
Citation: Zhang, J.; Yue, J.; Zhao, Z.;

Zhang, Y. Breathers, Transformation

Mechanisms and Their Molecular

State of a (3+1)-Dimensional

Generalized Yu–Toda–Sasa–

Fukuyama Equation . Mathematics

2023, 11, 1755. https://doi.org/

10.3390/math11071755

Academic Editors: Carmen Chicone

and Xiangmin Jiao

Received: 13 February 2023

Revised: 28 March 2023

Accepted: 5 April 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Breathers, Transformation Mechanisms and Their
Molecular State of a (3+1)-Dimensional Generalized
Yu–Toda–Sasa–Fukuyama Equation
Jian Zhang 1, Juan Yue 2, Zhonglong Zhao 2,* and Yufeng Zhang 3

1 School of Computer Science and Technology, China University of Mining and Technology,
Xuzhou 221116, China; zhangjian10231209@cumt.edu.cn

2 School of Mathematics, North University of China, Taiyuan 030051, China; s202108089@st.nuc.edu.cn
3 School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China;

zyfxz@cumt.edu.cn
* Correspondence: zhaozl@nuc.edu.cn

Abstract: A (3+1)-dimensional generalized Yu–Toda–Sasa–Fukuyama equation is considered sys-
tematically. N-soliton solutions are obtained using Hirota’s bilinear method. The employment of
the complex conjugate condition of parameters of N-soliton solutions leads to the construction of
breather solutions. Then, the lump solution is obtained with the aid of the long-wave limit method.
Based on the transformation mechanism of nonlinear waves, a series of nonlinear localized waves
can be transformed from breathers, which include the quasi-kink soliton, M-shaped kink soliton,
oscillation M-shaped kink soliton, multi-peak kink soliton, and quasi-periodic wave by analyzing
the characteristic lines. Furthermore, the molecular state of the transformed two-breather is studied
using velocity resonance, which is divided into three aspects, namely the modes of non-, semi-, and
full transformation. The analytical method discussed in this paper can be further applied to the
investigation of other complex high-dimensional nonlinear integrable systems.

Keywords: solitons; breathers; lump; transformation mechanism; molecular state

MSC: 34B20; 47B25

1. Introduction

In the field of physics and mechanics, many scholars have become devoted to inves-
tigating the exact solutions of nonlinear integrable systems, which include solitons [1–4],
breathers [5–7], lumps [8–12], quasi-periodic wave solutions [13–16], and so on. Scholars
have undertaken a lot of work on exact solutions, and have summarized some effective
methods, such as the Bäcklund transformation [17–19], inverse scattering method [20–22],
Darboux transformation [23,24], algebraic geometry theory [25,26], Hirota’s bilinear
method [27,28] and Lie symmetry analysis [29–32].

A breather can be counted as a sort of soliton that propagates periodically along the
direction of the intersection with a soliton. Wang et al. investigated transformed one-
and two-breathers, which are supported by a theoretical framework of a transformation
mechanism of nonlinear waves [33–36]. It was found that there is a relationship of one-way
transformation between breathers and nonlinear localized waves by adjusting parameters,
including the quasi-anti-dark (kink) soliton, M-shaped (kink) soliton, oscillation M-shaped
(kink) soliton, multi-peak (kink) soliton, and quasi-periodic wave. Furthermore, the molecu-
lar state of the transformed two-breather is discussed with the aid of velocity resonance [37].
The method of velocity resonance is widely used to study the relatively stable state of non-
linear localized waves. A lot of molecular phenomena, such as breather molecules (BMs),
soliton molecules (SMs), soliton–breather molecules (SBMs), and lump-soliton molecules
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(LMs), have been acquired by Lou et al. in the references [38,39]. Li et al. discussed the
soliton molecules of the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation and
the (2+1)-dimensional fifth-order Korteweg–de Vries(KdV) equation [40,41]. In addition,
we studied the nonlinear superposition of the bifurcation of T-resonance Y-type solitons,
lumps, breathers, and solitons with the aid of velocity resonance [42,43].

In this paper, we consider the following (3+1)-dimensional generalized Yu–Toda–Sasa–
Fukuyama equation

r1ψxt + r2ψxxxz + r3ψyy + r4ψxxψz + r5ψxψxz + r6ψxy + r7ψxz + r8ψyz = 0, (1)

where ψ = ψ(x, y, z, t), r1, r2, r3, r4, r5, r6, r7 and r8 are eight arbitrary constants. When
the parameters are taken as r1 = −4, r2 = 1, r3 = 3, r4 = 2, r5 = 4, r6 = r7 = r8 = 0,
Equation (1) can be transformed into a (3+1)-dimensional potential Yu–Toda–Sasa–
Fukuyama equation

−4ψxt + ψxxxz + 3ψyy + 2ψxxψz + 4ψxψxz = 0, (2)

Yu et al. first proposed Equation (2) when they studied N-soliton solutions to the Bogoyavlen-
skii–Schiff equation [44], which can present an interfacial wave in a two-layer liquid or
elastic quasi-plane wave in a lattice [45]. In recent years, many scholars in related fields
have done a lot of work on the (3+1)-dimensional generalized Yu–Toda–Sasa–Fukuyama
equation. Xia et al. investigated the dynamics of abundant solutions based on Hirota’s
bilinear method [46]. Tian et al. obtained a bilinear form and bilinear auto-Bäcklund
transformation with the aid of Hirota’s bilinear method and certain coefficient constraints.
Then, breather and lump solutions were acquired [47]. Khalique et al. studied variational
and non-variational approaches using Lie algebra [48].

This paper is devoted to studying the transformation mechanism of breathers and the
molecular state of the transformed two-breather, which are based on parameter constraints
and velocity resonance, respectively. Furthermore, it is worth noting that we need to select
the appropriate parameters and carry out a lot of numerical simulations. The methods
given in this paper can be extended to other high-dimensional integrable systems and
further study the dynamic behaviors of ocean waves.

The organization of this paper is as follows. In Section 2, we obtain the bilinear form
and N-soliton solutions using Hirota’s bilinear method. It can be concluded that Equation
(3) is integrable in the sense of N-soliton solutions. In Section 3, a one-breather solution
is studied, which, by taking the complex conjugate conditions to the two-soliton solution,
then, with the aid of the transformation mechanism of nonlinear waves, is converted into a
series of nonlinear localized waves. Furthermore, a one-lump wave is obtained by taking
the long-wave limit to the one-breather solution [10,49–51]. In Section 4, the two-breather
solution and its transformation mechanism are investigated systematically. Then, the
molecular state of the transformed two-breather is discussed from the point of view of
velocity resonance. Finally, some conclusions are presented in the last section.

2. Bilinear Form and the Soliton Solution

To facilitate the discussion of Equation (1), the parameters of Equation (1) are taken as
r1 = 1, r4 = r5. Then, it can be transformed into

ψxt + r2ψxxxz + r3ψyy + r4ψxxψz + r4ψxψxz + r6ψxy + r7ψxz + r8ψyz = 0. (3)

In this section, the bilinear form of Equation (3) and the N-soliton solutions are obtained.
It can be noticed that the multi-soliton solutions are obtained only if a nonlinear wave
equation is converted into a bilinear form through a dependent variable transformation. By
means of dependent variable transformation

ψ =
6r2

r4
(ln ξ(x, y, z, t))x,
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Equation (3) can be transformed into a bilinear form [46](
DtDx + r2D3

xDz + r3Dy
2 + r6DxDy + r7DxDz + r8DyDz

)
ξ · ξ = 0, (4)

where the bilinear differential operators Dx, Dy, Dz and Dt are defined by

Dm
x Dn

y Dp
z Dq

t ξ(x, y, z, t)ζ(x, y, z, t) = (∂x− ∂x′)m(∂y− ∂y′)n(∂z− ∂z′)p(∂t− ∂t′)qξ(x, y, z, t)

×ζ(x′, y′, z′, t′)|x′=x,y′=y,z′=z,t′=t.

Furthermore, the N-soliton solutions of Equation (3) can be written as the following form

ξ = ξN = ∑
µ=0,1

exp

(
N

∑
j=1

µjε j+
N

∑
j<s

µjµs Ajs

)
, (5)

with phase variable ε j = uj(x + vjy + hjz + wjt) + ε
(0)
j , wj = −(r2uj

2hj + r3vj
2 + r6vj +

r7hj + r8vjhj), uj, vj, hj and ε
(0)
j are free constants, and

eAjs =
r2(uj − us)((2uj − us)hj + (uj − 2us)hs)− r3(vj − vs)

2 − r8(vj − vs)(hj − hs)

r2(uj + us)((2uj + us)hj + (uj + 2us)hs)− r3(vj − vs)
2 − r8(vj − vs)(hj − hs)

.

The symbol ∑
µ=0,1

means summation over all possible combinations of µj = 0, 1 (j = 1 . . . N),

when all µj is zero, the corresponding term is 1; when µj takes 0 and the rest of µj takes

1, the corresponding term is exp(
n
∑

j=2
ε j +

n
∑

2≤j<s
Ajs), and the

N
∑
j<s

is the summation over all

possible combinations of N elements in the specific condition j < s.

3. One-Breather Solution and Transformation Mechanism

In this section, by taking the complex conjugate conditions to the parameters of the
two-soliton solution and imposing restrictions on parameters, a one-breather solution and
transformation mechanism are analyzed systematically. Based on the above analysis, the
two-soliton solution can be written as

ψ2 =
6r2

r4

(
ln(1 + eε1 + eε2 + eε1+ε2+A12)

)
x
. (6)

By letting the parameters be

u1 = a1 + b1i, u2 = a1 − b1i, v1 = c1 + d1i, v2 = c1 − d1i, h1 = e1 + f1i,

h2 = e1 − f1i, ε1
(0) = ln

β1

2
+ γ1 + κ1i, ε2

(0) = ln
β1

2
+ γ1 − κ1i, (7)

where a1, b1, c1, d1, e1, f1 6= 0, β1 > 0, γ1 and ζ1 are arbitrary real constants, and order-
ing ξ2 = (1 + eε1 + eε2 + eε1+ε2+A12) in (6), then, substituting (7) into ξ2, we obtain the
one-breather solution

ξ2 ∼ 2
√

β2 cosh(θ1 +
1
2

ln β2) + β1 cos(Λ1), (8)

where
θ1 = a1x + (a1c1 − b1d1)y + (a1e1 − b1 f1)z + (a1w1R − b1w1I)t + γ1,

Λ1 = b1x + (a1d1 + b1c1)y + (a1 f1 + b1e1)z + (a1w1I + b1w1R)t + κ1, β2 =
β1

2G1

4
,
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G1 =
−4r2(a1b1 f1 + 3b2

1e1) + 4r3d2
1 − 16r8d2

1 f 2
1

−4r2(a1b1 f1 − 3a2
1e1) + 4r3d2

1 − 16r8d2
1 f 2

1
,

w1R = −r2(a2
1e1 − b2

1e1 − 2a1b1 f1)− r3(c2
1 − d2

1)− r6c1 − r7e1 − r8(c1e1 − d1 f1),

w1I = −r2(a2
1 f1 − b2

1 f1 + 2a1b1e1)− 2r3c1d1 − r6d1 − r7 f1 − r8(c1 f1 + e1d1).

Then, substituting (8) into (6) leads to the one-breather solution of Equation (3)

ψ2 =
6r2(2

√
β2 sinh(θ1 +

1
2 ln β2)a1 − β1 sin(Λ1)b1)

r4(2
√

β2 cosh(θ1 +
1
2 ln β2) + β1 cos(Λ1))

, (9)

which can be shown in Figure 1. The one-breather can be regarded as a one-soliton that
propagates periodically along the direction of the intersection with the soliton.

(a) (b) (c)

Figure 1. (Color online) One-breather solution (9) with r2 = r3 = r4 = r6 = r7 = r8 = 1, a1 = 0.3,
b1 = 1, c1 = 1.2, d1 = −1, e1 = 1, f1 = 1, β1 = 2, γ1 = 0, κ1 = 0. (a) The three-dimensional
stereograms when t = 0, z = 0. (b) the corresponding contour figure. (c) Characteristic lines figure,
the red line (0.3x + 1.36y + 0.3659935070 = 0) and the green line (x + 0.9y = 0) are two characteristic
lines of one-breather.

Remark 1. Since the breathers, lump waves, and transformed localized waves to be studied have
similar dynamic behaviors along the x, y, and z axes, in the following content, we take the (x, y)
plane as an example to discuss all the subsequent problems. Similar results are obtained in the (x, z)
plane and (y, z) plane.

To obtain the lump solution, we take

u1 = a1 + b1i, u2 = a1 − b1i, v1 = c1 + d1i, v2 = c1 − d1i, h1 = e1 + f1i,

h2 = e1 − f1i, ε1
(0) = ln

β1

2
+ πi, ε2

(0) = ln
β1

2
− πi, (10)

then ξ2 can be rewritten as the form of

ξ2 ∼ e−θ1 − β1cos(Λ1) + β2eθ1 , (11)

where θ1, Λ1, β2 are determined by (8). Then, taking a1 → 0, b1 → 0, β1 = 2, β2 = 1 + ι2

and expanding according to Taylor formula at ι = 0, one has

ξ2 ∼ (θ2
11 + Λ2

11 + 1)ι2 + O(ι3),

θ11 = x + (c1 − d1)y + (e1 − f1)z + (r3(d2
1 − c2

1 + 2c1d1) + r6(d1 − c1) + r7( f1 − e1) (12)

+r8(c1 f1 + e1d1 + d1 f1 − c1e1))t, Λ11 = x + (c1 + d1)y + (e1 + f1)z

+(r3(d2
1 − c2

1 − 2c1d1)− r6(c1 + d1)− r7(e1 + f1)− r8(c1 f1 + e1d1 − d1 f1 + c1e1))t.
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By substituting (3) into (6), we have

ψ2 =
6r2(2θ11 + 2Λ11)

r4(θ
2
11 + Λ2

11 + 1)
. (13)

According to the above discussion and Figure 2, we draw the following properties.

(1) The lump solution (13) has one crest, one trough, which can be called binocular
structure, and two characteristic lines that have the form of θ11 + Λ11 and θ11 −Λ11,
as shown in Figure 2.

(2) It can be noticed that the velocity of the one-lump wave (13) is available. On the (x, y)

plane, the velocity of lump wave along the x axis is vL
x = − (r3d1+r8 f 2

1 )(c
2
1+d2

1)+r7(c1 f1−e1d1)
d1

,

and the speed along the y axis is vL
y = 2r3c1d1+r6d1+r7 f1+r8(c1 f1+e1d1)

d1
.

(a) (b) (c)

Figure 2. (Color online) One-lump Solution (13) with r2 = r3 = r4 = r6 = r7 = r8 = 1, a1 = 0, b1 = 0,
c1 = 1, d1 = 0.5, e1 = 0.3, f1 = −0.8. (a) The three-dimensional stereograms when t = 0, z = 0. (b) the
corresponding contour figure. (c) Characteristic lines figure, the red line (y = 0) and the green line
(x + y = 0) are two characteristic lines of the one-lump wave.

Based on the analysis of the transformation mechanism of the breathers [33–36], some
conclusions about the one-breather solution (9) of Equation (3) can be discussed.

(1) It is obvious from expression (9) that the one-breather solution contains a trigonomet-
ric function (sin, cos) and a hyperbolic function (cosh, sinh), in which the localized
properties of the one-breather are controlled by the hyperbolic function, and the peri-
odic properties are decided by the trigonometric function, so the one-breather can be
considered to be the combination of the soliton wave and periodic wave.

(2) Two characteristic lines of the one-breather have the form of θ1 +
1
2 ln β2 = a1x +

(a1c1 − b1d1)y + (a1e1 − b1 f1)z + (a1w1R − b1w1I)t + γ1 +
1
2 ln β2 and Λ1 = b1x +

(a1d1 + b1c1)y + (a1 f1 + b1e1)z + (a1w1I + b1w1R)t + κ1.
(3) It can be noticed that the velocities of the soliton along the x axis and y axis can

be written as vs
x = − a1(a1w1R−b1w1I)

a1
2+(a1c1−b1d1)2 and vs

y = − (a1c1−b1d1)(a1w1R−b1w1I)
a1

2+(a1c1−b1d1)2 , respectively;

the velocities of periodic wave along x axis and y axis are vp
x = − b1(a1w1I+b1w1R)

b1
2+(a1d1+b1c1)2

and vp
y = − (a1d1+b1c1)(a1w1I+b1w1R)

b1
2+(a1d1+b1c1)2 , respectively; the above results are discussed on

the plane (x, y), and similar conclusions can be obtained on the (x, z) plane and
(y, z) plane.

(i) If the relationship
∣∣∣∣ a1 a1c1 − b1d1

b1 a1d1 + b1c1

∣∣∣∣ 6= 0 is satisfied, i.e., d1 6= 0, the two

characteristic lines θ1 +
1
2 ln β2 and Λ1 will not be parallel in the plane (x, y), as

shown in Figure 1.
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(ii) If the relationship
∣∣∣∣ a1 a1c1 − b1d1

b1 a1d1 + b1c1

∣∣∣∣ = 0 is satisfied, i.e., d1 = 0, the two

characteristic lines θ1 +
1
2 ln β2 and Λ1 will be parallel, as shown in Figures 3

and 4. Under special conditions, the one-breather can be converted into a series
of nonlinear waves which include quasi-kink soliton, M-shaped kink soliton,
oscillation M-shaped kink soliton, multi-peak kink soliton and quasi-periodic
wave. In Figure 3a–c, the one-breather will be a transformed quasi-kink soliton
( b1

a1
= 0.1), which has one characteristic line and presents the shape of a ladder.

In Figure 3d–f, the M-shaped kink soliton ( b1
a1

= 1) has two peaks and one valley,
and appears in the shape of M climbing upward. With the increase of value of
b1
a1

, the one-breather will become an oscillation M-shaped kink soliton ( b1
a1

= 3),

and the number of characteristic lines also increases. If the value of b1
a1

keeps
growing, the periodicity will become obvious, then the one-breather will become
an asymmetric multi-peak kink soliton ( b1

a1
= 5), as shown in Figure 4a–f. When

the value b1
a1

becomes very large, the one-breather will be transformed into a

quasi-periodic wave ( b1
a1

= 1000), as shown in Figure 4g–i. Gradually, with the

values of b1
a1

increasing, their periodicity becomes more and more obvious and
their locality almost disappears.

(a) (b) (c)

(d) (e) (f)

Figure 3. (Color online) The transformation of one-breather with r2 = r3 = r4 = r6 = r7 = r8 = 1,
β1 = 2, γ1 = 0, κ1 = 0. In (a), a1 = 1, b1 = 0.1, c1 = 1, d1 = 0, e1 = 1.2, f1 = −2.5. In (d),
a1 = 0.2, b1 = 0.2, c1 = 1.2, d1 = 0, e1 = 0.5, f1 = −3.5. These two figures are three-dimensional
stereograms when t = 0, z = 0. (b,e) are the corresponding contour figure. (c,f) show the wave moves
along the y axis when x = 0, t = 0, z = 0.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. (Color online) The transformation of one-breather with r2 = r3 = r4 = r6 = r7 = r8 = 1,
β1 = 2, γ1 = 0, κ1 = 0. In (a), a1 = 0.1, b1 = 0.3, c1 = 1.2, d1 = 0, e1 = 0.1, f1 = −3.5. In (d),
a1 = 0.04, b1 = 0.2, c1 = 0.5, d1 = 0, e1 = −0.01, f1 = 1. In (g), a1 = 0.004, b1 = 4, c1 = −1, d1 = 0,
e1 = 0.01, f1 = −5. These three figures are three-dimensional stereograms when t = 0, z = 0.
(b,e,h) are the corresponding contour figure. (c,f,i) show the wave moves along the y axis when
x = 0, t = 0, z = 0.

Remark 2. Figure 5 shows that quasi-kink soliton moves along the y axis at a different time.
Then, the other figure of the transformation mechanism of breathers at a different time can also be
obtained similarly.
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(a) (b) (c)

Figure 5. (Color online) Quasi-kink soliton with r2 = r3 = r4 = r6 = r7 = r8 = 1, β1 = 2, γ1 = 0,
κ1 = 0, a1 = 1, b1 = 0.1, c1 = 1, d1 = 0, e1 = 1.2, f1 = −2.5. (a–c) show quasi-kink soliton moves
along the y axis when t = −1, t = 0 and t = 1, respectively.

4. Two-Breather Solution, Transformation Mechanism and Molecular State
4.1. Two-Breather Solution of Equation (3)

In this section, we investigate the transformation mechanism of the two-breather wave.
The four-soliton solution can be written as

ξ4 = 1 + eε1 + eε2 + eε3 + eε4 + eε1+ε2+A12 + eε1+ε3+A13 + eε1+ε4+A14 + eε2+ε3+A23

+eε2+ε4+A24 + eε3+ε4+A34 + eε1+ε2+ε3+A12+A23+A13 + eε1+ε2+ε4+A12+A24+A14

+eε1+ε3+ε4+A13+A34+A14 + eε2+ε3+ε4+A23+A34+A24 + eε1+ε2+ε3+ε4+A12+A23+A13+A23+A34+A24 .

(14)

Letting

u3 = a2 + b2i, u4 = a2 − b2i, v3 = c2 + d2i, v4 = c2 − d2i, h3 = e2 + f2i, h4 = e2 − f2i,

ε3
(0) = ln

β3

2
+ γ2 + κ2i, ε4

(0) = ln
β3

2
+ γ2 − κ2i, (15)

where a2, b2, c2, d2, e2, f2 6= 0, β3 > 0, γ2 and κ2 are arbitrary real constants, then substituting
(10) and (15) into (14), we obtain

ξ4 = 1 + β1eθ1 cos(Λ1) +
β1

2G1e2θ1

4
+ β3eθ2 cos(Λ2) +

β3
2G2e2θ2

4

+
β1

2β3
2G1G2

16
e2θ1+2θ2(M2

3R + M2
3I)(M2

4R + M2
4I)

+
β1β3

2
eθ1+θ2(M3R cos(Λ1 + Λ2)−M3I sin(Λ1 + Λ2))

+
β1β3

2
eθ1+θ2(M4R cos(Λ1 −Λ2)−M4I sin(Λ1 −Λ2))

+
β1

2β3G1

4
e2θ1+θ2((M3R M4R + M3I M4I) cos(Λ2)− (M3I M4R −M3R M4I) sin(Λ2))

+
β1β3

2G2

4
eθ1+2θ2((M3R M4R −M3I M4I) cos(Λ1)− (M3I M4R + M3R M4I) sin(Λ1)), (16)

where
θ2 = a2x + (a2c2 − b2d2)y + (a2e2 − b2 f2)z + (a2w2R − b2w2I)t + γ2,

Λ2 = b2x + (a2d2 + b2c2)y + (a2 f2 + b2e2)z + (a2w2I + b2w2R)t + κ2, β4 =
β3

2G2

4
,

G2 =
−4r2(a2b2 f2 + 3b2

2e2) + 4r3d2
2 − 16r8d2

2 f 2
2

−4r2(a2b2 f2 − 3a2
2e2) + 4r3d2

2 − 16r8d2
2 f 2

2
,
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w2R = −r2(a2
2e2 − b2

2e2 − 2a2b2 f2)− r3c2
2 − d2

2 − r6c2 − r7e2 − r8(c2e2 − d2 f2),

w2I = −r2(a2
2 f2 − b2

2 f2 + 2a2b2e2)− 2r3c2d2 − r6d2 − r7 f2 − r8(c2 f2 + e2d2).

M3R = Re(eA13), M3I = Im(eA13), M4R = Re(eA14), M4I = Im(eA14).

Unlike the one-breather, the two-breather has two sets of characteristic lines, i.e.,
θ1 +

1
2 ln β2 = a1x + (a1c1 − b1d1)y + (a1e1 − b1 f1)z + (a1w1R − b1w1I)t + γ1 +

1
2 ln β2,

Λ1 = b1x + (a1d1 + b1c1)y + (a1 f1 + b1e1)z + (a1w1I + b1w1R)t + κ1, and θ2 +
1
2 ln β4 =

a2x+(a2c2− b2d2)y+(a2e2− b2 f2)z+(a2w2R− b2w2I)t+γ2 +
1
2 ln β4, Λ2 = b2x+(a2d2 +

b2c2)y + (a2 f2 + b2e2)z + (a2w2I + b2w2R)t + κ2.

Proposition 1. If one satisfies∣∣∣∣ a1 a1c1 − b1d1
b1 a1d1 + b1c1

∣∣∣∣ 6= 0,
∣∣∣∣ a2 a2c2 − b2d2

b2 a2d2 + b2c2

∣∣∣∣ 6= 0,

the two sets of waves are two-breathers on the plane (x, y).

(1) If the two-breather satisfies
∣∣∣∣ a1 a1c1 − b1d1

a2 a2c2 − b2d2

∣∣∣∣ = 0, i.e., the two-breather is parallel,

whereas they will only collide at a certain time due to different speeds, which is called
the short-lived collision, as shown in Figure 6.

(2) If the two-breather satisfies
∣∣∣∣ a1 a1c1 − b1d1

a2 a2c2 − b2d2

∣∣∣∣ 6= 0, i.e., the two-breather is not

parallel; in other words, they will always be in a state of intersection, which is called
the long-lived collision, as shown in Figure 7.

(a) (b) (c)

(d) (e) (f)

Figure 6. (Color online) The collision between parallel two-breathers with r2 = r3 = r4 = r6 = r7 = r8 = 1,
a1 = 0.3, b1 = 0, c1 = 1.2, d1 = 0.8, e1 = 0.75, f1 = 0.75, β1 = 2, γ1 = 0, κ1 = 0, a2 = 0.2, b2 = 0,
c2 = 1.2, d2 = 1, e2 = 2

3 , f2 = 2
3 , β3 = 2, γ2 = 0, κ2 = 0. (a–c) are vertical view when t = −50, t = 0

and t = 50. (d–f) are contour plots.
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(a) (b) (c)

(d) (e) (f)

Figure 7. (Color online) The collision between non-parallel two-breather with r2 = r3 = r4 = r6 =

r7 = r8 = 1, a1 = 0.3, b1 = 1, c1 = 1.2, d1 = −1, e1 = 1, f1 = 1, β1 = 2, γ1 = 0, κ1 = 0,a2 = 0.3,
b2 = 1, c2 = 1.2, d2 = 0.5, e2 = 0.5, f2 = 1, β3 = 2, γ2 = 0, κ2 = 0. (a–c) are vertical view when
t = −3, t = 0 and t = 1. (d–f) are contour plots.

4.2. Transformation Mechanism of Two-Breather for Equation (3)

In this section, the transformation mechanism of the two-breather is studied systemati-
cally. According to the one-breather transformation mechanism, we know that the breathers
can be converted into a series of nonlinear localized waves. Then, the investigation of the
two-breather transformation mechanism can be divided into three aspects, including the
modes of non-, semi-, and full transformation.

Regarding non-transformed modes, it is obvious that the two-breather will not be
converted, as shown in Figures 6 and 7. Regarding semi-transformed modes, that is one
where the two-breather is transformed.

Proposition 2. If one satisfies∣∣∣∣ a1 a1c1 − b1d1
b1 a1d1 + b1c1

∣∣∣∣ = 0,
∣∣∣∣ a2 a2c2 − b2d2

b2 a2d2 + b2c2

∣∣∣∣ 6= 0,

i.e., d1 = 0. Then, one of the two sets of waves is the breather, the other can be converted into a series
of nonlinear waves including the quasi-kink soliton, M-shaped kink soliton, oscillation M-shaped
kink soliton, and multi-peak kink soliton, as shown in Figures 8 and 9. In Figure 8a–c, one of the
two-breathers is transformed into the quasi-kink soliton. In Figure 8d–e, it is transformed into the
M-shaped kink soliton. In Figure 9a–c, one of the two-breathers is transformed into the oscillation
M-shaped kink soliton. In Figure 9d–e, it is transformed into the multi-peak kink soliton.
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(a) (b) (c)

(d) (e) (f)

Figure 8. (Color online) The transformation of two-breather with r2 = r3 = r4 = r6 = r7 = r8 = 1,
a2 = 0.2, b2 = 0, c2 = 1.2, d2 = 1, e2 = 2

3 , f2 = − 2
3 , β1 = β3 = 2, κ1 = κ2 = 0, γ1 = −20, γ2 = 10.

In (a), a1 = 1, b1 = 0.1, c1 = 1.2, d1 = 0, e1 = 1.5, f1 = −2.5. In (d), a1 = 0.1, b1 = 0.1, c1 = 1.2,
d1 = 0, e1 = 0.5, f1 = −3.5. These two figures are three-dimensional stereograms of two-breather
transformation when t = 0, z = 0. (b,e) are the corresponding contour figure. (c,f) show the wave
moves along the x axis when y = −50, t = 0, z = 0.

For the full-transformation modes, the two-breather will be transformed into a series
of nonlinear waves.

Proposition 3. If one satisfies∣∣∣∣ a1 a1c1 − b1d1
b1 a1d1 + b1c1

∣∣∣∣ = 0,
∣∣∣∣ a2 a2c2 − b2d2

b2 a2d2 + b2c2

∣∣∣∣ = 0,

i.e., d1 = d2 = 0, then, the two-breather will be transformed into a series of nonlinear waves
including the quasi-kink soliton, M-shaped kink soliton, oscillation M-shaped kink soliton, and
multi-peak kink soliton, as shown in Figure 10. In Figure 10a–c, the breathers are all transformed
into quasi-kink solitons. In Figure 10d,e, they are transformed into the quasi-kink soliton and
M-shaped kink soliton. In Figure 10g–i, they are transformed into the M-shaped kink soliton and
oscillation M-shaped kink soliton.
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(a) (b) (c)

(d) (e) (f)

Figure 9. (Color online) The transformation of two-breather with r2 = r3 = r4 = r6 = r7 = r8 = 1,
β1 = β3 = 2, κ1 = κ2 = 0. In (a), a1 = 0.3, b1 = 1, c1 = 1.2, d1 = 0, e1 = 1, f1 = 1, γ1 = −10, a2 = 0.2,
b2 = 0, c2 = 1.2, d2 = 1, e2 = 2

3 , f2 = 2
3 , γ2 = 10. In (d), a1 = 0.04, b1 = 0.2, c1 = 0.5, d1 = 0,

e1 = −0.01, f1 = 1, γ1 = 5, a2 = 0.2, b2 = 0, c2 = 0.5, d2 = 1, e2 = −0.005, f2 = 1, γ2 = 0. These
two figures are three-dimensional stereograms of two-breather transformation when t = 0, z = 0.
(b,e) are the corresponding contour figure. (c,f) show the wave moves along the x axis when
y = −50, t = 0, z = 0.

It is worth noting that the above propositions are based on
∣∣∣∣ a1 a1c1 − b1d1

a2 a2c2 − b2d2

∣∣∣∣ = 0,

which means the characteristic lines θ1 and θ2 are parallel. The above two waves collide
at a certain time due to their velocities being different, which is the so-called short-lived

collision. If the characteristic lines θ1 and θ2 are not parallel, i.e.,
∣∣∣∣ a1 a1c1 − b1d1

a2 a2c2 − b2d2

∣∣∣∣ 6= 0,

which is called the long-lived collision due to two waves being in collision with time.

4.3. Molecular State of Transformed Two-Breather

Given the above discussion and analysis, we know that breathers can be transformed
into a series of nonlinear localized waves that include the quasi-kink soliton, M-shaped
kink soliton, oscillation M-shaped kink soliton, multi-peak kink soliton and quasi-periodic
wave. Then, the different types of the molecular state of the transformed two-breather are
investigated under the condition of the same speed, which can be called velocity resonance.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. (Color online) The transformation of two-breather with r2 = r3 = r4 = r6 = r7 = r8 = 1,
β1 = β3 = 2, κ1 = κ2 = 0. In (a), a1 = 0.5, b1 = 0.005, c1 = 1.2, d1 = 0, e1 = 0.5, f1 = −3.5, γ1 = 30,
a2 = 0.3, b2 = 0.003, c2 = 1.2, d2 = 0, e2 = 0.5, f2 = −3.5, γ2 = 0. In (d), a1 = 0.5, b1 = 0.005, c1 = 1.2,
d1 = 0, e1 = 0.5, f1 = −3.5, γ1 = 30, a2 = 0.3, b2 = 0.3, c2 = 1.2, d2 = 0, e2 = 0.5, f2 = −3.5, γ2 = 0.
In (g), a1 = 0.5, b1 = 0.05, c1 = 1.2, d1 = 0, e1 = 0.5, f1 = −3.5, γ1 = 20, a2 = 0.3, b2 = 0.5, c2 = 1.2,
d2 = 0, e2 = 0.5, f2 = −3.5, γ2 = 0. These three figures are three-dimensional stereograms of the two-
breather transformation when t = 0, z = 0. (b,e,h) are the corresponding contour figure. (c,f,i) show
the wave moves along the x axis when y = 0, t = 0, z = 0.

Then, we further consider the velocity resonance of the transformed two-breather. The
propagation velocity of along the direction perpendicular to transformed two-breather is
equal, i.e., √

vs
1x

2 + vs
1y

2 =
√

vs
2x

2 + vs
2y

2,
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then, the relative position of the transformed two-breather will not be changed by time
t, where

vs
1x = − a1(a1w1R − b1w1I)

a1
2 + (a1c1 − b1d1)2 , vs

2x = − a2(a2w2R − b2w2I)

a22 + (a2c2 − b2d2)2 ,

vs
1y = − (a1c1 − b1d1)(a1w1R − b1w1I)

a1
2 + (a1c1 − b1d1)2 , vs

2y = − (a2c2 − b2d2)(a2w2R − b2w2I)

a22 + (a2c2 − b2d2)2 .

One important factor is that the molecular state is built on the condition of∣∣∣∣ a1 a1c1 − b1d1
a2 a2c2 − b2d2

∣∣∣∣ = 0, i.e., the transformed two-breather is parallel. Furthermore, the dis-

tance of the transformed two-breather is not zero; otherwise, it will always be in coincidence.
The distance has the form of∣∣∣ (γ1 +

1
2 ln β2)− (γ2 +

1
2 ln β4)

∣∣∣√
a2

1 + (a1c1 − b1d1)2
.

Proposition 4. If the following conditions∣∣∣∣ a1 a1c1 − b1d1
a2 a2c2 − b2d2

∣∣∣∣ = 0,
∣∣∣∣ a1 a1c1 − b1d1

b1 a1d1 + b1c1

∣∣∣∣ 6= 0,
∣∣∣∣ a2 a2c2 − b2d2

b2 a2d2 + b2c2

∣∣∣∣ 6= 0,

and

vs
B1

= vs
B2

,
∣∣∣∣ (γ1 +

1
2

ln β2)− (γ2 +
1
2

ln β4)

∣∣∣∣ 6= 0,

are satisfied, the two-breather will not be transformed, which is called the mode of non-transformation,
and the distance of the two-breather will not be changed by time, as shown in Figure 11.

(a) (b) (c)

(d) (e) (f)

Figure 11. (Color online) The molecular state between breather and breather with r2 = r3 = r4 =

r6 = r7 = r8 = 1, β1 = β3 = 2, κ1 = κ2 = 0, a1 = 0.3, b1 = 0, c1 = 1.2, d1 = 0.8, e1 = 1, f1 = 2.279,
γ1 = −10, a2 = 0.2, b2 = 0, c2 = 1.2, d2 = 1, e2 = 2

3 , f2 = 2
3 , γ2 = 10. (a–c) are vertical view when

t = −30, t = 0 and t = 30. (d–f) are contour plots.
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Proposition 5. If the following conditions∣∣∣∣ a1 a1c1 − b1d1
a2 a2c2 − b2d2

∣∣∣∣ = 0,
∣∣∣∣ a1 a1c1 − b1d1

b1 a1d1 + b1c1

∣∣∣∣ 6= 0,
∣∣∣∣ a2 a2c2 − b2d2

b2 a2d2 + b2c2

∣∣∣∣ = 0,

and

vs
B1

= vs
B2

,
∣∣∣∣ (γ1 +

1
2

ln β2)− (γ2 +
1
2

ln β4)

∣∣∣∣ 6= 0,

are satisfied, one of the two-breathers will be transformed, the other will not be, which is called the
mode of semi-transformation, and the distance of one-breather and a nonlinear localized wave will
not be changed by time, as shown in Figure 12.

(a) (b) (c)

(d) (e) (f)

Figure 12. (Color online) The molecular state between quasi-kink soliton and breather with r2 =

r3 = r4 = r6 = r7 = r8 = 1, β1 = β3 = 2, κ1 = κ2 = 0, a1 = 1, b1 = 0.1, c1 = 1.2, d1 = 0, e1 = 1.5,
f1 = −2.5, γ1 = 10, a2 = 0.2, b2 = 0, c2 = 1.2, d2 = 1, e2 = 2

3 , f2 = −5.559, γ2 = −10. (a–c) are
vertical view when t = −8, t = 0 and t = 10. (d–f) are contour plots of (a–c), respectively.

Proposition 6. If the following conditions∣∣∣∣ a1 a1c1 − b1d1
a2 a2c2 − b2d2

∣∣∣∣ = 0,
∣∣∣∣ a1 a1c1 − b1d1

b1 a1d1 + b1c1

∣∣∣∣ = 0,
∣∣∣∣ a2 a2c2 − b2d2

b2 a2d2 + b2c2

∣∣∣∣ = 0,

and

vs
B1

= vs
B2

,
∣∣∣∣ (γ1 +

1
2

ln β2)− (γ2 +
1
2

ln β4)

∣∣∣∣ 6= 0,

are satisfied, the two-breather will be both transformed, which is called the mode of full transforma-
tion, and the distance of two nonlinear localized waves will not be changed by time, as shown in
Figure 13.
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(a) (b) (c)

(d) (e) (f)

Figure 13. (Color online) The molecular state between the quasi-kink soliton and quasi-kink soliton
with r2 = r3 = r4 = r6 = r7 = r8 = 1, β1 = β3 = 2, κ1 = κ2 = 0, a1 = 0.5, b1 = 0.005, c1 = 1.2, d1 = 0,
e1 = 0.5, f1 = −3.5, γ1 = 10, a2 = 0.3, b2 = 0.003, c2 = 1.2, d2 = 0, e2 = 0.542, f2 = −3.5, γ2 = −10.
(a–c) are vertical view when t = −30, t = 0 and t = 30. (d–f) are contour plots of (a–c), respectively.

5. Conclusions

In this paper, we focus on investigating breather solutions, transformation mechanisms,
and the molecular state of the transformed two-breather. The N-soliton solutions are
obtained using Hirota’s bilinear method. Then, it can be concluded that Equation (3) is
integrable in the sense of N-soliton solutions. Furthermore, by using the complex conjugate
conditions to the two- and four-soliton solution and imposing restrictions on the parameters,
the one-breather solution, two-breather solution, and their transformation mechanism are
analyzed systematically. The one-breather has two characteristic lines, θ1 +

1
2 ln β2 =

a1x + (a1c1 − b1d1)y + (a1e1 − b1 f1)z + (a1w1R − b1w1I)t + γ1 +
1
2 ln β2 and Λ1 = b1x +

(a1d1 + b1c1)y+(a1 f1 + b1e1)z+(a1w1I + b1w1R)t+ κ1. If the condition
∣∣∣∣ a1 a1c1 − b1d1

b1 a1d1 + b1c1

∣∣∣∣
is not equal to zero, the one-breather will not be transformed, as shown in Figure 1. If the

condition
∣∣∣∣ a1 a1c1 − b1d1

b1 a1d1 + b1c1

∣∣∣∣ is equal to zero, two characteristic lines are parallel, then the

one-breather will be transformed. With the aid of the transformation mechanism of the
nonlinear waves, the one-breather can be transformed into a series of nonlinear localized
waves, such as the quasi-kink soliton, M-shaped kink soliton, oscillation M-shaped kink
soliton, multi-peak kink soliton and quasi-periodic wave, as shown in Figures 3 and 4.
Then, the one-lump wave is obtained by taking the long-wave limit to the two-breather
solution, as shown in Figure 2. The transformation mechanism of the two-breather is
further studied similarly, as shown in Figures 8–10. Furthermore, under the conditions of

velocity resonance (
√

vs
1x

2 + vs
1y

2 =
√

vs
2x

2 + vs
2y

2), the molecular state of the transformed
two-breather is investigated systematically, which is shown in Figures 11–13.

The phenomena presented in this paper are helpful to our further analysis of the com-
plex dynamic behaviors in shallow-water waves, and play an important role in explaining
the nonlinear phenomena existing in complex waves modeled by Equation (3). Further-
more, the dynamic behaviors of other high-dimensional integrable systems can be analyzed
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using the characteristic line method presented in this paper. It is worth noting that the
characteristic line method cannot determine amplitude, which needs to be further studied.
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