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Abstract: A novel local and semi-local convergence theorem for the four-step nonlinear scheme
is presented. Earlier studies on local convergence were conducted without particular assumption
on Lipschitz constant. In first part, the main local convergence theorems with a weak κ-average
(assuming it as a positively integrable function and dropping the essential property of ND) are
obtained. In comparison to previous research, in another part, we employ majorizing sequences that
are more accurate in their precision along with the certain form of κ average Lipschitz criteria. A
finer local and semi-local convergence criteria, boosting its utility, by relaxing the assumptions is
derived. Applications in engineering to a variety of specific cases, such as object motion governed by
a system of differential equations, are illustrated.
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1. Introduction

Let the nonlinear operator T be a map in the domain D from χ to Y and taken as
a Fréchet differentiable with T′ its Fréchet derivative which maps χ a Banach space to
another Banach space Y, D 6= ∅ convex open subset, which can be generated as

T(x) = 0. (1)

Computational sciences have advanced significantly in mathematics, economic equi-
librium theory, and engineering sciences. Iteration techniques are also used to solve
optimization difficulties. In computer sciences, the discipline of numerical analysis for
determining such solutions is fundamentally linked to versions of Newton’s approach as

xn+1 = xn − [T′(xn)]
−1T(xn), n ≥ 0, (2)

It is chosen despite its slow convergence speed. A survey on Newton’s method [1] can be
found in Kantorovich [2] and the references by Rall [3].

There is an extensive literature on the local convergence for Newton, Jarratt, Weer-
akoon schemes, etc., in the Banach space in the refs. [4–11]. Our objectives here are
centered on the local convergence study of a four-step nonlinear scheme (FSS) under gen-
eralized/weak Lipschitz criteria which Wang [12] developed, where a non-decreasing
positive integrable function (NDPIF) was incorporated rather than a Lipschitz constant.
However, Wang with Li [13] discovered new conclusions on the convergence study of
Newton’s method (NM) in the Banach spaces where the T′ meets the radius/center Lip-
schitz criteria but relaxing κ-average. Shakhno [14] has explored local convergence for
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the Secant-type method [2] with a first-order non-differentiable operator satisfying the
generalized/weak Lipschitz conditions.

We shall use the classical FSS [15] under the κ-average condition to study the local
convergence of FSS that is expressed as:

yn = xn − [T′(xn)]
−1T(xn),

zn = yn − [T′(xn)]
−1T(yn),

qn = zn − [T′(xn)]
−1T(zn), (3)

xn+1 = qn − [T′(xn)]
−1T(qn), n ≥ 0.

The method (3) is notable for being the simplest and most efficient fifth-order iterative
procedure. We find, in the literature, a study using ω-continuity conditions on T′. While
methods of greater R-order convergence are often not implemented regularly despite their
great speed of convergence, this is due to the high operational expense. That being said, in stiff
system challenges, the method of higher R-order convergence can be used cited by [2] where
quick convergence is necessary.

We are extremely motivated from the captivating study [13] which gave us the pos-
sibility of relaxing the κ-average Lipschitz condition and property of the ND of κ to be
essential for the convergence of a fifth-order FSS scheme. In [16], we also illustrated the
local convergence of a third-order Newton-like method under the same κ-average Lipschitz
condition taken above. Using such considerations, we derive a new local convergence
study for the scheme (3), which enables us to enlarge the convergence ball by dropping out
additional assumptions along-with an error/distance estimate. In addition, few corollaries
with numerical examples are also stated.

In the literature, L.V. Kantorovich first investigated the semi-local convergence results
in [2]. Many other scholars have since examined the enhancement of outcomes based on
majorizing sequences and its variants [1,3,17–20], which is described as [21]:

Definition 1 (Majorized sequence). Let {an} be a sequence in a Banach space X and {tn} be an
increasing scalar sequence. We could say {an} is majorized by {tn} if ‖an+1 − an‖ ≤ tn+1 − tn,
for each n = 0, 1, 2, · · · .

It is also important to provide a unified semi-local convergence analysis for the FSS (3)
along-with the uniqueness of the solution. This analysis can improve existing results
through specialization.

The structure of the presentation of the work is as follows. Section 2 comprises some condi-
tions and preliminary lemma for κ-average weak conditions. In Sections 3 and 4, we provide
local convergence with its domain of uniqueness for FSS while relaxing the assumption
that T′ should satisfy radius/center Lipschitz criteria under weak κ-average saying κ/κ0
is assumed to be belonging to one of the families of PIF, which are not always ND for
convergence-related theorems. This work unifies the semi-local analysis of FSS in Section 5
under majorizing sequences and more weak Lipschitz-type conditions than previously.
Finally, applications and further corollaries are given in order to justify the significance of
the findings.

2. Notions and Preliminary Results

Making the research as self-contained as one possibly can, we reintroduce some
essential concepts and findings [12,13]. Let M(Σ∗, ρ) = {r : ||r− Σ∗|| < ρ} be a ball where
the radius is denoted by ρ and the center is denoted by Σ∗.

The notions about Lipschitz criteria are defined as follows.

Definition 2. The operator T satisfies the radius Lipschitz criterion if

||T′(r)− T′(sθ)|| ≤ κ(1− θ)(||r− Σ∗||+ ||s− Σ∗||), ∀ r, s ∈ M(Σ∗, ρ), (4)
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in which sθ = Σ∗ + θ(s− Σ∗), 0 ≤ θ ≤ 1. This definition is previously used by researchers with
constant κ.

Definition 3. The operator T satisfies the center Lipschitz criterion if

||T′(r)− T′(Σ∗)|| ≤ 2κ0||r− Σ∗||, ∀ r ∈ M(Σ∗, ρ), (5)

with the constant κ0 in which κ0 ≤ κ. It turns out that substituting κ as κ0 when κ0 < κ [4,9,22]
leads to:

(i) Larger convergence radius/domain.
(ii) At least as specific information on the solution’s location Σ∗.
(iii) Closer error boundaries on distances ||rn+1 − rn||, ||rn − Σ∗||.

The novelty of our work is to see that κ used in the Lipschitz criteria is not required to
be essentially constant; rather, it takes the form of an integrable positively function. In that
case, condition (4) is substituted with:

Definition 4. The operator T satisfies the κ-average or generalized/weak Lipschitz criterion, if

||T′(r)− T′(sθ)|| ≤
∫ $(r)+$(s)

θ($(r)+$(s))
κ(u)du, ∀ r, s ∈ M(Σ∗, ρ), 0 ≤ θ ≤ 1, (6)

And condition (5), respectively, is substituted with:

Definition 5. The operator T satisfies the center κ-average criterion, if

||T′(r)− T′(Σ∗)|| ≤
∫ 2$(r)

0
κ0(u)du, ∀ r ∈ M(Σ∗, ρ), (7)

in which $(r) = ||r− Σ∗|| together with κ0(u) ≤ κ(u).

As an illustration of motivation, assume that the motion of a three-dimensional object
is regulated by a system of differential equations

f ′1(p)− f1(p)− 1 = 0,

f ′2(p)− (e− 1)q− 1 = 0,

f ′3(r)− 1 = 0,

Let χ = Y = <3, ω = M(0, 1) and the solution represented by Σ∗ = (0, 0, 0)t. Define
the function T on ω for o = (p, q, r)t as

T(o) = (ep − 1,
e− 1

2
q2 + q, r)t.

We find the Fréchet derivative as

T′(o) =

ep 0 0
0 (e− 1)q + 1 0
0 0 1

. (8)

Thus, κ = e
2 ,κ0 = e−1

2 where κ0 < κ (as per Definitions 2 and 3). As a result,
substituting κ with κ0 at the denominator enhances the convergence radius mentioned
in example 1. When κ, κ0 are not considered to be constants, then we can find κ0(u) =
(e−1)u

2 , κ(u) = eu
2 and κ(u) = e

1
(e−1) u

2 (as per Definitions 4, 5 and Remark 1).
Next, we shall show in Lemma 1 the two major double integrals that will be used in

the main results by solving through a change of variables.
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Lemma 1. Assuming T being continuously differentiable in M(Σ∗, ρ), T(Σ∗) = 0, [T′(Σ∗)]−1 exists

(a) If the center average Lipschitz condition under the κ0-average is satisfied by [T′(Σ∗)]−1T′:

||[T′(Σ∗)]−1(T′(rθ)− T′(Σ∗))|| ≤
∫ 2θ$(r)

0
κ0(u)du, ∀ r ∈ M(Σ∗, ρ), 0 ≤ θ ≤ 1, (9)

in which $(r) = ||r− Σ∗|| and κ0 is (ND); therby, we see

∫ 1

0
||[T′(Σ∗)]−1(T′(rθ)− T′(Σ∗))||$(r)dθ ≤

∫ 2$(r)

0
κ0(u)

(
$(r)− u

2

)
du. (10)

(b) If the radius average Lipschitz condition under the κ-average is satisfied by [T′(Σ∗)]−1T′:

||[T′(Σ∗)]−1(T′(r)− T′(sθ))|| ≤
∫ ρ(r)+ρ(s)

θ($(r)+$(s))
κ(u)du, ∀ r, s ∈ M(Σ∗, ρ), 0 ≤ θ ≤ 1,

(11)

in which sθ = Σ∗ + θ(s− Σ∗), κ is positively integrable. Then,
∫ 1

0
||[T′(Σ∗)]−1(T′(r)− T′(sθ))||$(s)dθ ≤

∫ $(r)+$(s)

0
κ(u) u

$(r) + $(s)
$(s)du. (12)

Proof. The definition for average Lipschitz criteria (11) and (9), respectively, infers that∫ 1

0
||[T′(Σ∗)]−1(T′(r)− T′(sθ))||$(s)dθ ≤

∫ 1

0

∫ $(r)+$(s)

θ($(r)+$(s))
κ(u)du$(s)dθ

=
∫ $(r)+$(s)

0
κ(u) u

$(r) + $(s)
$(s)du,

∫ 1

0
||[T′(Σ∗)]−1(T′(rθ)− T′(Σ∗))||$(r)dθ ≤

∫ 1

0

∫ 2θ$(r)

0
κ0(u)du$(r)dθ

=
∫ 2$(r)

0
κ0(u)

(
$(r)− u

2

)
du.

where rθ = Σ∗ + θ(r− Σ∗).

3. Local Convergence Results for Four-Step Scheme (3)

Under this section, we present the key findings about local convergence as well as
improved error estimates with distances.

Let the relation be satisfied by ρ as:

∫ 2ρ

0
κ0(u)du ≤ 1 and

∫ 2ρ
0 κ(u)udu

2ρ(1−
∫ 2ρ

0 κ0(u)du)
≤ 1. (13)

Lemma 2 ([13]). Assume that κ is PIF along with the function κα given by expression (46) to be
ND for some α with 0 ≤ α ≤ 1. Then, the function ψβ,α f or each β ≥ 0 takes the form

ψβ,α(t) =
1

tα+β

∫ t

0
uβκ(u)du, (14)

is also ND.

Lemma 3. Assume that κ is NDPIF. Then, the function defined by 1
t2

∫ t
0 κ(u)udu is also ND

with respect to t.
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Proof. Obviously, since κ is monotone, we arrive at(
1
t2
2

∫ t2

0
− 1

t2
1

∫ t1

0

)
κ(u)udu =

(
1
t2
2

∫ t2
t1

+

(
1
t2
2
− 1

t2
1

) ∫ t1
0

)
κ(u)udu

≥ κ(t1)

(
1
t2
2

∫ t2
t1

+

(
1
t2
2
− 1

t2
1

) ∫ t1
0

)
udu

= κ(t1)

(
1
t2
2

∫ t2
0 −

1
t2
1

∫ t1
0

)
udu = 0,

for 0 < t1 < t2. Thus, 1
t2

∫ t
0 κ(u)udu is ND with respect to t.

Theorem 1. Assuming T being continuously differentiable in M(Σ∗, ρ), T(Σ∗) = 0, [T′(Σ∗)]−1

exists and Definitions 4 and 5 are satisfied by [T′(Σ∗)]−1T′ along with κ and κ0 to be ND,
ρ satisfies the relation (13). Then, the FSS (3) converges ∀x0 ∈ M(Σ∗, ρ) with

||yn − Σ∗|| ≤
∫ 2$(xn)

0 κ(u)udu

2(1−
∫ 2$(xn)

0 κ0(u)du)
≤ C1

$(x0)
$(xn)

2, (15)

||zn − Σ∗|| ≤
∫ $(xn)+$(yn)

0 κ(u)udu

($(xn) + $(yn))(1−
∫ 2$(xn)

0 κ0(u)du)
$(yn) ≤

C2
1

ρ(x0)2 ρ(xt)
3, (16)

||qn − Σ∗|| ≤
∫ $(yn)+$(zn)

0 κ(u)udu

($(yn) + $(zn))(1−
∫ 2$(yn)

0 κ0(u)du)
$(zn) ≤

C3
1

ρ(x0)3 ρ(xt)
4, (17)

||xn+1 − Σ∗|| ≤
∫ $(zn)+$(qn)

0 κ(u)udu

($(zn) + $(qn))(1−
∫ 2$(zn)

0 κ0(u)du)
$(qn) ≤

C4
1

ρ(x0)4 ρ(xt)
5, (18)

in which the quantities

C1 =

∫ 2$(x0)
0 κ(u)udu

2$(x0)(1−
∫ 2$(x0)

0 κ0(u)du)
, C2 =

∫ $(x0)+$(y0)
0 κ(u)udu

($(x0) + $(y0))(1−
∫ 2$(x0)

0 κ0(u)du)
,

C3 =

∫ $(x0)+$(z0)
0 κ(u)udu

($(x0) + $(z0))(1−
∫ 2$(x0)

0 κ0(u)du)
, C4 =

∫ $(x0)+$(q0)
0 κ(u)udu

($(x0) + $(q0))(1−
∫ 2$(x0)

0 κ0(u)du)
, (19)

are found to be less than 1. In addition, with

||xn − Σ∗|| ≤ C5n−1
1 ||x0 − Σ∗||, n = 1, 2, · · · .

Then, we propose a uniqueness theorem with a center-average Lipschitz condition for
FSS, (3).

Theorem 2. Assuming T being continuously differentiable in M(Σ∗, ρ), T(Σ∗) = 0, [T′(Σ∗)]−1

exists and Definition 5 is satisfied by [T′(Σ∗)]−1T′ and ρ satisfies the relation∫ 2ρ
0 κ0(u)(2ρ− u)du

2ρ
≤ 1. (20)

Then, T(x) = 0 has a unique solution Σ∗ ∈ M(Σ∗, ρ).

Next, we provide proofs for the two core results.
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Proof of Theorem 1. Clearly, if x ∈ M(Σ∗, ρ), we have with the help of the center-average
Lipschitz condition under κ-average along with the assumption (13):

||[T′(Σ∗)]−1[T′(x)− T′(Σ∗)]|| ≤
∫ 2$(x)

0
κ0(u)du ≤ 1. (21)

By the virtue of the Banach Lemma [2] and the above equation

||I − ([T′(Σ∗)]−1T′(x)− I)||−1 = ||[T′(x)]−1T′(Σ∗)||,

using the expression (21), we arrive at the following inequality:

||[T′(x)]−1T′(Σ∗)|| ≤ 1

1−
∫ 2$(x)

0 κ0(u)du
. (22)

WLOG picking x0 ∈ M(Σ∗, ρ), in which C1, C2, C3 and C4 are given as per the rela-
tion (19) and ρ fulfills the inequality (13), can be proved as:

C1 =

∫ 2$(x0)
0 κ(u)udu

2$(x0)2(1−
∫ 2$(x0)

0 κ0(u)du)
$(x0)

≤
∫ 2ρ

0 κ(u)udu

2ρ2(1−
∫ 2ρ

0 κ0(u)du)
$(x0) ≤

||x0 − Σ∗||
ρ

< 1,

C2 =

∫ $(x0)+$(y0)
0 κ(u)udu

($(x0) + $(y0))2(1−
∫ 2$(x0)

0 κ0(u)du)
($(x0) + $(y0))

≤
∫ 2ρ

0 κ(u)udu

2ρ2(1−
∫ 2ρ

0 κ0(u)du)
($(x0) + $(y0)) ≤

||x0 − Σ∗||+ ||y0 − Σ∗||
2ρ

< 1

C3 =

∫ $(x0)+$(z0)
0 κ(u)udu

($(x0) + $(z0))2(1−
∫ 2$(x0)

0 κ0(u)du)
($(x0) + $(z0))

≤
∫ 2ρ

0 κ(u)udu

2ρ2(1−
∫ 2ρ

0 κ0(u)du)
($(x0) + $(z0)) ≤

||x0 − Σ∗||+ ||z0 − Σ∗||
2ρ

< 1

C4 =

∫ $(x0)+$(q0)
0 κ(u)udu

($(x0) + $(q0))2(1−
∫ 2$(x0)

0 κ0(u)du)
($(x0) + $(q0))

≤
∫ 2ρ

0 κ(u)udu

2ρ2(1−
∫ 2ρ

0 κ0(u)du)
($(x0) + $(q0)) ≤

||x0 − Σ∗||+ ||q0 − Σ∗||
2ρ

< 1.

In what follows, if xn ∈ M(Σ∗, ρ), then we have from the scheme (3)

||yn − Σ∗|| = ||xn − Σ∗ − [T′(xn)]
−1T(xn)||

= ||[T′(xn)]
−1[T′(xn)(xn − Σ∗)− T(xn) + T(Σ∗)]||. (23)

Through Taylor’s expansion, we obtain from the expansion of T(xn) along Σ∗:

T(Σ∗)− T(xn) + T′(xn)(xn − Σ∗) = T′(Σ∗)
∫ 1

0
[T′(Σ∗)]−1[T′(xn)− T′(xθ)]dθ(xn − Σ∗). (24)
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So, combining expressions (23) and (24) along with Definition 4,

||yn − Σ∗|| ≤ ||[T′(xn)]
−1T′(Σ∗)||.||

∫ 1

0
[T′(Σ∗)]−1[T′(xn)− T′(xθ

n)]dθ||.||(xn − Σ∗)||

≤ 1

1−
∫ 2$(xn)

0 κ0(u)du

∫ 1

0

∫ 2$(xn)

2θ$(xn)
κ(u)duρ(xn)dθ. (25)

That gives the first inequality of relation (15) with Lemma 1. With the method’s
second sub-step (3) and a parallel analogy, we see that

||zn − Σ∗|| ≤ ||[T′(xn)]
−1T′(Σ∗)||.||

∫ 1

0
[T′(Σ∗)]−1[T′(xn)− T′(yθ

n)]dθ||.||(yn − Σ∗)||

≤ 1

1−
∫ 2$(xn)

0 κ0(u)du

∫ 1

0

∫ $(xn)+$(yn)

θ($(xn)+$(yn))
κ(u)du$(yn)dθ. (26)

That gives the first inequality of relation (16) with Lemma 1. With the method’s third
sub-step (3) and in similar analogy, we obtain

||qn − Σ∗|| ≤ ||[T′(xn)]
−1T′(Σ∗)||.||

∫ 1

0
[T′(Σ∗)]−1[T′(xn)− T′(zθ

n)]dθ||.||(zn − Σ∗)||

≤ 1

1−
∫ 2$(xn)

0 κ0(u)du

∫ 1

0

∫ $(xn)+$(zn)

θ($(xn)+$(zn))
κ(u)du$(zn)dθ. (27)

Looking the Lemma 1, we obtain relation (17). At last, in the last sub-step of the
scheme (3), we obtain

||xn+1 − Σ∗|| ≤ ||[T′(xn)]
−1T′(Σ∗)||.||

∫ 1

0
[T′(Σ∗)]−1[T′(xn)− T′(qθ

n)]dθ||.||(qn − Σ∗)||

≤ 1

1−
∫ 2$(xn)

0 κ0(u)du

∫ 1

0

∫ $(xn)+$(qn)

θ($(xn)+$(qn))
κ(u)du$(qn)dθ. (28)

That gives the expression (18). Moreover, $(xn), $(zn), $(qn) and $(yn) are monotoni-
cally decreasing; hence, ∀n = 0, 1, . . ., and we see

||yn − Σ∗|| ≤
∫ 2$(xn)

0 κ(u)udu

2(1−
∫ 2$(xn)

0 κ0(u)du)

≤
∫ 2$(x0)

0 κ(u)udu

2$(x0)2(1−
∫ 2$(xn)

0 κ0(u)du)
2$(xn)

2 ≤ C1

$(x0)
$(xn)

2.

Setting n = 0 above gives us ‖y0 − Σ∗‖ ≤ C1.$(x0) < $(x0). This result shows
that y0 ∈ M(Σ∗, ρ), and it can therefore be repeated indefinitely as per Equation (3).
Furthermore, all values of yn will belong to M(Σ∗, ρ) by a mathematical induction, and the
value of $(yn) = ‖yn − Σ∗‖ will decrease monotonically.

By some computation in the first part of expression (15) and (16), we obtain

||zn − Σ∗|| ≤
∫ $(xn)+$(yn)

0 κ(u)udu

($(xn) + $(yn))2(1−
∫ 2$(xn)

0 κ0(u)du)
$(yn).[$(xn) + $(yn)]

≤ C2
$(x0) + $(y0)

[$(xn) + $(yn)]$(yn)· (29)

By simplifying further,

‖zn − ε∗‖ ≤
C2

1
$(x0)2 $(xn)

3· (30)
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Setting n = 0 in inequality (29) gives us ‖z0 − Σ∗‖ ≤ C2.$(y0) < $(x0). This result
shows that z0 ∈ M(Σ∗, ρ), and it can therefore be repeated indefinitely as per Equation (3).
Furthermore, all values of zn will belong to M(Σ∗, ρ) by mathematical induction, and the
value of $(zn) = ‖zn − Σ∗‖ will decrease monotonically.

||qn − Σ∗|| ≤
∫ $(xn)+$(zn)

0 κ(u)udu

($(xn) + $(zn))2(1−
∫ 2$(xn)

0 κ0(u)du)
$(zn).[$(xn) + $(zn)]

≤ C3
$(x0) + $(z0)

[$(xn) + $(zn)]$(zn). (31)

By simplifying further,

‖qn − ε∗‖ ≤
C3

1
$(x0)3 $(xn)

4. (32)

Setting n = 0 in inequality (31) gives us ‖q0 − Σ∗‖ ≤ C3.$(z0) < $(x0). This result
shows that q0 ∈ M(Σ∗, ρ), and it can therefore be repeated indefinitely as per Equation (3).
Furthermore, all values of qn will belong to M(Σ∗, ρ) by mathematical induction, and the
value of $(qn) = ‖qn−Σ∗‖will decrease monotonically. In addition, the last expression (18)
gives

||xn+1 − Σ∗|| ≤
∫ $(xn)+$(qn)

0 κ(u)udu

($(xn) + $(qn))2(1−
∫ 2$(xn)

0 κ0(u)du)
$(qn).[$(xn) + $(qn)]

≤ C4
$(x0) + $(q0)

[$(xn) + $(qn)]$(qn). (33)

By simplifying further,

‖xn+1 − ε∗‖ ≤
C4

1
$(x0)4 $(xn)

5. (34)

That is all regarding inequalities (15)–(18). It remains to check (20); for that, we use
mathematical induction. For n = 0, we have by the relation (16),

‖xn+1 − ε∗‖ ≤
C4

1
$(x0)4 $(xn)

5.

Subsequently, the aforementioned inequality can be transformed into an alternative
form:

||x1 − ε∗|| ≤ C(5−1)
1 $(x0).

That means the equality (20) is said to be true for n = 1. Next, assume the relation (20)
holds for some integer n > 1. The below form is preserved by the aforementioned inequality:

||xn+1 − Σ∗|| ≤
[

C5t+1−1
1

$(x0)4

]
$(x0)

5

≤ C(5t+1−1)
1 $(x0).

We are now prepared to demonstrate the uniqueness result.
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Proof of Theorem 2. WLOG picking Σ∗1 ∈ M(Σ∗, ρ), Σ∗1 6= Σ∗ and considering the scheme,
we obtain

||Σ∗1 − Σ∗|| = ||Σ∗1 − Σ∗ − [t′(Σ∗)]−1t(Σ∗1)||.
= ||[t′(Σ∗)]−1[t′(Σ∗)(Σ∗1 − Σ∗)− t(Σ∗1) + t(Σ∗)]||. (35)

Through Taylor’s expansion, we obtain from expansion of T(Σ∗1) along Σ∗:

T(Σ∗)− T(Σ∗1) + T′(Σ∗)(Σ∗1 − Σ∗) =
∫ 1

0
[T′(Σ∗)]−1[T′(Σ∗1)

θ − T′(Σ∗)]dθ(Σ∗1 − Σ∗). (36)

So, combining expressions (35) and (36) along with Definition 5,

||Σ∗1 − Σ∗|| ≤ ||[T′(Σ∗)]−1T′(Σ∗)||.||
∫ 1

0
[T′(Σ∗)]−1[T′(Σ∗1)

θ − T′(Σ∗)]dθ||.||(Σ∗1 − Σ∗)||

≤
∫ 1

0

∫ 2θ$(Σ∗1 )

0
κ0(u)du$(Σ∗1)dθ· (37)

Looking at the relation (37) with Lemma 1, we have

||Σ∗1 − Σ∗|| ≤ 1
2$(Σ∗1)

∫ 2$(Σ∗1)

0
κ0(u)[2$(Σ∗1)− u]du(Σ∗1 − Σ∗)

≤
∫ 2ρ

0 κ0(u)(2ρ− u)du
2ρ

$(Σ∗1) ≤ ||Σ∗1 − Σ∗||. (38)

However, that is found to be a contradiction. Hence, we find that Σ∗1 = Σ∗. This gives
the core result for this part.

Specifically, assuming that κ and κ0 are constants, we can obtain the usual results on
the Lipschitz condition.

4. Local Convergence with Weak κ-Average

We shall provide local convergence results on re-assuming the hypotheses already
presented in the first theorem by weakening it where κ is not taken as an ND function.
This concept has already resulted in a more precise convergence study by decreasing the
convergence order.

Theorem 3. Assuming T being continuously differentiable in M(Σ∗, ρ), T(Σ∗) = 0, [T′(Σ∗)]−1

exists and Definitions 4 and 5 are satisfied by [T′(Σ∗)]−1T′ along with κ and κ0 to be PIF, and
ρ satisfies the relation∫ 2ρ

0
κ0(u)du ≤ 1 and

∫ 2ρ

0
(κ(u) +κ0(u))du ≤ 1. (39)

Then, the FSS (3) converges ∀x0 ∈ M(Σ∗, ρ) with

||yn − Σ∗|| ≤
∫ 2$(xn)

0 κ(u)udu

2(1−
∫ 2$(xn)

0 κ0(u)du)
≤ M1$(xn), (40)

||zn − Σ∗|| ≤
∫ $(xn)+$(yn)

0 κ(u)udu

($(xn) + $(yn))(1−
∫ 2$(xn)

0 κ0(u)du)
$(yn) ≤ M2 M1$(xn), (41)

||qn − Σ∗|| ≤
∫ $(yn)+$(zn)

0 κ(u)udu

($(yn) + $(zn))(1−
∫ 2$(yn)

0 κ0(u)du)
$(zn) ≤ M3 M2 M1$(xn), (42)
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||xn+1 − Σ∗|| ≤
∫ $(zn)+$(qn)

0 κ(u)udu

($(zn) + $(qn))(1−
∫ 2$(zn)

0 κ0(u)du)
$(qn) ≤ M4 M3 M2 M1$(xn), (43)

in which the quantities

M1 =

∫ 2ρ(x0)
0 κ(u)du

1−
∫ 2ρ(x0)

0 κ0(u)du
, M2 =

∫ ρ(x0)+ρ(y0)
0 κ(u)du

1−
∫ 2ρ(x0

0 κ0(u)du
,

M3 =

∫ ρ(x0)+ρ(z0)
0 κ(u)du

1−
∫ 2ρ(x0

0 κ0(u)du
, M4 =

∫ ρ(x0)+ρ(q0)
0 κ(u)du

1−
∫ 2ρ(x0

0 κ0(u)du
, (44)

are found to be less than 1. In addition,

||xn − Σ∗|| ≤ (M1M2M3M4)
n||x0 − Σ∗||, n = 1, 2, .... (45)

Moreover, assuming the function κα given as

κα(t) = t1−ακ(t), (46)

is ND for some α with 0 ≤ α ≤ 1 and ρ satisfies

1
2ρ

∫ 2ρ

0
(2ρκ0(u) + uκ(u))du ≤ 1. (47)

Then, the FSS (3) converges ∀x0 ∈ M(Σ∗, ρ) with

||xn − Σ∗|| ≤ m
(1+4α)n−1

α

1 ||x0 − Σ∗||, n = 1, 2, · · · , (48)

in which quantity m1 is the same as C1 given in inequality (19) and less than 1.

Proof. Clearly, if x ∈ M(Σ∗, ρ), we have with the help of the center-average Lipschitz
condition under a weak average along with the assumption (39):

||[T′(Σ∗)]−1[T′(x)− T′(Σ∗)]|| ≤
∫ 2$(x)

0
κ0(u)du∀ x ∈ M(Σ∗, ρ) ≤ 1. (49)

Using the Banach Lemma [2] and the equation below

||I − ([T′(Σ∗)]−1T′(x)− I)||−1 = ||[T′(x)]−1T′(Σ∗)||,

using expression (49), we arrive at the following inequality:

||[T′(x)]−1T′(Σ∗)|| ≤ 1

1−
∫ 2$(x)

0 κ0(u)du
. (50)

WLOG picking x0 ∈ M(Σ∗, ρ), in which M1, M2, M3 and M4 are given as per the
relation (44) and ρ fulfills the inequality (39), can be proved as:
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M1 =

∫ 2$(x0)
0 κ(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
≤

∫ ρ
0 κ(u)du

(1−
∫ 2ρ

0 κ0(u)du)
< 1,

M2 =

∫ $(x0)+$(y0)
0 κ(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
≤

∫ 2ρ
0 κ(u)du

(1−
∫ 2ρ

0 κ0(u)du)
< 1

M3 =

∫ $(x0)+$(z0)
0 κ(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
≤

∫ 2ρ
0 κ(u)du

(1−
∫ 2ρ

0 κ0(u)du)
< 1 (51)

M4 =

∫ $(x0)+$(q0)
0 κ(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
≤

∫ 2ρ
0 κ(u)du

(1−
∫ 2ρ

0 κ0(u)du)
< 1.

In what follows, if xn ∈ M(Σ∗, ρ), then from scheme (3), the first inequality of rela-
tion (40)–(43) is completely similar to Theorem 3. Additionally, $(xn), $(zn), $(qn) and
$(yn) are monotonically decreasing, hence ∀n = 0, 1, . . ., which leads to

||yn − Σ∗|| ≤
∫ 2$(xn)

0 κ(u)udu

2(1−
∫ 2$(xn)

0 κ0(u)du)
≤

∫ 2$(x0)
0 κ(u)du

(1−
∫ 2$(xn)

0 κ0(u)du)
$(xn) ≤ m1$(xn).

By some computation in first part of expression (41)–(43), we obtain

||zn − Σ∗|| ≤
∫ $(xn)+$(yn)

0 κ(u)udu

($(xn) + $(yn))(1−
∫ 2$(xn)

0 κ0(u)du)
$(yn)

≤
∫ $(x0)+$(y0)

0 κ(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
$(yn) ≤ m2m1ρ(xn).

||qn − Σ∗|| ≤
∫ $(xn)+$(zn)

0 κ(u)udu

($(xn) + $(zn))(1−
∫ 2$(xn)

0 κ0(u)du)
$(zn) (52)

≤
∫ $(x0)+$(z0)

0 κ(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
$(yn) ≤ m3m2m1ρ(xn).

||xn+1 − Σ∗|| ≤
∫ $(xn)+$(qn)

0 κ(u)udu

($(xn) + $(yn))(1−
∫ 2$(xn)

0 κ0(u)du)
$(qn)

≤
∫ $(x0)+$(q0)

0 κ(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
$(qn) ≤ m4m3m2m1ρ(xn).

We also can easily derive the inequality (45) through the aforementioned result. Assuming
the function κα given by the relation (46) is ND for some α with 0 ≤ α ≤ 1 and ρ is given by
expression (47), in view of Lemma 2 and the first part of inequality of relation (40), we see

||yn − Σ∗|| ≤ ψ1,α(2$(xn))2α

(1−
∫ 2$(xn)

0 κ0(u)du)
$(xn)

α+1

≤ ψ1,α(2$(x0))2α

(1−
∫ 2$(xn)

0 κ0(u)du)
$(xn)

α+1 =
m1

$(x0)α
$(xn)

α+1.
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Following that, when we see Lemma 2 and the initial part of inequality of (41)–(43),
we find

||zn − Σ∗|| ≤ ψ1,α($(xn) + $(yn))($(xn) + $(yn))α

(1−
∫ 2$(xn)

0 κ0(u)du)
$(yn),

≤ ψ1,α($(x0) + $(y0))($(xn) + $(yn))α

(1−
∫ 2$(xn)

0 κ0(u)du)
$(yn),

≤ m1

(2$(x0))α
($(xn) + $(yn))

α$(yn),

≤
m2

1
$(x0)2α

$(xn)
2α+1.

||qn − Σ∗|| ≤ ψ1,α($(xn) + $(zn))($(xn) + $(zn))α

(1−
∫ 2$(xn)

0 κ0(u)du)
$(zn),

≤ ψ1,α($(x0) + $(z0))($(xn) + $(zn))α

(1−
∫ 2$(xn)

0 κ0(u)du)
$(zn),

≤ m1

(2$(x0))α
($(xn) + $(zn))

α$(zn),

≤
m3

1
$(x0)3α

$(xn)
3α+1.

||xn+1 − Σ∗|| ≤ ψ1,α($(xn) + $(qn))($(xn) + $(qn))α

(1−
∫ 2$(xn)

0 κ0(u)du)
$(qn),

≤ ψ1,α($(x0) + $(q0))($(xn) + $(qn))α

(1−
∫ 2$(xn)

0 κ0(u)du)
$(qn),

≤ m1

(2$(x0))α
($(xn) + $(qn))

α$(qn),

≤
m4

1
$(x0)4α

$(xn)
4α+1.

in which (19) proves m1 < 1. Moving forward the derivation of inequality (48), the
method of mathematical induction will be employed. Initially, when n = 0, the inequality
transforms into the following expression:

||x1 − Σ∗|| ≤ m4
1.$(x0).

Consequently, the expression (48) holds true for n = 1. To continue, let us assume that
the inequality (48) is valid for an arbitrary integer n > 1. By utilizing the inequalities (48)
for n = n, and rearranging its terms, the inequality retains its form:

||xn+1 − Σ∗|| ≤
[

m4
1.

$(xk)
(1+4α)

$(x0)4α

]

≤ m
(1+4α)n−1

α
1 $(x0).

This demonstrates that the result holds true for n = n + 1 and is clearly concluding
that xn is convergent to Σ∗. Hence, the proof is said to be completed.

Theorem 4. Assuming T being continuously differentiable in M(Σ∗, ρ), T(Σ∗) = 0, [T′(Σ∗)]−1

exists and Definition 5 is satisfied by [T′(Σ∗)]−1T′ along with κ0 to be PIF, and ρ satisfies
the relation. ∫ 2ρ

0
κ0(u)du ≤ 1

3
. (53)



Mathematics 2023, 11, 1774 13 of 23

Then, the FSS (3) converges ∀x0 ∈ M(Σ∗, ρ) with

||xn − Σ∗|| ≤ (η1η2η3η4)
n||x0 − Σ∗||, n = 1, 2, ..., (54)

holds for

η1 =
2
∫ 2$(x0)

0 κ0(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
, η2 =

∫ 2$(x0)
0 κ0(u)du +

∫ 2$(y0)
0 κ0(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
,

η3 =

∫ 2$(x0)
0 κ0(u)du +

∫ 2$(z0)
0 κ0(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
, η2 =

∫ 2$(x0)
0 κ0(u)du +

∫ 2$(q0)
0 κ0(u)du

(1−
∫ 2$(x0)

0 κ0(u)du)
. (55)

Additionally, assuming the function κα given by the inequality (46) to be ND for some α
when 0 ≤ α ≤ 1, we see

||xn − Σ∗|| ≤ η
(1+4α)n−1

α

1 ||x0 − Σ∗||, n = 1, 2, · · · . (56)

Proof. WLOG picking x0 ∈ M(Σ∗, ρ), in which η1, η2, η3 and η4 are given as per the
relation (55) and ρ fulfills the inequality (53). In what follows, if xn ∈ M(Σ∗, ρ), then we
have from the scheme (3), we are able to give the distance norms as in Theorem 3. Looking
at Definition 5 and with relation (24), we obtain

||yn − Σ∗|| ≤ ||[T′(xn)]
−1T′(Σ∗)||.||

∫ 1

0
[T′(Σ∗)]−1[T′(xn)− T′(Σ∗) + T′(Σ∗)− T′(x)θ ]dθ||

.||(xn − Σ∗)||

≤ 1

(1−
∫ 2$(xn)

0 κ0(u)du

(∫ 1

0

∫ 2θ$(xn)

0
κ0(u)du$(xn)dθ

)
(57)

+

(∫ 1

0

∫ 2$(xn)

0
κ0(u)du$(xn)dθ

)
.

Looking at the Lemma 1, the aforementioned inequality becomes

||yn − Σ∗|| ≤
2
∫ 2$(xn)

0 κ0(u)du$(xn)− 1
2

∫ 2$(xn)
0 κ0(u)udu

1−
∫ 2$(xn)

0 κ0(u)du

≤
2
∫ 2$(xn)

0 κ0(u)du

1−
∫ 2$(xn)

0 κ0(u)du
$(xn) = η1$(xn),

The method’s remaining sub-step (3) and a parallel analogy gives

||zn − Σ∗|| ≤ ||[T′(xn)]
−1T′(Σ∗)||

(
||
∫ 1

0
[T′(Σ∗)]−1[T′(xn)− T′(Σ∗)]dθ||.||(yn − Σ∗)||

)
+

(
||
∫ 1

0
[T′(Σ∗)]−1[T′(Σ∗)− T′(yθ)]dθ||.||(yn − Σ∗)||

)
≤ 1

(1−
∫ 2$(xn)

0 κ0(u)du

(∫ 1

0

∫ 2θ$(yn)

0
κ0(u)du$(yn)dθ

)
(58)

+

(∫ 1

0

∫ 2$(xn)

0
κ0(u)du$(yn)dθ

)
.

Looking at Lemma 1, the aforementioned inequality becomes

||zn − Σ∗|| ≤
∫ 2$(xn)

0 κ0(u)du$(yn) +
∫ 2$(yn)

0 κ0(u)du$(yn)− 1
2

∫ 2$(yn)
0 κ0(u)udu

1−
∫ 2$(xn)

0 κ0(u)du

≤
∫ 2$(xn)

0 κ0(u)du$(yn) +
∫ 2$(yn)

0 κ0(u)du$(yn)

1−
∫ 2$(xn)

0 κ0(u)du

= η2η1$(xn)
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||qn − Σ∗|| ≤
∫ 2$(xn)

0 κ0(u)du$(zn) +
∫ 2$(zn)

0 κ0(u)du$(zn)− 1
2

∫ 2$(zn)
0 κ0(u)udu

1−
∫ 2$(xn)

0 κ0(u)du

≤
∫ 2$(xn)

0 κ0(u)du$(zn) +
∫ 2$(zn)

0 κ0(u)du$(zn)

1−
∫ 2$(xn)

0 κ0(u)du

= η3η2η1$(xn)

||xn+1 − Σ∗|| ≤
∫ 2$(xn)

0 κ0(u)du$(qn) +
∫ 2$(qn)

0 κ0(u)du$(qn)− 1
2

∫ 2$(qn)
0 κ0(u)udu

1−
∫ 2$(xn)

0 κ0(u)du

≤
∫ 2$(xn)

0 κ0(u)du$(qn) +
∫ 2$(qn)

0 κ0(u)du$(qn)

1−
∫ 2$(xn)

0 κ0(u)du

= η4η3η2η1$(xn),

in which expression (55) gives η1 < 1, η2, η3 and η4 < 1. The relations proved above yield
inequality (54) proving xn is convergent to Σ∗. Assuming the function κα given by the
relation (46) is ND for some α with 0 ≤ α ≤ 1 and ρ is given by expression (53), in view of
Lemma 2 and the aforementioned relations, we have

||yn − Σ∗|| ≤ 2ψ0,α(2$(xn))2α

(1−
∫ 2$(xn)

0 κ0(u)du)
$(xn)

α+1,

≤ 2ψ0,α(2$(x0))2α

(1−
∫ 2$(x0)

0 κ0(u)du)
$(xn)

α+1 =
η1

$(x0)α
$(xn)

α+1.

Following that, Lemma 2 gives

||zn − Σ∗|| ≤ ψ0,α(2$(xn)) + ψ0,α(2$(yn)).(2$(xn))α.$(yn)

(1−
∫ 2$(xn)

0 κ0(u)du)
$(yn),

≤ ψ0,α(2$(x0)) + ψ0,α(2$(y0)).(2$(xn))α.$(yn)

(1−
∫ 2$(xn)

0 κ0(u)du)
$(yn),

≤ η1

(2$(x0))α
($(xn) + $(yn))

α$(yn),

≤
η2

1
$(x0)2α

$(xn)
2α+1.

||qn − Σ∗|| ≤ ψ0,α(2$(xn)) + ψ0,α(2$(zn)).(2$(xn))α.$(zn)

(1−
∫ 2$(xn)

0 κ0(u)du)
$(zn),

≤ ψ0,α(2$(x0)) + ψ0,α(2$(z0)).(2$(xn))α.$(zn)

(1−
∫ 2$(xn)

0 κ0(u)du)
$(zn),

≤ η1

(2$(x0))α
($(xn) + $(zn))

α$(zn),

≤
η3

1
$(x0)3α

$(xn)
3α+1.

||xn+1 − Σ∗|| ≤ ψ0,α(2$(xn)) + ψ0,α(2$(qn)).(2$(xn))α.$(qn)

(1−
∫ 2$(xn)

0 κ0(u)du)
$(qn),

≤ ψ0,α(2$(x0)) + ψ0,α(2$(q0)).(2$(xn))α.$(qn)

(1−
∫ 2$(xn)

0 κ0(u)du)
$(qn),

≤ η1

(2$(x0))α
($(xn) + $(qn))

α$(qn),

≤
η4

1
$(x0)4α

$(xn)
4α+1.
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Continuing the derivation further results in the inequality (56) indicating that xn is
convergent to Σ∗.

Next, we will give special cases and the applications to our novel improved theorems
with few specific functions on κ, and the results through Theorems 3 and 4 are recon-
structed.

Corollary 1. Assuming T being continuously differentiable in M(Σ∗, ρ), T(Σ∗) = 0, [T′(Σ∗)]−1

exists and Definitions 4 and 5 are satisfied by [T′(Σ∗)]−1T′ along with κ(u) = ζaua−1 and
κ0(u) = ζ0aua−1:

||[T′(Σ∗)]−1(T′(x)− T′(yθ))|| ≤ ζ.(1− θa)(||x− Σ∗||+ ||y− Σ∗||)a (59)

with

||[T′(Σ∗)]−1(T′(x)− T′(Σ∗))|| ≤ ζ02a||x− Σ∗||a, (60)

∀ x, y ∈ M(Σ∗, ρ), 0 ≤ θ ≤ 1, where yθ = Σ∗ + θ(y− Σ∗), 0 < a < 1, ζ > 0 and ζ0 > 0.
ρ satisfies the relation

ρ =

(
a + 1

2a(ζ0(a + 1) + ζa)

) 1
a
. (61)

Then, the FSS, (3) converges ∀x0 ∈ M(Σ∗, ρ) with

||yn − Σ∗|| ≤
∫ 2$(xn)

0 κ(u)udu

2(1−
∫ 2$(xn)

0 κ0(u)du)
≤ M1$(xn), (62)

||zn − Σ∗|| ≤
∫ $(xn)+$(yn)

0 κ(u)udu

($(xn) + $(yn))(1−
∫ 2$(xn)

0 κ0(u)du)
$(yn) ≤ M2 M1$(xn), (63)

||qn − Σ∗|| ≤
∫ $(yn)+$(zn)

0 κ(u)udu

($(yn) + $(zn))(1−
∫ 2$(yn)

0 κ0(u)du)
$(zn) ≤ M3 M2 M1$(xn), (64)

||xn+1 − Σ∗|| ≤
∫ $(zn)+$(qn)

0 κ(u)udu

($(zn) + $(qn))(1−
∫ 2$(zn)

0 κ0(u)du)
$(qn) ≤ M4 M3 M2 M1$(xn), (65)

holds for

M1 =
ζa2a$(x0)

a

(1 + a)[1− 2aζ0$(x0)a]
, M2 =

ζa($(x0) + $(y0))
a

(a + 1)(1− 2aζ0$(x0)a)
,

M3 =
ζa($(x0) + $(z0))

a

(a + 1)(1− 2aζ0$(x0)a)
, M4 =

ζa($(x0) + $(q0))
a

(a + 1)(1− 2aζ0$(x0)a)
, (66)

Hence,

||xn − Σ∗|| ≤ (M1M2M3M4)
n||x0 − Σ∗||, n = 1, 2, .... (67)

Corollary 2. Assuming T being continuously differentiable in M(Σ∗, ρ), T(Σ∗) = 0, [T′(Σ∗)]−1

exists and Definition 5 is satisfied by [T′(Σ∗)]−1T′ along with κ0(u) = ζ0aua−1:

||[T′(Σ∗)]−1(T′(x)− T′(Σ∗))|| ≤ ζ02a||x− Σ∗||a, ∀ x ∈ M(Σ∗, ρ), (68)
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in which 0 < a < 1 and ζ0 > 0.ρ satisfies the relation

ρ =

(
1

3ζ02a

) 1
a
. (69)

Then, the FSS (3) converges ∀x0 ∈ M(Σ∗, ρ) with

η1 =
ζ02a+1$(x0)

a

[1− 2aζ0$(x0)a]
, η2 =

ζ02a($(x0)
a + $(y0)

a)

(1− 2aζ0$(x0)a)
,

η3 =
ζ02a($(x0)

a + $(z0)
a)

(1− 2aζ0$(x0)a)
, η2 =

ζ02a($(x0)
a + $(q0)

a)

(1− 2aζ0$(x0)a)
, (70)

||xn − Σ∗|| ≤ (η1η2η3η4)
n||x0 − Σ∗||, n = 1, 2, .... (71)

Remark 1. (i) If κ0 = κ, then our results narrow down to those proved by earlier
researchers [5,8,12,13,23]. Thus, the results of the above condition mentioned above are
special cases of our results. However, if κ0 < κ, the wider convergence radius is achieved in
our results due to the weakening of Lipschitz continuity conditions (the same as illustrated in
the Examples 1 and 3) in the next section.

(ii) The extension of scope of application of our results is described below. Assume equation
2κ0(u)u− 1 = 0 is said to have a minimal positive root ρ and (5) holds. Set M̃= M(Σ∗, ρ)∩
M(Σ∗, ρ). Furthermore, set

||T(x)− T(yθ)|| ≤
∫ $(x)+$(y)

θ($(x)+$(y))
κ(u)du, (72)

in which ∀ x, y ∈ M̃, 0 ≤ θ ≤ 1, and κ is as κ. We see

κ(u) ≤ κ(u) ∀ u ∈ [0, min{ρ, ρ}].

So, according to the above proofs, κ can replace κ in all the results under κ. However, then if

κ(u) < κ(u)

the advantages mentioned in (i) above can be extended even more. Thus, according to the
motivational example, by setting a lower upper bound of κ(u) as κ which will further enhance
the convergence radius, we obtain

κ0 < κ =
e

1
(e−1)

2
< κ.

5. Semi-Local Convergence

This section follows semi-local convergence outcomes for highly comprehensive ma-
jorizing sequences of FSS (3). The study of iterative methods highly values majorizing
sequences as they significantly contribute to the analysis of the given scheme. This is
because majorizing sequences provide a way to bound the error of the iterative method,
which is crucial in understanding the convergence properties of the method. By providing a
tight upper bound on the error, majorizing sequences can be used to establish convergence
results for iterative methods. We introduce an extensive majorizing sequence. Suppose
that there exists a real function κ0 defined on the interval [0,+∞) such that the equation
κ0(n) − 1 = 0 has a smallest positive solution ρ. Let also κ be a real function defined
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on the interval [0, ρ). Let a0 = 0 and b0 be a non-negative parameter. Then, define the
sequence {at} by

ct = bt +

∫ 1
0 κ((1−Θ)(bt − at))dΘ(bt − at)

1− κ0(at)
,

αt = c1 +
∫ 1

0
κ0(bt + Θ(ct − bt))dΘ(ct − bt)

+
∫ 1

0
κ((1−Θ)(bt − at))dΘ(bt − at),

dt = ct +
αt

1− κ0(at)
,

lt = c1 +
∫ 1

0
κ0(bt + Θ(dt − bt))dΘ(dt − bt)

+
∫ 1

0
κ((1−Θ)(bt − at))dΘ(bt − at),

at+1 = dt +
lt

1− κ0(at)
,

rt+1 =
∫ 1

0
κ((1−Θ)(at+1 − at))dΘ(at+1 − at) + (1− κ0(at))(at+1 − at), (73)

and

bt+1 = at+1 +
rt+1

1− κ0(at+1)
.

The sequence at is shown to be majorizing for the sequence xt in Theorem 4. Let us
first develop convergence criteria for the sequence {at}.

Lemma 4. Suppose there exists ρ0 ∈ [0, ρ) such that for each t = 0, 1, 2, · · ·

κ0(at) < 1 and at ≤ ρ0. (74)

Then, the following assertions hold

0 ≤ at ≤ bt ≤ ct ≤ dt ≤ at+1 ≤ ρ0, (75)

and there exists a∗ ∈ [0, ρ0] such that at ≤ a∗ ≤ ρ0 and limt→∞ at = a∗.

Proof. By the definition of the sequence {at} given by the formula (73) and the con-
ditions (74), we see that the assertion (75) holds. Hence, the rest of the assertions
also hold.

Remark 2. If the function κ0 is strictly increasing, then set ρ0 = κ−1
0 (1). The functions κ0, κ and

the limit point a∗ are associated with the method (3). Suppose:

(A1) There exists a parameter b0 ≥ 0 and a point x0 ∈ Ω such that the linear operator T′(x0) is
invertible and ‖[T′(x0)]

−1T(x0)‖ ≤ b0.
(A2) ‖T′(x0)

−1(T′(u)− T′(x0))‖ ≤ κ0(‖u− x0‖) for each u ∈ Ω. Set U1 = U(x0, ρ) ∩Ω
(A3) ‖T′(x0)

−1(T′(u2)− T′(u1))‖ ≤ κ(‖u2 − u1‖) for each u1, u2 ∈ U1.
(A4) The conditions in (74) hold and
(A5) U[x0, a∗] ⊂ Ω.

Remark 3. (1) The parameter ρ can replace the limit point a∗ in the condition (A5).
(2) Suppose that

(A′3) ‖T′(x0)
−1T′(x)‖ ≤ κ1(‖x − x0‖) for each x ∈ U1, where κ1 is a continuous and

non-decreasing real function defined on the interval [0, ρ].
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Then, under the conditions (A2), we obtain in turn

‖T′(x0)
−1(T′(x)− T′(x0) + T′(x0))‖ ≤ 1 + ‖T′(x0)

−1(T′(x)− T′(x0))‖
≤ 1 + κ0(‖x− x0‖).

That is, we can choose κ1(n) = 1 + κ0(n). Then, the condition (A′3) holds for this choice.
However, the function κ1 can be smaller than the function 1 + κ0(u) in some examples. As an
example, define the real function T(x) = sin x. Then, we obtain κ1(n) = n < 1 + κ0(n). In
practice, we shall be using the smaller of the functions κ1 and 1 + κ0(n). Moreover, if κ1 is
smaller, then (A′3) should be added in the conditions (A1)–(A5), since (A2) implies (A′3) but not
necessarily vice versa.

The main result for the FSS (3)’ semi-local convergence is:

Theorem 5. Suppose that the conditions (A1)–(A5) hold. Then, the sequence xt generated by the
method (3) is well defined in the ball U(x0, a∗), remains in U(x0, a∗) for each t = 0, 1, 2, · · · and
is convergent to a solution x∗ ∈ U[x0, a∗] of the equation T(x) = 0. Additionally, the following
assertions hold for each t = 0, 1, 2, · · ·

‖yt − xt‖ ≤ bt − at, (76)

‖zt − yt‖ ≤ ct − bt, (77)

‖qt − zt‖ ≤ dt − ct, (78)

‖xt+1 − qt‖ ≤ at+1 − dt, (79)

and

‖xt − x∗‖ ≤ a∗ − at. (80)

Proof. Induction shall determine the assertions. The condition (A1) and the method (3)
for t = 0 give

‖y0 − x0‖ = ‖[T′(x0)]
−1T(x0)‖ ≤ b0 = b0 − a0 < a∗.

Thus, the iterate y0 ∈ U(x0, a∗) and the assertion (76) is established for t = 0. Let
u ∈ U(x0, a∗). Then, by the condition (A2), it follows

‖T′(x0)
−1(T′(u)− T′(x0))‖ ≤ κ0(‖u− x0‖) ≤ κ)(a∗ < 1,

thus

‖[T′(u)]−1T′(x0)‖ ≤
1

1− κ0(‖u− x0‖)
. (81)

We can write by the first sub-step

T(yk) = T(yk)− T(xk) + T(xk)

= T(yk)− T(xk)− T′(xk)(yk − xk)

=
∫ 1

0
[T′(xk + Θ(yk − xk))dΘ− T′(xk)](yk − xk).
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Hence, by (A2),

‖[T′(x0)]
−1T(yk)‖ ≤

∫ 1

0
κ((1−Θ)‖yk − xk‖)dΘ‖yk − xk‖,

≤
∫ 1

0
κ((1−Θ)‖yk − xk‖)dΘ‖yk − xk‖,

≤
∫ 1

0
κ((1−Θ)(bk − ak‖)dΘ(bk − ak),

and by the second sub-step

‖zk − xk‖ ≤ ‖[T′(xk)]
−1T′(x0)‖.‖[T′(x0)]

−1T(yk)‖

≤
∫ 1

0 κ((1−Θ)(bk − ak‖)dΘ(bk − ak)

1− κ0(ak)
= ck − bk,

and

‖zk − x0‖ ≤ ‖zk − yk‖+ ‖yk − x0‖ ≤ ck − bk + bk − a0 = ck < a∗,

where we also used (76) for u = xk. Hence, the iterate zk ∈ U(x0, a∗) and the assertion (77)
holds. Then, we can write

T(zk) = T(zk)− T(yk) + T(yk)

=
∫ 1

0
[T′(yk + Θ(zk − yk))dΘ](zk − yk) + T(yk).

Therefore,

‖[T′(x0)]
−1T(zk)‖ ≤ (

∫ 1

0
κ0(‖yk − x0‖+ Θ‖zk − yk‖)dΘ‖zk − yk‖+ ‖[T′(x0)]

−1T(yk)‖

≤ (
∫ 1

0
κ0(bk + Θ(ck − bk))dΘ)(ck − bk)

+ (
∫ 1

0
κ((1−Θ)(bk − ak))dΘ)(bk − ak),

Consequently,

‖qk − zk‖ ≤ ‖[T′(xk)]
−1T′(x0)‖.‖[T′(x0)]

−1T(zk)‖

≤ αk
1− κ0(ak)

= dk − ck,

and

‖qk − x0‖ ≤ ‖qk − zk‖+ ‖zk − x0‖ ≤ dk − ck + ck − a0 = dk < a∗.

Hence, the iterate qk ∈ U(x0, a∗) and the assertion (78) holds. Similarly, the last
sub-step gives in turn

‖xk+1 − qk‖ ≤ ‖[T′(xk)]
−1T′(x0)‖.‖[T′(x0)]

−1(T(qk)− T(yk) + T(yk)‖

≤
(1 +

∫ 1
0 κ0(‖yk − x0‖+ Θ‖qk − yk‖)dΘ)‖qk − yk‖+ ‖[T′(x0)]

−1T(yk)‖
1− κ0(ak)

≤ lk
1− κ0(ak)

= ak+1 − dk,

and

‖xk+1 − x0‖ ≤ ‖xk+1 − qk‖+ ‖qk − x0‖ ≤ ak+1 − dk + dk − a0 = ak+1 < a∗.
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Hence, the iterate xk+1 ∈ U(x0, a∗) and the assertion (79) holds. Moreover, we can
write by the first sub-step

T(xk+1) = T(xk+1)− T(xk) + T(xk)

= T(xk+1)− T(xk)− T′(xk)(xk+1 − xk)

+ T′(xk)(xk+1 − xk)− T′(xk)(yk − xk)

= T(xk+1)− T(xk)− T′(xk)(xk+1 − xk) + T′(xk)(xk+1 − yk),

so

‖[T′(x0)]
−1T(xk+1)‖ ≤

∫ 1

0
κ((1−Θ)‖xk+1 − xk‖)dΘ‖xk+1 − xk‖

+ (1 + κ0(‖xk − x0‖))‖xk+1 − yk‖

≤ (
∫ 1

0
κ((1−Θ)(ak+1 − ak))dΘ(ak+1 − ak) (82)

+ (1 + κ0(ak))(ak+1 − bk) = rk+1,

Consequently,

‖yk+1 − xk+1‖ ≤ ‖[T′(xk+1)]
−1T′(x0)‖.‖[T′(x0)]

−1T(xk+1)‖

≤ rk+1
1− κ0(ak+1)

= bk+1 − ak+1

and

‖yk+1 − x0‖ ≤ ‖yk+1 − xk+1‖+ ‖xk+1 − x0‖ ≤ bk+1 − ak+1 + ak+1 − a0 = bk+1 < a∗.

Hence, the iterate yk+1 ∈ U(x0, a∗) and the assertion (79) holds. The induction is
terminated. Therefore, it is established that the sequence ak majorizes the sequence xk.
Moreover, the sequence ak is complete as convergent by the condition (A4). Thus, the
sequence xk is also complete in Banach space . Hence, there exists x∗ ∈ U(x0, a∗) such that
limk→∞ xk = x∗. Furthermore, if k → ∞ in (82), then we conclude from limk→∞ rk+1 = 0,
that T(x∗) = 0. Finally, let i→ ∞ in the estimate

‖xt+i − xt‖ ≤ at+i − at,

to obtain the assertion (80).

The determination of the solution region’s uniqueness follows.

Proposition 1. Suppose there exists a solution y∗ ∈ U(x0, ρ1) of the equation T(x) = 0 for some
ρ1 > 0, the condition (A2) holds in the ball U(x0, ρ1) and there exists ρ2 ≥ ρ1 such that∫ 1

0
κ0((1−Θ)ρ1 + Θρ2)dΘ < 1. (83)

Set U2 = U(x0, ρ2) ∩Ω. Subsequently, in the region U2, the equation T(x) = 0 has to be
uniquely solvable by y∗.

Proof. Let z∗ ∈ U2 be such that T(z∗) = 0. Then, by applying (A2) and the condition (83),
we obtain in turn for M =

∫ 1
0 T′(y∗ + Θ(z∗ − y∗))dΘ that

‖[T′(x0)]
−1(M− T′(x0))‖ ≤

∫ 1

0
κ0((1−Θ)‖y∗ − x0‖+ Θ‖z∗ − x0‖)dΘ

≤
∫ 1

0
κ0((1−Θ)ρ1 + Θρ2)dΘ < 1,
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Thus, the linear operator M is invertible. Hence, we obtain z∗ − y∗ = M−1(T(z∗)−
T(y∗)) = M−1(0) = 0. Therefore, we conclude z∗ = y∗.

Remark 4. If all the conditions (A1)–(A5) hold in Proposition 1, then choose y∗ = x∗ and
ρ1 = a∗.

6. Applications

The applications are illustrated by the examples.

Example 1. Looking back at the inspirational example, we are able to apply our hypothesis and
see that all the assumptions are proved to be true. Applying (13) and T′(Σ∗) = (1, 1, 1)t, we find
the following:

The old case we find for outcomes of past researchers [1,22] κ0(u) = κ(u) = e
2 gives

ρ0 = 0.245253.

Again, narrowing down κ0(u) further, we have following two cases. Case κ0(u) = e−1
2 and

κ(u) = e
2 gives

ρ1 = 0.324947

Case κ0(u) = e−1
2 and κ(u) = e

1
(e−1)

2 gives

ρ2 = 0.382692

We clearly notice that

ρ0 < ρ1 < ρ2.

Therefore, we are able to justify the advantages mentioned in the Remark 1 evaluation, i.e., it
leads to the convergence domain of the proposed scheme of our study.

Example 2. Let χ = Y = <. We take

T(u) =
∫ u

0

(
1 + 2u sin

π

u

)
du, ∀u ∈ <.

So

T′(u) =

{
1 + 2u sin π

u , u 6= 0,
1, u = 0,

Clearly, Σ∗ = 0, a root for T. T′ fulfills

||[T′(Σ∗)]−1(T′(x)− T′(Σ∗))|| =
∣∣∣2u sin

π

u

∣∣∣ ≤ 2|u− Σ∗|, ∀ u ∈ <.

In the view of Theorem 4, for any x0 ∈ M(Σ∗, 1/6), we obtain an expression

||xn − Σ∗|| ≤ C5n−1||x0 − Σ∗||, n = 1, 2, · · · , C =

(
(8|x0|4).(|x0|+ |y0|).(|x0|+ |z0|)

(1− 2|x0|)3.|y0|.|z0|.|q0|

)
.

Meanwhile, there seems to be no PIF κ that satisfies the inequality (6). Take note of the fact
that since

||[T′(Σ∗)]−1(T′(u)− T′(vθ))|| =
∣∣∣2u sin

π

u
− 2vθ sin

π

vθ

∣∣∣ = 4
2i + 1

,
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for u = 1/i, v = 1/i, θ = 2i
2i+1 and i = 1, 2, · · · Hence, we can say that possibly if there was a

positively integrable function κ s.t., the relation (6) follows on M(Σ∗, ρ); for some ρ > 0, it follows
that ∃ some i0 > 1 s.t.

∫ 2ρ

0
κ(u)du ≥

+∞

∑
i=i0

∫ 2
i

4
2i+1

κ(u)du ≥
+∞

∑
i=i0

4
2i + 1

= +∞,

that contradicts the above results. This mentioned example illustrates that Theorem 4 is the
consequence of Theorem 3 as critical enhancement if the convergence radius is to be ignored.

Example 3 ([15]). Choosing χ = C[0, 1] and Y = C[0, 1], Υ = M(0, 1), Σ∗ = 0. So, set T on
the Υ:

T(p)(u) = p(u)− 5
∫ 1

0
uθp(θ)3dθ.

Then,

T′(p(s))(u) = s(u)− 15
∫ 1

0
uθp(θ)2s(θ)dθ f or all s ∈ Υ.

Therefore, we arrive at

κ0(u) =
15
2

u < κ(u) = κ(u) = 15u.

Thereby, this leads to the same advantages as in Example 1 by solving (13) and hence, it
extends the scope of application of the scheme. In addition, over the previous work described in [15],
we have expanded the convergence domain, making our findings more beneficial.

7. Conclusions

To estimate a locally unique solution, a local convergence criteria is successfully
proposed for FSS using this new idea of weak κ-average on a high-order scheme and the
combination of weak/average radius Lipschitz/center Lipschitz criteria. In comparison to
previous work in [15], our analysis is more beneficial in terms of the following advantages:
sufficient weaker convergence criteria and a broader convergence domain. However, the
scheme considered here is without a coefficient, which is a limitation, and this issue can
be addressed by modifying the assumptions on the radius which the authors intend to
take up in the future. This work has further scope of enhancement in condition for the
scheme considered in this theory to make it applicable for semi-local and global domains.
The proposed convergence criteria is superior over the existing convergence criteria for the
FSS scheme of fifth order. By providing semi-local convergence results for incredibly broad
majoring sequences, emphasis is on the broad applicability of results and their potential
significance in the study of iterative schemes. In all, it is a contribution of new research
directions in computational methods and numerical functional analysis.
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