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1. Introduction and Motivation

For two indeterminates q and x, define the shifted factorials by

(x; q)0 = 1 and (x; q)n = (1− x)(1− xq) · · · (1− xqn−1) for n ∈ N.

When |q| < 1, the following shifted factorial of infinite order is well defined:

(x; q)∞ =
∞

∏
k=0

(1− xqk) and (x; q)n =
(x; q)∞

(xqn; q)∞
for n ∈ Z.

Its product and quotient forms are abbreviated compactly to

[a, b, · · · , c; q ]n = (a; q)n(b; q)n · · · (c; q)n,[
a, b, · · · , c
α, β, · · · , γ

∣∣∣q]
n

=
(a; q)n(b; q)n · · · (c; q)n

(α; q)n(β; q)n · · · (γ; q)n
.

Following Bailey [1] and Gasper–Rahman [2], we define the unilateral and bilateral
basic hypergeometric series, respectively, by

1+rφs

[
a0, a1, · · · , ar

b1, · · · , bs

∣∣∣q; z
]
=

∞

∑
n=0

zn
[

a0, a1, · · · , ar
q, b1, · · · , bs

∣∣∣q]
n
,

rψs

[
a1, a2, · · · , ar
b1, b2, · · · , bs

∣∣∣q; z
]
=

∞

∑
n=−∞

zn
[

a1, a2, · · · , ar
b1, b2, · · · , bs

∣∣∣q]
n
,

where the base q will be confined, throughout the paper, to 0 < |q| < 1 for nonterminating
q-series.

In 1985, Askey and Wilson [3] discovered the following remarkable q-beta integral
formula, (see also [4] (Chapter 10) and [2] (Chapter 6))∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b, c, d)

dθ =
2π(abcd; q)∞

[q, ab, ac, ad, bc, bd, cd; q]∞
, (1)
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where the modified Jacobi theta function reads as

h(cos θ; x) = (xeiθ , xe−iθ ; q)∞ =
∞

∏
n=0

(
1− 2qnx cos θ + q2nx2),

with its multiparameter form being denoted compactly by

h(cos θ; α, β, · · · , γ) = h(cos θ; α)h(cos θ; β) · · · h(cos θ; γ).

Due to wide applications to special functions and orthogonal polynomials, this integral for-
mula spurred numerous further works. Refer to [5–8] for different proofs and [9–14] for more
extensions, as well as [2] (Chapter 6) and [3,4,13,15] for applications.

The purpose of this article is twofold: reviewing the q-beta integrals of Askey–Wilson [3]
and Nassrallah–Rahman [10] and establishing several new integral identities, exclusively by
employing the q-derivative operator approach.

The rest of the paper will be organized as follows. In the next section, the background
materials concerning the q-derivative operator will be collected. Then, in the third section,
the Askey–Wilson integral will be recovered by applying the operator Pλ(D). The new
operator Gλ(E) will be introduced in the fourth section, where it is shown how to utilize this
operator to boost numerator parameters in q-beta integrals. In the fifth section, a novel proof
is presented for the integral formula of Nassrallah–Rahman [10] by making use of Pλ(D).
A very general new integral formula is derived in the sixth section, where Bailey’s identity
for well-poised bilateral 6ψ6-series plays a crucial role. Most of the new integral identities
will finally appear in the seventh section. They are accomplished by combining Bailey’s
aforementioned fundamental identity with the extended identity of Karlsson–Minton type
due to the author [16] for parameterized well-poised bilateral q-series.

2. Preliminaries about q-Derivative Operators

The q-derivative operator is a useful tool for proving q-series identities (cf. Carlitz [17],
Chu [18] and Liu [19]). It is defined by

Dx f (x) :=
f (x)− f (qx)

x
and Dn f = D(Dn−1) f for n = 2, 3, · · · ,

with the convention that D0
x f (x) = f (x) for the identity operator. One can show, by means

of the induction principle, the following explicit formula

Dn
x f (x) = x−n

n

∑
k=0

qk (q
−n; q)k
(q; q)k

f (qkx)

= x−n
n

∑
k=0

(−1)k
[

n
k

]
q(

k+1
2 )−nk f (qkx)

(2)

and the Leibniz rule for the product of two functions

Dn
x
{

f (x)g(x)
}
=

n

∑
k=0

qk(k−n)
[

n
k

]
Dk

x f (x)Dn−k
x g(qkx), (3)

where the Gauss q-binomial coefficient is expressed in terms of q-shifted factorials[
n
k

]
=

(q; q)n

(q; q)k(q; q)n−k
.

There is another “backward“ q-derivative operator defined by

δx f (x) :=
f (x)− f (x/q)

x/q
and δn f = δ(δn−1) f for n = 2, 3, · · · ,
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which is related to Dx by

δx f (x) = q×
{
Dx f (x)

∣∣
q→q−1

}
.

It is not hard to check that this operator also admits the explicit formula

δn
x f (x) = (q/x)n

n

∑
k=0

qnk (q
−n; q)k
(q; q)k

f (q−kx)

= (q/x)n
n

∑
k=0

(−1)k
[

n
k

]
q(

k
2) f (q−kx)

(4)

and the Leibniz rule for the product of two functions

δn
x
{

f (x)g(x)
}
=

n

∑
k=0

[
n
k

]
δk

x f (x) δn−k
x g(q−kx). (5)

When working on generating functions of classical partitions, Rogers [20] introduced,
one century ago, the following operators:

Pλ(D) :=
∞

∑
n=0

λn

(q; q)n
Dn and Qλ(δ) :=

∞

∑
n=0

q(
n
2)(−λ)n

(q; q)n
δn. (6)

They correspond, respectively, to operators T(λD) and E(λθ) defined in [21,22]. Then it is
routine to check that (see Rogers [20]; see also Liu [23])

Pλ(D)
1

(ax; q)∞
=

1
[ax, aλ; q]∞

, (7)

Pλ(D)
1

[ax, bx; q]∞
=

(λabx; q)∞

[ax, bx, aλ, bλ; q]∞
, (8)

Pλ(D)
1

[ax, bx, cx; q]∞
=

[
λacx

ax, bx, cx, aλ, cλ

∣∣∣q]2φ1

[
ax, cx
λacx

∣∣∣q; bλ

]
, (9)

where Rogers missed aλ in the last denominator.
Recall the bivariate Rogers–Szegö polynomials

pm(b, d, x) =
m

∑
k=0

[
m
k

]
(bx; q)kbm−kdk.

They have the following generating function

∞

∑
m=0

λm

(q; q)m
pm(b, d, x) =

[
λbdx
λb, λd

∣∣∣q]
∞

and satisfy the recurrence relation

xpm+1(b, d, x) = pm(b, d, x)− (1− bx)(1− dx)pm(b, d, qx).

Then by induction on m, it is not hard to prove the following two q-differentiation
formulae (cf. [18,23]):

Dm 1
[bx, dx; q]∞

=
pm(b, d, x)
[bx, dx; q]∞

,

Dm (ex; q)∞

(cx; q)∞
= cm (qmex; q)∞

(cx; q)∞
(e/c; q)m.
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We remark that these two formulae can also be shown by combining (2) with the
second q-Chu–Vandermonde formula (cf. [2] (Equation II-6))

2φ1

[
q−m, a

c

∣∣∣q; q
]
= am (c/a; q)m

(c; q)m
.

By making use of the Leibniz rule, we can further compute

Pλ(D)
[

xy
ax, bx, cx

∣∣∣q]
∞
=

∞

∑
n=0

λn

(q; q)n
Dn
[

xy
ax, bx, cx

∣∣∣q]
∞

=
∞

∑
n=0

λn

(q; q)n

n

∑
i=0

qi(i−n)
[

n
i

]
Di 1

(ax; q)∞(bx; q)∞
Dn−i (q

ixy; q)∞

(qicx; q)∞

=
∞

∑
i,j=0

λi+jcj

(q; q)i(q; q)j

pi(a, b, x)
(ax; q)∞(bx; q)∞

(qi+jxy; q)∞

(qicx; q)∞
(y/c; q)j, (10)

where the last line has been justified by the replacement i + j = n on summation indices.
Keeping in mind that |q| < 1, we can easily check that the following factorial quotient
appearing in (10) is bounded, i.e., there exists a U ∈ R such that∣∣∣∣ 1

(q; q)i(q; q)j
× (qi+jxy; q)∞

(ax; q)∞(bx; q)∞(qicx; q)∞

∣∣∣∣ < U.

Since the q-binomial coefficients
[

i
k

]
, for all i, k ∈ N0, are bounded (say V), we can

estimate Rogers–Szegö polynomials by

∣∣pi(a, b, x)
∣∣ ≤ i

∑
k=0

∣∣∣∣[ i
k

]
(ax; q)kai−kbk

∣∣∣∣ ≤ V
i

∑
k=0

ηk|a|i−k|b|k

= V
|a|i+1 − |bη|i+1

|a| − |bη| where η = max
k∈N0

{
|1− qkax|

}
.

Moreover, we have further

∣∣(y/c; q)j
∣∣ = ∣∣∣∣ j−1

∏
k=0

(1− qky/c)
∣∣∣∣ ≤ ρj, where ρ = max

k∈N0

{
|1− qky/c|

}
.

Summing up, the double series in (10) is dominated by

UV
∞

∑
i,j=0

|a|i+1 − |bη|i+1

|a| − |bη| |λ|i+jcjρj.

This is a convergent series as long as |λ| is sufficiently small. Therefore, under the
same condition, the double series (10) converges absolutely, which allows one to freely
exchange the summation order.

Now, by applying the Heine transformation (cf. [2] (Equation III-2))

2φ1

[
a, b

c

∣∣∣q; z
]
=

[
c/a, az

c, z

∣∣∣q]
∞
× 2φ1

[
a, abz/c

az

∣∣∣q;
c
a

]
, (11)
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we can reformulate the above double sum as follows:[
xy

ax, bx, cx

∣∣∣q]
∞

∞

∑
i=0

λi pi(a, b, x)
(q; q)i

(cx; q)i
(xy; q)i

2φ1

[
y/c, 0
qixy

∣∣∣q; λc
]

=

[
λy

ax, bx, λc

∣∣∣q]
∞

∞

∑
i=0

λi pi(a, b, x)
(q; q)i

2φ1

[
y/c, 0

λy

∣∣∣q; qicx
]

.

Writing the 2φ1 series explicitly and then interchanging the summation order (provided
that |λ| is sufficiently small), we can reduce the double sum to a single one

Pλ(D)
[

xy
ax, bx, cx

∣∣∣q]
∞
=

[
λy

ax, bx, λc

∣∣∣q]
∞

∞

∑
j=0

(y/c; q)j(cx)j

(q; q)j(λy; q)j

∞

∑
i
(qjλ)i pi(a, b, x)

(q; q)i

=

[
λy

ax, bx, λc

∣∣∣q]
∞

∞

∑
j=0

(y/c; q)j(cx)j

(q; q)j(λy; q)j

[
qjλabx

qjλa, qjλb

∣∣∣q]
∞

,

where we have utilized the generating function of bivariate Rogers–Szegö polynomials.
Therefore, we have rigorously proven the following formula

Pλ(D)
[

xy
ax, bx, cx

∣∣∣q]
∞
=

[
λy, λabx

ax, bx, λa, λb, λc

∣∣∣q]
∞

3φ2

[
λa, λb, y/c
λy, λabx

∣∣∣q; cx
]

, (12)

provided that |λ| is sufficiently small. This restriction can be removed by analytical continuation.
In view of the Sears transformation (cf. Gasper–Rahman [2] (Equation III-9))

3φ2

[
a, c, e

b, d

∣∣∣q;
bd
ace

]
=

[
b/a, bd/ce
b, bd/ace

∣∣∣q]
∞
× 3φ2

[
a, d/c, d/e

d, bd/ce

∣∣∣q;
b
a

]
, (13)

our formula (12) is equivalent to the formula found by Liu [23] (Equation 3.15):

Pλ(D)
(xy; q)∞

[ax, bx, cx; q]∞
=

[
xy, λy, λabcx/y

ax, bx, cx, aλ, bλ, cλ

∣∣∣q]3φ2

[
y/a, y/b, y/c

xy, λy

∣∣∣q; abcλx/y
]

.

For this last expression, the original proof of Liu [23], reproduced by Zhang–Wang [24],
is lacunose. Subsequently, Liu [25] provided a correct proof via the operator method, but it
is less transparent than ours.

Even though Rogers [20] was perhaps the first person to introduce the q-differential
operators Pλ(D) andQλ(δ) given in (6), he did not reveal their applications. After more than
one century since the publication of Rogers’ paper, these operators reappeared in the two
papers by Chen and Liu [21,22], who worked out several useful properties and reviewed some
known q-series identities and the Askey–Wilson integral. Due to the simplicity of applying
q-differential operators to act on known q-series identities to obtain new ones, Chen and
Liu’s papers attracted several followers (for example [7,23–29]) to explore further applications,
mainly covering the following topics:

• q-Barnes integrals (cf. [22,23,26]),
• q-integrals and Sears transformations (cf. [21,22,24–27,29]),
• q-series’ summation formulae and transformations (cf. [22–25,27–29]) ,
• bilinear generating functions of Rogers–Szegö polynomials (cf. [22,25,26]), and
• the Askey–Wilson integral and the Nassrallah–Rahman integral and extensions

(cf. [7,22,24,26,29,30]).

Because this paper is exclusively devoted to the Askey–Wilson integral and extensions,
we shall subsequently examine only the ultimate issue in relation to our findings.
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3. The q-Beta Integral of Askey and Wilson

In this section, three q-beta integrals, including (1) due to Askey and Wilson [3],
will be reviewed by employing the operator Pλ(D) because it admits, according to (8),
the following remarkable property:

Pλ(D)
1

h(cos θ; x)
=

(λx; q)∞

h(cos θ; λ, x)
. (14)

Our starting point is the following easier q-beta integral:∫ π

0

h(cos 2θ; 1)
h(cos θ; a, c)

dθ =
2π

[q, ac; q]∞
. (15)

By slightly modifying the approach used in [4] (§10.8), we present a simple evaluation
by Ramanujan’s 1ψ1-series (cf. [2,31] (Equation II-29))

1ψ1

[
a
c

∣∣∣ q; z
]
=

+∞

∑
k=−∞

(a; q)k
(c; q)k

zk =

[
q, az, q/az, c/a
c, z, c/az, q/a

∣∣∣q]
∞

, (16)

provided that |c/a| < |z| < 1 for convergence. Under the replacements a→ z/a, c→ cz
and z→ az, we can reformulate (16) as[

q, ac, z2, 1/z2

az, a/z, cz, c/z

∣∣∣q]
∞
=

1− z−2

1− a/z ∑
k≥1

(z/a; q)k
(cz; q)k

(az)k +
1− z−2

1− a/z ∑
k≤0

(z/a; q)k
(cz; q)k

(az)k

= (1− z2) ∑
k≥0

(qz/a; q)k
(cz; q)k+1

(az)k + (1− z−2) ∑
k≥0

(q/cz; q)k
(a/z; q)k+1

(c/z)k.

Observe that the right hand side of the last equation results in a Laurent series with
the constant term equal to 2. Letting z = eiθ and then integrating across the equation with
respect to θ from −π to π, we obtain the following equality

(q; q)∞(ac; q)∞

∫ π

−π

h(cos 2θ; 1)
h(cos θ; a, c)

dθ = 4π, (17)

which can be restated equivalently as the q-beta integral displayed in (15), because the
integrand is an even function.

3.1. q-Beta Integrals from 2 to 3 Free Parameters

Specifying the parameter c as the variable x in (15)∫ π

0

h(cos 2θ; 1)
h(cos θ; a, x)

dθ =
2π

[q, ax; q]∞
(18)

and then applying Pb(D) across the last equation, we obtain, in view of (14), the following
q-beta integral with three free parameters:∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b, x)

dθ =
2π

[q, ab, ax, bx; q]∞
. (19)

3.2. q-Beta Integrals from 3 to 4 Free Parameters

Now, once again apply Pc(D) to the last equation. The left hand side becomes

(cx; q)∞

∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b, c, x)

dθ.
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According to (8), the corresponding right-hand side can be evaluated by

Pc(D)
2π

[q, ab, ax, bx; q]∞
=

2π(abcx; q)∞

[q, ab, ac, bc, ax, bx; q]∞
.

This leads to the following well-known q-beta integral formula discovered by Askey
and Wilson [3] (Theorem 2.1) (see also [4] (Chapter 10) and [2] (Chapter 6)):∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b, c, x)

dθ =
2π(abcx; q)∞

[q, ab, ac, bc, ax, bx, cx; q]∞
. (20)

3.3. q-Beta Integrals from 4 to 5 Free Parameters

Finally, by further applying Pd(D) to the equality displayed in (20)

∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b, c, d, x)

dθ =
2π

[q, ab, ac, bc, dx; q]∞
×Pd(D)

[
abcx

ax, bx, cx

∣∣∣q]
∞

and then invoking (12), we recover the following extended Askey–Wilson integral (due to
Chen and Liu [22]) with five free parameters:

∫ π

0

h(cos 2θ; 1)
h(cos θ; a, b, c, d, x)

dθ = 3φ2

[
ab, ac, bc

abcd, abcx

∣∣∣q; dx
]

× 2π[abcx, abcd; q]∞
[q, ab, ac, ad, bc, bd, cd, ax, bx, cx; q]∞

.
(21)

The proof of the Askey–Wilson integral formula reproduced here shows that the
approach of q-differential operators is efficient. For this reason, there were several papers
(see for example [7,22,24,26,29,30]) dedicated to new proofs of Askey–Wilson integral and
extensions. However, all these extensions (or complications) are made by inserting an
extra 3φ2-series into the integrands (unlike those of simple products in the present paper),
cancelling the elegance of the original formula discovered by Askey and Wilson.

Instead of working with q-differential operators, there exist other approaches to deal
with integrals of the Askey–Wilson type. Ito–Witte [32] made extensions by generaliz-
ing the weight functions for the integrals and resolving linear q-difference equations.
Liu [33] examined double q-integrals related to the Askey–Wilson integral through the se-
ries rearrangement. Szablowski [34] generalized Askey–Wilson integrals by expanding the
Askey–Wilson density into continuous q-Hermite polynomials. For details, the interested
readers are invited to refer to these papers and related references cited therein.

4. The q-Gauss Summation Theorem

According to the q-Gauss summation theorem (cf. Gasper–Rahman [2] Equation II-8)

2φ1

[
a, b

c

∣∣∣q;
c

ab

]
=

[
c/a, c/b
c, c/ab

∣∣∣q]
∞

, (22)

we introduce another operator

Gλ(E) :=
∞

∑
n=0

(λn/x)En

(q; q)n(λx; q)n
, (23)

where E is the q-shifted operator defined by

E f (x) := f (qx) for the formal power series f (x).
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The above operator Gλ(E) does not seem to have appeared previously, and is sub-
stantially different from Rogers’ definition in (6) and the Cauchy operator by Chen and
Gu [26].

Now, it is routine to check the expression

Gλ(E)
1

[ax, cx; q]∞
=

1
[ax, cx; q]∞

2φ1

[
ax, cx

λx

∣∣∣q; λ/x
]

.

In particular, we have the following useful formula

Gλ(E)
1

h(cos θ; x)
=

h(cos θ; λ)

h(cos θ; x)[λx, λ/x; q]∞
,

which will enable us to create numerator parameters inside q-beta integrals.

4.1. The First Integral with Parameter λ in Numerator

By applying Gλ(E) to (18), we have the integral formula:

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, x)
dθ =

2π[λx, λ/x; q]∞
[q, ax; q]∞

× 2φ1

[
0, ax

λx

∣∣∣q;
λ

x

]
.

According to (11), we can reformulate this formula by exchanging a and x:

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, x)
dθ =

2π[λa, λ/a; q]∞
[q, ax; q]∞

× 2φ1

[
0, ax

λa

∣∣∣q;
λ

a

]
. (24)

4.2. The Second Integral with Parameter λ in Numerator

If we apply Gλ(E) to (19), we obtain another integral formula

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, x)
dθ =

2π[λx, λ/x; q]∞
[q, ab, ax, bx; q]∞

× 2φ1

[
ax, bx

λx

∣∣∣q;
λ

x

]
,

which can be analogously restated, in view of (11), as

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, x)
dθ =

2π[λa, λ/a; q]∞
[q, ab, ax, bx; q]∞

× 2φ1

[
ab, ax

λa

∣∣∣q;
λ

a

]
.

4.3. The Third Integral with Parameter λ in Numerator

Finally, applying Gλ(E) to (20) yields the following integral formula:

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, c, x)
dθ =

2π[abcx, λx, λ/x; q]∞
[q, ab, ac, bc, ax, bx, cx; q]∞

3φ2

[
ax, bx, cx

abcx, λx

∣∣∣q;
λ

x

]
.

By means of (13), the last formula can be rewritten, under the exchange a 
 x, as

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, c, x)
dθ =

2π[abcx, λa, λ/a; q]∞
[q, ab, ac, bc, ax, bx, cx; q]∞

3φ2

[
ab, ac, ax
λa, abcx

∣∣∣q;
λ

a

]
. (25)

When λ = 0, both integrals recover the integral (1) of Askey–Wilson.
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5. The q-Beta Integral of Nassrallah and Rahman

In 1985, Nassrallah and Rahman [10] found the following important generalization of
the Askey–Wilson integral∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, c, d, x)
dθ = 8W7(λbcd/q : bc, bd, cd, λ/a, λ/x; ax)

×2π

[
abcd, bcdx, λb, λc, λd

q, ab, ac, ad, bc, bd, cd, bx, cx, dx, λbcd

∣∣∣q]
∞

,
(26)

where, for brevity, the 8W7-notation stands for the following well-poised series:

8W7(λ : a, b, c, d, e;
qλ2

abcde
) = 8φ7

[
λ,±q

√
λ, a, b, c, d, e

±
√

λ, qλ/a, qλ/b, qλ/c, qλ/d, qλ/e

∣∣∣q;
qλ2

abcde

]
.

This section will be devoted to a new proof of (26). By applying, respectively, Gλ(E)
to (21) and Pλ(D) to (25), we shall transform this integral into double sums, which will be
reduced, in turn, to the above well-poised 8φ7-series.

5.1. The First Double Sum Expression

By applying the operator Gλ(E) to (21), we obtain∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, c, d, x)
dθ =

2π[abcd, λx, λ/x; q]∞
[q, ab, ac, ad, bc, bd, cd; q]∞

×Gλ(E)
[

abcx
ax, bx, cx

∣∣∣q]
∞

3φ2

[
ab, ac, bc

abcd, abcx

∣∣∣q; dx
]

.

Observing that

Gλ(E)
[

abcx
ax, bx, cx

∣∣∣q]
∞

3φ2

[
ab, ac, bc

abcd, abcx

∣∣∣q; dx
]

= ∑
i,j≥0

(λ/x)idj

[q, λx; q]i

[
ab, ac, bc
q, abcd

∣∣∣q]
j
E i
[

qjabcx
ax, bx, cx

∣∣∣q]
∞

xj

=

[
abcx

ax, bx, cx

∣∣∣q]
∞

∑
i,j≥0

qij(λ/x)i(dx)j

(abcx; q)i+j

[
ax, bx, cx

q, λx

∣∣∣q]
i

[
ab, ac, bc
q, abcd

∣∣∣q]
j
,

we derive the first double sum expression

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, c, d, x)
dθ = 2π

[
abcd, abcx, λx, λ/x

q, ab, ac, ad, bc, bd, cd, ax, bx, cx

∣∣∣q]
∞

× ∑
i,j≥0

qij

(abcx; q)i+j

[
ax, bx, cx

q, λx

∣∣∣q]
i

(λ

x

)i
[

ab, ac, bc
q, abcd

∣∣∣q]
j
(dx)j.

(27)

5.2. The Second Double Sum Expression

Alternatively, by applying Pd(D) to (25), we have∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, c, d, x)
dθ =

2π[λa, λ/a; q]∞
[q, ab, ac, bc, dx; q]∞

×Pd(D)
[

abcx
ax, bx, cx

∣∣∣q]
∞

3φ2

[
ab, ac, ax

λa, abcx

∣∣∣q;
λ

a

]
.
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By means of (12), we can evaluate

Pd(D)
[

abcx
ax, bx, cx

∣∣∣q]
∞

3φ2

[
ab, ac, ax

λa, abcx

∣∣∣q;
λ

a

]
= ∑

i≥0

[
ab, ac
q, λa

∣∣∣q]
i

(λ

a

)i
Pd(D)

[
qiabcx

qiax, bx, cx

∣∣∣q]
∞

= ∑
i≥0

[
ab, ac
q, λa

∣∣∣q]
i

(λ

a

)i
[

qiabcd, qiabdx
qiax, bx, qiad, bd, cd

∣∣∣q]
∞

3φ2

[
qiab, qiad, bd
qiabcd, qiabdx

∣∣∣q; cx
]

=

[
abcd, abdx

ad, bd, cd, ax, bx

∣∣∣q]
∞

∑
i,j≥0

[
ab, ad

abcd, abdx

∣∣∣q]
i+j

[
ac, ax
q, λa

∣∣∣q]
i

(λ

a

)i (bd; q)j

(q; q)j
(cx)j,

which leads to another double sum expression

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, c, d, x)
dθ = 2π

[
abcd, abdx, λa, λ/a

q, ab, ac, bc, ad, bd, cd, ax, bx, dx

∣∣∣q]
∞

× ∑
i,j≥0

[
ab, ad

abcd, abdx

∣∣∣q]
i+j

[
ac, ax
q, λa

∣∣∣q]
i

(λ

a

)i (bd; q)j

(q; q)j
(cx)j.

(28)

5.3. Reduction of Double Sum to Single One

Next, we are going to simplify the last double sum. Recalling the nonterminating
well-poised 6φ5-series (cf. Gasper–Rahman [2] (Equation II-20))

6φ5

[
a, q
√

a, −q
√

a, b, c, d√
a, −

√
a, qa/b, qa/c, qa/d

∣∣∣q;
qa
bcd

]
=

[
qa, qa/bc, qa/bd, qa/cd

qa/b, qa/c, qa/d, qa/bcd

∣∣∣q]
∞

,

we have, as a limiting case, the following equality:[
cx, q2i+2ja2bcdx

qi+jabcx, qi+jacdx

∣∣∣q]
∞
= ∑

k≥0

1− q2i+2j+2k−1a2bcdx
1− q2i+2j−1a2bcdx

q(
k
2)

×
[

q2i+2j−1a2bcdx, qi+jab, qi+jad
q, qi+jabcx, qi+jacdx

∣∣∣q]
k
(−cx)k.

By inserting this relation inside the double double sum in (28), we can reformulate the
triple sum, by letting k + j = n, as follows:

Ω = ∑
i,j≥0

[
ab, ad

abcd, abdx

∣∣∣q]
i+j

[
ac, ax
q, λa

∣∣∣q]
i

(λ

a

)i (bd; q)j

(q; q)j
(cx)j

×
[

qi+jabcx, qi+jacdx
cx, q2i+2ja2bcdx

∣∣∣q]
∞

∑
k≥0

1− q2i+2j+2k−1a2bcdx
1− q2i+2j−1a2bcdx

× q(
k
2)

[
q2i+2j−1a2bcdx, qi+jab, qi+jad

q, qi+jabcx, qi+jacdx

∣∣∣q]
k
(−cx)k

=

[
abcx, acdx
cx, a2bcdx

∣∣∣q]
∞

∑
i,j,k≥0

[
ab, ad

abcx, acdx

∣∣∣q]
i+j+k

[
ac, ax
q, λa

∣∣∣q]
i

(λ

a

)i

×(−1)k (a2bcdx/q; q)2i+2j+k

[abcd, abdx; q]i+j

1− q2i+2j+2k−1a2bcdx
1− q−1a2bcdx

(cx)j+k(bd; q)j

(q; q)j(q; q)k
q(

k
2)

=

[
abcx, acdx
cx, a2bcdx

∣∣∣q]
∞

∑
i,n≥0

(−cx)n

(q; q)n
q(

n
2)

[
ab, ad

abcx, acdx

∣∣∣q]
i+n

[
ac, ax
q, λa

∣∣∣q]
i

(λ

a

)i

×1− q2i+2n−1a2bcdx
1− q−1a2bcdx

(a2bcdx/q; q)2i+n
[abcd, abdx; q]i

3φ2

[
q−n, bd, q2i+n−1a2bcdx

qiabcd, qiabdx

∣∣∣q; q
]

.
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Evaluating the last 3φ2-series by the q-Pfaff–Saalsch’́utz theorem (cf. [2] (Equation II-12))

3φ2

[
q−n, bd, q2i+n−1a2bcdx

qiabcd, qiabdx

∣∣∣q; q
]
= (bd)n

[
qiac, qiax

qiabcd, qiabdx

∣∣∣q; q
]

n
,

we obtain the following transformation of the double Ω-sum to another one

Ω =

[
abcx, acdx
cx, a2bcdx

∣∣∣q]
∞

∑
i,n≥0

1− q2i+2n−1a2bcdx
1− q−1a2bcdx

[
ab, ac, ad, ax

abcd, abcx, abdx, acdx

∣∣∣q]
i+n

× q(
n
2)
(−bcdx)n

(q; q)n

(a2bcdx/q; q)2i+n
[q, λa; q]i

(λ

a

)i

=

[
abcx, acdx
cx, a2bcdx

∣∣∣q]
∞

∑
m≥0

1− q2m−1a2bcdx
1− q−1a2bcdx

[
ab, ac, ad, ax

abcd, abcx, abdx, acdx

∣∣∣q]
m

× (a2bcdx/q; q)m

(q; q)m
2φ1

[
q−m, qm−1a2bcdx

λa

∣∣∣q;
qλ

abcdx

]
q(

m
2 )(−bcdx)m,

where the last passage is justified by i + n = m. By making use of (22)

2φ1

[
q−m, qm−1a2bcdx

λa

∣∣∣q;
qλ

abcdx

]
=

(abcdx/λ; q)m

(λa; q)m

( −λ

abcdx

)m
q−(

m
2 ),

and then simplifying the result, we can finally express the Ω-sum as the following well-
poised series:

∑
i,j≥0

[
ab, ad

abcd, abdx

∣∣∣q]
i+j

[
ac, ax
q, λa

∣∣∣q]
i

(λ

a

)i (bd; q)j

(q; q)j
(cx)j

=

[
abcx, acdx
cx, a2bcdx

∣∣∣q]
∞

8W7(a2bcdx/q : ab, ac, ad, ax, abcdx/λ; λ/a).

(29)

By comparing the two expressions displayed as (27) and (28), we obtain a transforma-
tion formula for another double sum:

∑
i,j≥0

[
ax, bx, cx

q, λx

∣∣∣q]
i

qij(λ/x)i(dx)j

(abcx; q)i+j

[
ab, ac, bc
q, abcd

∣∣∣q]
j
= Ω

[
abdx, cx, λa, λ/a
abcx, dx, λx, λ/x

∣∣∣q]
∞

=

[
λa, λ/a, abdx, acdx
λx, λ/x, dx, a2bcdx

∣∣∣q]
∞

8W7(a2bcdx/q : ab, ac, ad, ax, abcdx/λ; λ/a).

It should be pointed out that (29) is equivalent to the following formula

∞

∑
i,j=0

[
a, c
b, d

∣∣∣q]
i+j

[
u
q

∣∣∣q]
i

[
b/u, d/u

q, v

∣∣∣q]
j

( bd
acu

)i(uv
ac

)j

=

[
bd/au, bd/cu
bd/u, bd/acu

∣∣∣q]
∞

8φ7

[
bd/qu, ±

√
bdq/u, a, c, b/u, d/u, bd/uv

±
√

bd/qu, b, d, v, bd/au, bd/cu

∣∣∣q;
uv
ac

] (30)

by Chu–Zhang [35], who established more summation and reduction formulae for the
q-Kampé de Fériet Function.
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By combining (28) with (29) and then exchanging a and x, we prove the following
important q-beta integral formula (cf. [2] (Equation 6.3.7)):

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, c, d, x)
dθ = 2πΩ

[
bcdx, abdx, λx, λ/x

q, ab, ad, bc, bd, cd, ax, bx, cx, dx

∣∣∣q]
∞

= 2π

[
abcx, abdx, acdx, bcdx, λx, λ/x

q, ab, ac, ad, bc, bd, cd, ax, bx, cx, dx, abcdx2

∣∣∣q]
∞

×8W7(abcdx2/q : ax, bx, cx, dx, abcdx/λ; λ/x).

(31)

The special case λ = abcdx was rederived in [22], where the q-differential operator
Pλ(D) was employed. In addition, it is not hard to check that (31) is equivalent to the
original formula (26) of Nassrallah and Rahman [10] in view of the following limiting form
of Bailey’s transformation for well-poised 10φ9-series (cf. [2] (Equation 2.10.1))[

qa, qa/uv, qλ/u, qλ/v
qa/u, qa/v, qλ, qλ/uv

∣∣∣q]
∞
= 8W7(a : b, c, d, u, v; q2a2/bcduv)

8W7(λ : λb/a, λc/a, λd/a, u, v; qa/uv)
,

provided that λ = qa2/bcd, |qa/uv| < 1 and |qλ/uv| < 1.
By applying this transformation again to the 8W7-series in (26), we recover another

expression (cf. [2] (Equation 6.3.9)):∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, b, c, d, x)
dθ =8W7(λ

2/q : λ/a, λ/b, λ/c, λ/d, λ/x; abcdx/λ)

×2π

[
λa, λb, λc, λd, λx, abcdx/λ

q, ab, ac, ad, bc, bd, cd, ax, bx, cx, dx, λ2

∣∣∣q]
∞

.
(32)

When λ = x, both (31) and (32) reduce to Askey–Wilson’s formula (1).

6. Bailey’s Well-Poised Bilateral 6ψ6-Series

For the five complex parameters a, b, c, d and λ subject to |qλ2/bcde| < 1, Bailey [36]
(see also [2,6] (Equation II-33)) found the following beautiful formula:

6ψ6

[
q
√

λ, −q
√

λ, a, b, c, d√
λ, −

√
λ, qλ/a, qλ/b, qλ/c, qλ/d

∣∣∣ q;
qλ2

abcd

]

=
(q, qλ, q/λ, qλ/ab, qλ/ac, qλ/ad, qλ/bc, qλ/bd, qλ/cd; q)∞

(qλ/a, qλ/b, qλ/c, qλ/d, q/a, q/b, q/c, q/d, qλ2/abcd; q)∞
.

Now we define the following bilateral operator

+∞

∑
n=−∞

1− q2n−1abcdx2

1− abcdx2/q

[
abcdx/u, abcdx/v

ux, vx

∣∣∣q]
n

(uv
q

)n
En

and then apply it to the integral∫ π

0

h(cos 2θ; 1)h(cos θ; abcdx)
h(cos θ; a, b, c, d, x)

dθ

= 2π

[
abcd, abcx, abdx, acdx, bcdx

q, ab, ac, ad, bc, bd, cd, ax, bx, cx, dx

∣∣∣q]
∞

,
(33)

which is, in fact, the case λ = abcdx of (31), as noted by Rahman [11].
The left-hand side can be expressed compactly as[

q, abcd, uv/abcd, abcdx2, q2/abcdx2

uv/q, ux, vx, qu/abcdx, qv/abcdx

∣∣∣q]
∞

∫ π

0

h(cos 2θ; 1)h(cos θ; u, v)
h(cos θ; a, b, c, d, x, q/x)

dθ.
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The corresponding right member becomes

2π

[
abcd, abcx, abdx, acdx, bcdx

q, ab, ac, ad, bc, bd, cd, ax, bx, cx, dx

∣∣∣q]
∞

×8ψ8

[
±x
√

abcdq, ax, bx, cx, dx, abcdx/u, abcdx/v
±x
√

abcd/q, bcdx, acdx, abdx, abcx, ux, vx

∣∣∣q;
uv
q

]
.

Therefore, we have established the following new q-beta integral formula∫ π

0

h(cos 2θ; 1)h(cos θ; u, v)
h(cos θ; a, b, c, d, x, q/x)

dθ

=8ψ8

[
±x
√

abcdq, ax, bx, cx, dx, abcdx/u, abcdx/v
±x
√

abcd/q, bcdx, acdx, abdx, abcx, ux, vx

∣∣∣q;
uv
q

]
×2π

[
abcx, abdx, acdx, bcdx, uv/q, ux, vx, qu/abcdx, qv/abcdx

q, q, ab, ac, ad, bc, bd, cd, ax, bx, cx, dx, uv/abcd, abcdx2, q2/abcdx2

∣∣∣q]
∞

,

(34)

which contains (31) as the particular case v = q/x. This formula can also be considered as
a counterpart of the one derived by Rahman [37] (cf. [2] (Page 173)),∫ π

0

h(cos 2θ; 1)h(cos θ; λ, q/λ)

h(cos θ; c1, c2, c3, c4, c5, c6)
dθ

=2π

[
c1c2c3c4c5c6/q, {λck, qck/λ}1≤k≤6

q, q, λ2, q2/λ2, {cicj}1≤i<j≤6

∣∣∣q]
∞

×8ψ8

[
±λ
√

q, λ/c1, λ/c2, λ/c3, λ/c4, λ/c5, λ/c6
±λ/

√
q, λc1, λc2, λc3, λc4, λc5, λc6

∣∣∣q;
c1c2c3c4c5c6

q

]
,

(35)

where a pair of “reciprocal parameters" in the denominator is exchanged with the parameter
pair in the numerator.

7. The q-Beta Integrals of Karlsson–Minton Type

Throughout this section, we shall fix the n-pairs of complex parameters {uι, vι} subject
to the finite conditions

uι/vι = qmι with mι ∈ N0 and m =
n

∑
ι=1

mι

as well as

U :=
n

∏
k=1

uk, V :=
n

∏
k=1

vk and qm = U/V.

By utilizing a generalized identity (see Chu [16] (Theorem 2) and Chu–Wang [38] (Corol-
lary 6)) of Karlsson–Minton type for the well-poised bilateral series, Chu and Ma [39] found
the following general integral formula

∫ π

0

h(cos 2θ; 1)
h(cos θ; a, q/a, b, d)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

=
2π/(1− bdV/U)

[q, q, ab, ad, qb/a, qd/a; q]∞

n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

.
(36)

We shall employ it to evaluate further q-beta integrals. It should be pointed out that
most of the formulae appearing in this section are new.
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7.1. Boosting the First Numerator Parameter by Gλ(E)
Specify the parameter d as the variable x in the last equation. When applying Pλ(D)

to the resulting equation, there is no simple expression for the right member. However, if
we apply Gλ(E) to the same equation, we obtain the following one:

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, q/a, b, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

=3φ2

[
ax, qx/a, q−mbx

λx, qbxV/U

∣∣∣q;
λ

x

] n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

× 2π

1− bxV/U

[
λx, λ/x

q, q, ab, qb/a, ax, qx/a

∣∣∣q]
∞

.

(37)

By making use of (13), we can restate (37) as another new formula

∫ π

0

h(cos 2θ; 1)h(cos θ; λ)

h(cos θ; a, q/a, b, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

=3φ2

[
λ/a, λa/q, bxV/U

λx, λbV/U

∣∣∣q; q
] n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

× 2π

[
λx, λbV/U

q, ab, qb/a, ax, qx/a, bxV/U

∣∣∣q]
∞

.

(38)

When λ = bV/U in (37), we have, in view of the Gauss summation theorem, the
following closed expression:

∫ π

0

h(cos 2θ; 1)h(cos θ; bV/U)

h(cos θ; a, q/a, b, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

= 2π

[
abV/U, qbV/aU

q, q, ab, qb/a, ax, qx/a

∣∣∣q]
∞

n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

.
(39)

We remark that a similar formula was obtained in [40] (Theorem 9), where the fraction
before the product in the integrand contains only one h-function in the numerator and four
h-functions with free parameters in the denominator. However, their expression on the
right-hand side involves very complicated multiple sums.

7.2. Boosting Denominator Parameter d by Pd(D)
Now, by applying Pd(D) to (39), we derive the following integral

∫ π

0

h(cos 2θ; 1)h(cos θ; bV/U)

h(cos θ; a, q/a, b, d, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

=
2π

1− dx

[
abV/U, qbV/aU

q, q, ab, qb/a, ad, qd/a, ax, qx/a

∣∣∣q]
∞

n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

.
(40)

When b = 0, this reduces to (36), as derived by Chu and Ma [39].
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7.3. Boosting the Second Numerator Parameter λ by Gλ(E)
By applying Gλ(E) further to (40), we obtain the integral formula below:

∫ π

0

h(cos 2θ; 1)h(cos θ; λ, bV/U)

h(cos θ; a, q/a, b, d, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

=
2π

1− dx

[
abV/U, qbV/aU, λx, λ/x

q, q, ab, qb/a, ad, qd/a, ax, qx/a

∣∣∣q]
∞

× 3φ2

[
ax, qx/a, dx

λx, qdx

∣∣∣q;
λ

x

] n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

.

(41)

By means of (13), this formula can be restated as

∫ π

0

h(cos 2θ; 1)h(cos θ; λ, bV/U)

h(cos θ; a, q/a, b, d, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

= 2π

[
abV/U, qbV/aU, λd, λx

q, ab, qb/a, ad, qd/a, ax, qx/a, dx

∣∣∣q]
∞

× 3φ2

[
λ/a, λa/q, dx

λd, λx

∣∣∣q; q
] n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

.

(42)

7.4. Boosting Another Denominator Parameter c by Pc(D)
Now, by applying Pc(D) to (42), we have

∫ π

0

h(cos 2θ; 1)h(cos θ; λ, bV/U)

h(cos θ; a, q/a, b, c, d, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

= 2π

[
abV/U, qbV/aU, λd

q, ab, qb/a, ad, qd/a, cx

∣∣∣q]
∞

n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

×∑
i≥0

qi
[

λ/a, λa/q
q, λd

∣∣∣q]
i
Pc(D)

[
qiλx

ax, qx/a, qidx

∣∣∣q]
∞

.

According to (12), we also have

Pc(D)
[

qiλx
ax, qx/a, qidx

∣∣∣q]
∞
=

[
qiλc, qiλx, qcdx/λ

ac, qc/a, ax, qx/a, qicd, qidx

∣∣∣q]
∞

× 3φ2

[
λ/d, qiλ/a, qi−1λa

qiλc, qiλx

∣∣∣q;
qcdx

λ

]
.

Therefore, we have the following double sum expression:

∑
i≥0

qi
[

λ/a, λa/q
q, λd

∣∣∣q]
i
Pc(D)

[
λx

ax, qx/a, dx

∣∣∣q]
∞

=

[
λc, λx, qcdx/λ

ac, qc/a, ax, qx/a, cd, dx

∣∣∣q]
∞

× ∑
i,j≥0

[
λ/a, λa/q

λc, λx

∣∣∣q]
i+j

[
cd, dx
q, λd

∣∣∣q]
i
qi (λ/d; q)j

(q; q)j

( qcdx
λ

)j
.
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By evaluating the last sum by (30) and then simplifying the result, we obtain the
following expression in terms of well-poised series:

∫ π

0

h(cos 2θ; 1)h(cos θ; λ, bV/U)

h(cos θ; a, q/a, b, c, d, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

= 2π

[
λc, λd, λx, acdx, qcdx/a, abV/U, qbV/aU

q, ab, ac, ad, ax, qb/a, qc/a, qd/a, qx/a, cd, cx, dx, λcdx

∣∣∣q]
∞

×
n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

8W7(λcdx/q : λ/a, λa/q, cd, cx, dx; q).

(43)

When U = V, this formula is consistent with the case x = q/a of (26).

7.5. Boosting the Third Numerator Parameter µ by Gµ(E)
Alternatively, by applying Gµ(E) to (42), we obtain

∫ π

0

h(cos 2θ; 1)h(cos θ; λ, µ, bV/U)

h(cos θ; a, q/a, b, d, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

= 2π

[
abV/U, qbV/aU, λd, µx, µ/x

q, ab, qb/a, ad, qd/a

∣∣∣q]
∞

n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

× ∑
i,j≥0

[
λ/a, λa/q

q, λd

∣∣∣q]
i

qi(µ/x)j

(q; q)j(µx; q)j
E j
[

qiλx
ax, qx/a, qidx

∣∣∣q]
∞

,

which gives rise to the following q-beta integral formula:

∫ π

0

h(cos 2θ; 1)h(cos θ; λ, µ, bV/U)

h(cos θ; a, q/a, b, d, x)

n

∏
k=1

h(cos θ; uk)

h(cos θ; vk)
dθ

=

[
abV/U, qbV/aU, λd, λxµx, µ/x
q, ab, ad, qb/a, qd/a, ax, dx, qx/a

∣∣∣q]
∞

n

∏
ι=1

[
auι, quι/a
avι, qvι/a

∣∣∣q]
∞

× 2π ∑
i,j≥0

(dx; q)i+j

(λx; q)i+j

[
λ/a, λa/q

q, λd

∣∣∣q]
i
qi
[

ax, qx/a
q, µx

∣∣∣q]
j

(µ

x

)j
.

(44)

Unfortunately, it seems impossible to reduce the above double series further to a single one.

Concluding Comments

The Askey–Wilson integral is fundamental in special functions and orthogonal poly-
nomials. During the past two decades, many efforts have been made to generalize this
important integral. In particular, two operators Pλ(D) and Qλ(δ) (based on the derivative
operator D) have been widely utilized by different authors to provide extensions. In the
present paper, we reviewed the main results obtained by making use of these operators
and commented on their strengths and weaknesses. By introducing a new operator Gλ(E),
several remarkable integral formulae of Askey–Wilson type were also established.

According to the author’s experience, one should take precautions, in applications
of these operators, to conduct rigorous operations (instead of only formal manipulations)
under the right conditions in order to avoid unexpected errors. In general, the sufficient
conditions to make such operations legitimate (in exchanging orders between limit and
summation/integration) are normally provided by Lebesgue’s dominated convergence
theorem (cf. [41] (§11.32)) requiring the sequence of functions involved to be bounded (for
sums, and uniformly convergent for integrals).
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Here, we take an example to illustrate the importance of observing the bounded
condition in applications. Recall the operator Qλ(δ) defined in (6). Chen and Liu [21]
proved the following useful formula:

Qλ(δ)[ax, bx; q]∞ =
[ax, bx, aλ, bλ; q]∞
(abxλ/q; q)∞

. (45)

However, they failed to highlight the condition |abxλ/q| < 1, which is indispensable
for the validity of the above formula. From exchanging the order of summations in their
proof, the informed reader can retrieve the above condition. This operator Qλ(δ) was
erroneously utilized by Zhang [42] in generalizing the following reciprocal formula due to
Andrews [43]:

(b− d)
[

q, qb/d, qd/b, bcdx, bdex, bcde
bx, dx, bc, be, cd, de

∣∣∣q]
∞

= b
∞

∑
n=0

[q/dx, bcde; q]n
[bc, be; q]n+1

(bx)n − d
∞

∑
n=0

[q/bx, bcde; q]n
[cd, de; q]n+1

(dx)n.

In order to apply (45), the above equality can be reformulated as

(b− d)
[

q, qb/d, qd/b, bcde
bc, be, cd, de

∣∣∣q]
∞
[bcdx, bdex; q]∞

= b
∞

∑
n=0

(bcde; q)n
[bc, be; q]n+1

q(
n+1

2 )
(
− b

d

)n[
bx, q−ndx; q

]
∞

− d
∞

∑
n=0

(bcde; q)n
[cd, de; q]n+1

q(
n+1

2 )
(
− d

b

)n[
q−nbx, dx; q

]
∞.

Ignoring the fact that |q−n−1λbdx| < 1 does not hold for all n ∈ N, Zhang [42] formally
proceeded with the application of (45) to both sides of the above equation and deduced the
following false reciprocal identity:

(b− d)
[

q, qb/d, qd/b, bcde, bcdx, bdex, bcdλ, bdeλ, bdxλ/q
bc, be, cd, de, bx, dx, bλ, dλ, b2cd2exλ/q

∣∣∣q]
∞

= b
∞

∑
n=0

[q/dx, q/dλ, bcde; q]n qn

(q2/bdxλ; q)∞[bc, be; q]n+1
− d

∞

∑
n=0

[q/bx, q/bλ, bcde; q]n qn

(q2/bdxλ; q)∞[cd, de; q]n+1
.

In fact, the correct formula reads as

b
∞

∑
n=0

[q/dx, q/dλ, bcde; q]n qn

(q2/bdxλ; q)∞[bc, be; q]n+1
− d

∞

∑
n=0

[q/bx, q/bλ, bcde; q]n qn

(q2/bdxλ; q)∞[cd, de; q]n+1

=(b− d)
[

q, qb/d, qd/b, bcde, bcdx, bdex, bcdλ, bdeλ, bdxλ/q
bc, be, cd, de, bx, dx, bλ, dλ, b2cd2exλ/q

∣∣∣q]
∞

+
bdxλ

q

[
q, q/bx, q/dx, q/bλ, q/dλ, bcde
bc, be, cd, de, q2/bdxλ, b2cd2exλ/q

∣∣∣q]
∞

×
{

b
[

cd, de, b2cdxλ, b2dexλ
bx, bλ, q/bx, q/bλ

∣∣∣q]
∞

3φ2

[
bx, bλ, b2cd2exλ/q

b2cdxλ, b2dexλ

∣∣∣q; q
]

− d
[

bc, be, bcd2xλ, bd2exλ
dx, dλ, q/dx, q/dλ

∣∣∣q]
∞

3φ2

[
dx, dλ, b2cd2exλ/q

bcd2xλ, bd2exλ

∣∣∣q; q
]}

,

which was derived by Chu and Zhang [44] by employing the three-term relation [2]
(Equation III-36) for nonterminating 8φ7-series.
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