 0

∆Cq15,2
= q̇2cos(q3)

∆Cq16,2
= q̇2sin(q3)

∆Cq1,3
= q̇3cos(q2 − q1 + q3)

∆Cq2,3
= q̇3sin(q2 − q1 + q3)

∆Cq3,3
= ∆Cq4,3

= 0

∆Cq5,3
= q̇2cos(q2 − q1 + q3)

∆Cq6,3
= q̇2sin(q2 − q1 + q3)

∆Cq7,3
= . . . = ∆Cq12,3

= 0

∆Cq13,3
= q̇3cos(q3)

∆Cq14,3
= q̇3sin(q3)

∆Cq15,3
= ∆Cq16,3

= 0

∆Gq1,1
= cos(q1)

∆Gq2,1
= sin(q1)

∆Gq3,1
= cos(q2)

∆Gq4,1
= sin(q2)

∆Gq5,1
= cos(q2 + q3)

∆Gq6,1
= sin(q2 + q3)



Mathematics 2023, 11, 1776 52 of 54

References
1. Aivaliotis, P.; Arkouli, Z.; Georgoulias, K.; Makris, S. Degradation curves integration in physics-based models: Towards the

predictive maintenance of industrial robots. Robot.-Comput.-Integr. Manuf. 2021, 71, 102177. [CrossRef]
2. Martini, A.; Troncossi, M.; Rivola, A. Algorithm for the static balancing of serial and parallel mechanisms combining counter-

weights and springs: Generation, assessment and ranking of effective design variants. Mech. Mach. Theory 2019, 137, 336–354.
[CrossRef]

3. Mottola, G.; Cocconcelli, M.; Rubini, R.; Carricato, M. Gravity Balancing of Parallel Robots by Constant-Force Generators. In
Gravity Compensation in Robotics; Arakelian, V., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 229–273.
[CrossRef]

4. Bagci, C. Shaking force balancing of planar linkages with force transmission irregularities using balancing idler loops. Mech.
Mach. Theory 1979, 14, 267–284. [CrossRef]

5. Arakelian, V.; Dahan, M.; Smith, M. A Historical Review of the Evolution of the Theory on Balancing of Mechanisms. In
Proceedings of the International Symposium on History of Machines and Mechanisms Proceedings HMM, Cassino, Italy, 11–13
May 2000; Ceccarelli, M., Ed.; Springer: Dordrecht, The Netherlands, 2000; pp. 291–300.

6. Lowen, G.; Berkof, R. Survey of investigations into the balancing of linkages. J. Mech. 1968, 3, 221–231. [CrossRef]
7. Berkof, R.S.; Lowen, G.G. A New Method for Completely Force Balancing Simple Linkages. J. Eng. Ind. 1969, 91, 21–26. [CrossRef]
8. Berkof, R.S.; Lowen, G.G. Theory of Shaking Moment Optimization of Force-Balanced Four-Bar Linkages. J. Eng. Ind. 1971,

93, 53–60. [CrossRef]
9. Berkof, R.S. Complete force and moment balancing of inline four-bar linkages. Mech. Mach. Theory 1973, 8, 397–410. [CrossRef]
10. On the Development of Reactionless Parallel Manipulators, Vol. Volume 7A: 26th Biennial Mechanisms and Robotics

Conference, International Design Engineering Technical Conferences and Computers and Information in Engineer-
ing Conference. 2000. Available online: https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-
CIE2000/35173/493/6610082/493_1.pdf (accessed on 23 December 2020). [CrossRef]

11. Orvañanos-Guerrero, M.; Sánchez, C.; Rivera, M.; Acevedo, M.; Velázquez, R. Gradient Descent-Based Optimization Method of a
Four-Bar Mechanism Using Fully Cartesian Coordinates. Appl. Sci. 2019, 9, 4115. [CrossRef]

12. Arakelian, V.; Briot, S. Balancing of Linkages and Robot Manipulators: Advanced Methods with Illustrative Examples; Springer: Cham,
Switzerland, 2015. [CrossRef]

13. van der Wijk, V.; Herder, J.L.; Demeulenaere, B. Comparison of Various Dynamic Balancing Principles Regarding Additional
Mass and Additional Inertia. J. Mech. Robot. 2009, 1, 041006.

14. Kochev, I. General theory of complete shaking moment balancing of planar linkages: A critical review. Mech. Mach. Theory 2000,
35, 1501–1514. [CrossRef]

15. Lowen, G.; Tepper, F.; Berkof, R. The quantitative influence of complete force balancing on the forces and moments of certain
families of four-bar linkages. Mech. Mach. Theory 1974, 9, 299–323. [CrossRef]

16. Feng, G. Complete shaking force and shaking moment balancing of 17 types of eight-bar linkages only with revolute pairs. Mech.
Mach. Theory 1991, 26, 197–206. [CrossRef]

17. Xi, F. Dynamic balancing of hexapods for high-speed applications. Robotica 1999, 17, 335–342. [CrossRef]
18. Herder, J.; Gosselin, C. A counter-rotary counterweight (CRCW) for light-weight dynamic balancing. In Proceedings of the

DETC2004: Proceedings of the ASME 2004 Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Salt Lake City, UT, USA, 28 September–2 October 2004; ASME: New York, NY, USA, 2004; pp. 1–9.

19. Arakelian, V.H.; Smith, M.R. Shaking Force and Shaking Moment Balancing of Mechanisms: A Historical Review with New
Examples. J. Mech. Des. 2005, 127, 334–339. [CrossRef]

20. van der Wijk, V.; Herder, J.L. Synthesis of Dynamically Balanced Mechanisms by Using Counter-Rotary Countermass Balanced
Double Pendula. J. Mech. Des. 2009, 131, 111003.

21. Farmani, M.R.; Jaamialahmadi, A.; Babaie, M. Multiobjective optimization for force and moment balance of a four-bar linkage
using evolutionary algorithms. J. Mech. Sci. Technol. 2011, 25, 2971–2977. [CrossRef]

22. Zhang, D.; Wei, B. Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots; Springer: Cham, Switzerland, 2016.
23. Jong, J.D.; Dijk, J.V.; Herder, J. A screw based methodology for instantaneous dynamic balance. Mech. Mach. Theory 2019,

141, 267–282. [CrossRef]
24. Chaudhary, H.; Saha, S.K. An optimization technique for the balancing of spatial mechanisms. Mech. Mach. Theory 2008,

43, 506–522. [CrossRef]
25. Gupta, V.; Saha, S.K.; Chaudhary, H. Optimum Design of Serial Robots. J. Mech. Des. 2019, 141, 082303. [CrossRef]
26. Agrawal, S.K.; Fattah, A. Reactionless space and ground robots: Novel designs and concept studies. Mech. Mach. Theory 2004,

39, 25–40. [CrossRef]
27. van der Wijk, V.; Demeulenaere, B.; Gosselin, C.; Herder, J.L. Comparative Analysis for Low-Mass and Low-Inertia Dynamic

Balancing of Mechanisms. J. Mech. Robot. 2012, 4, 031008.
28. Fattah, A.; Agrawal, S.K. On the design of reactionless 3-DOF planar parallel mechanisms. Mech. Mach. Theory 2006, 41, 70–82.

[CrossRef]
29. Papadopoulos, E.; Abu-Abed, A. Design and motion planning for a zero-reaction manipulator. In Proceedings of the 1994 IEEE

International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; Volume 2, pp. 1554–1559. [CrossRef]

http://doi.org/10.1016/j.rcim.2021.102177
http://dx.doi.org/10.1016/j.mechmachtheory.2019.03.031
http://dx.doi.org/10.1007/978-3-030-95750-6_9
http://dx.doi.org/10.1016/0094-114X(79)90013-2
http://dx.doi.org/10.1016/0022-2569(68)90001-3
http://dx.doi.org/10.1115/1.3591524
http://dx.doi.org/10.1115/1.3427917
http://dx.doi.org/10.1016/0094-114X(73)90076-1
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2000/35173/493/6610082/493_1.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2000/35173/493/6610082/493_1.pdf
http://dx.doi.org/10.1115/DETC2000/MECH-14098
http://dx.doi.org/10.3390/app9194115
http://dx.doi.org/10.1007/978-3-319-12490-2
http://dx.doi.org/10.1016/S0094-114X(00)00015-X
http://dx.doi.org/10.1016/0094-114X(74)90017-2
http://dx.doi.org/10.1016/0094-114X(91)90083-G
http://dx.doi.org/10.1017/S0263574799001484
http://dx.doi.org/10.1115/1.1829067
http://dx.doi.org/10.1007/s12206-011-0924-8
http://dx.doi.org/10.1016/j.mechmachtheory.2019.07.014
http://dx.doi.org/10.1016/j.mechmachtheory.2007.03.009
http://dx.doi.org/10.1115/1.4042623
http://dx.doi.org/10.1016/S0094-114X(03)00102-2
http://dx.doi.org/10.1016/j.mechmachtheory.2005.04.005
http://dx.doi.org/10.1109/ROBOT.1994.351367


Mathematics 2023, 11, 1776 53 of 54

30. van der Wijk, V. Methodology for Analysis and Synthesis of Inherently Force and Moment-Balanced Mechanisms. Ph.D. Thesis,
University of Twente, Enschede, The Netherlands, 2014. [CrossRef]

31. Fattah, A.; Agrawal, S.K. Design and simulation of a class of spatial reactionless manipulators. Robotica 2005, 23, 75–81. [CrossRef]
32. Gosselin, C.; Vollmer, F.; Cote, G.; Wu, Y. Synthesis and design of reactionless three-degree-of-freedom parallel mechanisms.

IEEE Trans. Robot. Autom. 2004, 20, 191–199. [CrossRef]
33. Wu, Y.; Gosselin, C.M. Synthesis of Reactionless Spatial 3-DoF and 6-DoF Mechanisms without Separate Counter-Rotations. Int.

J. Robot. Res. 2004, 23, 625–642.
34. Briot, S.; Arakelian, V. Complete shaking force and shaking moment balancing of in-line four-bar linkages by adding a class-two

RRR or RRP Assur group. Mech. Mach. Theory 2012, 57, 13–26. [CrossRef]
35. de Jong, J.; Müller, A.; Herder, J. Higher-order derivatives of rigid body dynamics with application to the dynamic balance of

spatial linkages. Mech. Mach. Theory 2021, 155, 104059. [CrossRef]
36. Ye, Z.; Smith, M. Complete balancing of planar linkages by an equivalence method. Mech. Mach. Theory 1994, 29, 701–712.

[CrossRef]
37. Alici, G.; Shirinzadeh, B. Optimum force balancing of a planar parallel manipulator. Proc. Inst. Mech. Eng. Part C J. Mech. Eng.

Sci. 2003, 217, 515–524. [CrossRef]
38. Laliberté, T.; Gosselin, C. Synthesis, optimization and experimental validation of reactionless two-DOF parallel mechanisms

using counter-mechanisms. Meccanica 2016, 51, 3211–3225. [CrossRef]
39. Ur-Rehman, R.; Caro, S.; Chablat, D.; Wenger, P. Multi-objective path placement optimization of parallel kinematics machines

based on energy consumption, shaking forces and maximum actuator torques: Application to the Orthoglide. Mech. Mach. Theory
2010, 45, 1125–1141. [CrossRef]

40. Chaudhary, K.; Chaudhary, H. Optimal dynamic balancing and shape synthesis of links in planar mechanisms. Mech. Mach.
Theory 2015, 93, 127–146. [CrossRef]

41. Chaudhary, H.; Saha, S. Equimomental System and Its Applications; ASME: New York, NY, USA, 2006; Volume 2006. [CrossRef]
42. Chaudhary, H.; Saha, S. Dynamics and Balancing of Multibody Systems; Springer: Berlin, Germany, 2009. [CrossRef]
43. Alici, G.; Shirinzadeh, B. Optimum dynamic balancing of planar parallel manipulators based on sensitivity analysis. Mech. Mach.

Theory 2006, 41, 1520–1532. [CrossRef]
44. Yu, H.; Qian, Z.; Borugadda, A.; Sun, W.; Zhang, W. Partial Shaking Moment Balancing of Spherical Parallel Robots by a

Combined Counterweight and Adjusting Kinematic Parameters Approach. Machines 2022, 10, 216. [CrossRef]
45. Ouyang, P.; Li, Q.; Zhang, W. Integrated design of robotic mechanisms for force balancing and trajectory tracking. Mechatronics

2003, 13, 887–905. [CrossRef]
46. Ouyang, P.R.; Zhang, W.J. Force Balancing of Robotic Mechanisms Based on Adjustment of Kinematic Parameters. J. Mech. Des.

2004, 127, 433–440.
47. Mejia-Rodriguez, R.; Villarreal-Cervantes, M.G.; Martínez-Castelán, J.N.; Muñoz-Reina, J.S.; Silva-García, V.M. Optimal dynamic

balancing of a hybrid serial-parallel robotic manipulator through bio-inspired computing. J. King Saud Univ.-Eng. Sci. 2021, In
Press. [CrossRef]

48. Ilia, D.; Sinatra, R. A novel formulation of the dynamic balancing of five-bar linkages with applications to link optimization.
Multibody Syst. Dyn. 2009, 21, 193–211. [CrossRef]

49. Demeulenaere, B.; Verschuure, M.; Swevers, J.; Schutter, J.D. A General and Numerically Efficient Framework to Design
Sector-Type and Cylindrical Counterweights for Balancing of Planar Linkages. J. Mech. Des. 2010, 132, 011002. [CrossRef]

50. Erkaya, S. Investigation of balancing problem for a planar mechanism using genetic algorithm. J. Mech. Sci. Technol. 2013,
27, 2153–2160. [CrossRef]

51. Chaudhary, K.; Chaudhary, H. Dynamic balancing of planar mechanisms using genetic algorithm. J. Mech. Sci. Technol. 2014,
28, 4213–4220. [CrossRef]

52. Kim, J. Task based kinematic design of a two DOF manipulator with a parallelogram five-bar link mechanism. Mechatronics 2006,
16, 323–329. [CrossRef]

53. Saravanan, R.; Ramabalan, S.; Babu, P.D. Optimum static balancing of an industrial robot mechanism. Eng. Appl. Artif. Intell.
2008, 21, 824–834. [CrossRef]

54. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

55. Osyczka, A. Multicriterion Optimization in Engineering with FORTRAN Programs; Ellis Horwood-Wiley: Chichester, UK, 1984.
56. Juárez-Castillo, E.; Acosta-Mesa, H.G.; Mezura-Montes, E. Empirical study of bound constraint-handling methods in Particle

Swarm Optimization for constrained search spaces. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation
(CEC), Donostia, Spain, 5–8 June 2017; pp. 604–611. [CrossRef]

57. Gosselin, C. Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms. In Smart Devices and
Machines for Advanced Manufacturing; John Wiley & Sons, Inc.: New York, NY, USA, 2008. [CrossRef]

58. Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; John Wiley & Sons, Inc.: New York, NY, USA, 2005.
[CrossRef]

http://dx.doi.org/10.3990/1.9789036536301
http://dx.doi.org/10.1017/S0263574704000670
http://dx.doi.org/10.1109/TRA.2004.824696
http://dx.doi.org/10.1016/j.mechmachtheory.2012.06.004
http://dx.doi.org/10.1016/j.mechmachtheory.2020.104059
http://dx.doi.org/10.1016/0094-114X(94)90112-0
http://dx.doi.org/10.1243/095440603765226803
http://dx.doi.org/10.1007/s11012-016-0582-0
http://dx.doi.org/10.1016/j.mechmachtheory.2010.03.008
http://dx.doi.org/10.1016/j.mechmachtheory.2015.07.006
http://dx.doi.org/10.1115/ESDA2006-95066
http://dx.doi.org/10.1007/978-3-540-78179-0
http://dx.doi.org/10.1016/j.mechmachtheory.2006.01.001
http://dx.doi.org/10.3390/machines10030216
http://dx.doi.org/10.1016/S0957-4158(03)00007-2
http://dx.doi.org/10.1016/j.jksues.2021.10.008
http://dx.doi.org/10.1007/s11044-008-9134-2
http://dx.doi.org/10.1115/1.4000532
http://dx.doi.org/10.1007/s12206-013-0530-z
http://dx.doi.org/10.1007/s12206-014-0934-4
http://dx.doi.org/10.1016/j.mechatronics.2006.01.004
http://dx.doi.org/10.1016/j.engappai.2007.09.007
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/CEC.2017.7969366
http://dx.doi.org/10.1017/S0263574720000168
http://dx.doi.org/10.1108/ir.2006.33.5.403.1


Mathematics 2023, 11, 1776 54 of 54

59. Martini, A.; Troncossi, M.; Rivola, A. Elastodynamic Effects of Mass-Balancing: Experimental Investigation of a Four-Bar Linkage.
Adv. Mech. Eng. 2013, 5, 949457. [CrossRef]

60. Raghu, E.; Balasubramonian, A. Experimental Study on the Elastodynamic Behavior of the Unbalanced and the Counterweighted
Four Bar Mechanisms. J. Mech. Des. 1990, 112, 271–277. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2013/949457
http://dx.doi.org/10.1115/1.2912604

	Introduction
	Contributions
	Paper Organization

	Design Approach Based on Multiobjective Optimization for Shaking Force, Shaking Moment, and Torque Robust Balancing
	Application
	Robot Description
	Design Variables
	Nominal Performance Function
	Shaking Force
	Shaking Moment
	Torque Delivery

	Variations in the Performance Function (Sensitivities)
	Shaking Force Variation
	Shaking Moment Variation
	Torque Variation

	Design Constraints
	Statement of the Robust Balancing Optimization Problem

	Results
	Optimization Process
	Experiment Conditions
	Pareto Front
	Decision Maker

	Comparative Results with Other Design Approaches

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

