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1. Introduction

Hypergroup theory, which was defined in [1] as a more comprehensive algebraic
structure of group theory, has been investigated by different authors in modern algebra. It
has been developed using hyperring and hypermodule theory studies by many authors in a
series of papers [1–15]. Following these papers, let us start by giving the basic information
necessary for the algebraic structure that we will study as Krasner S-hypermodule in
studying the S-hypermodule class on a fixed Krasner hyperring class S. Let N be a non-
empty set; (N, ·) is called a hypergroupoid if for the map defined as · : N × N −→ P∗(N)
is a function. Here “·” is called a hyperoperation on N. Let X and Y be subsets of N. The
hyperproduct X ·Y is defined as

X ·Y =
⋃

(x,y)∈X×Y
x · y.

If x, y ∈ N, then {x} · Y and X · {y} are simply represented as x · Y and X · y, re-
spectively. A hypergroupoid (N, ·) is called a semihypergroup if for each x, y, z ∈ N,
(x · y) · z = x · (y · z). A semihypergroup (N, ·) is called a hypergroup if for each x ∈ N,
x · N = N · x = N. A hypergroup (N, ·) is called commutative provided x · y = y · x for all
x, y ∈ N.

A commutative hypergroup (N, +) is said to be canonical if

(1) There exists a unique 0 ∈ N such that for each x ∈ N there exists a unique element x
′

in N, denoted by −x, such that 0 ∈ x + (−x);
(2) z ∈ x + y implies y ∈ z− x := z + (−x) for each x, y, z ∈ N.

As it is proved in [13], if (N, +) is a canonical hypergroup, then x + 0 = x for all
x ∈ N.

Let (S,+, ·) be a hyperstructure. (S,+, ·) is called a Krasner hyperring if

(1) (S,+) is a canonical hypergroup;
(2) (S, ·) is a semigroup with a bilaterally absorbing element 0, i.e.,

(a) a · b ∈ R for all a, b ∈ S;
(b) a · (b · c) = (a · b) · c for all a, b, c ∈ S;
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(c) a · 0 = 0 · a = 0 for all a ∈ S;

(3) The multiplication distributes over the addition on both sides.

A Krasner hyperring (S,+, ·) is called commutative if it is commutative with respect to
the multiplication. If a = a · 1S = 1S · a for every a ∈ S, then element 1S is called an identity
element of the Krasner hyperring (S,+, ·). From now on, when we say hyperring, we mean
commutative Krasner hyperrings with identity.

Let (S,+, ·) be a hyperring and J be a non-empty subset of S. Then, J is called a
hyperideal of S provided (J, +) is a subhypergroup and r · a, a · r ∈ J for all a ∈ J and
r ∈ S. Let S be a hyperring and I, J be hyperideals of S. Then the product I J = {x | x ∈
∑Λ aλbλ, aλ ∈ I and bλ ∈ J} is a hyperideal of S.

Let S be a hyperring. A canonical hypergroup (N,+) together with a left external map
S× N −→ N defined by

(x, a) 7→ x · a ∈ N

such that for every x, y ∈ S and a, b ∈ N, we have

(1) x · (a + b) = x · a + x · b,
(2) (x + y) · a = x · a + y · a,
(3) (x · y) · a = x · (y · a),
(4) a = 1S · a,
(5) x · 0N = 0N ,

which is called a Krasner left hypermodule over S.
Throughout this paper, for a simple explanation, when we say hypermodule, we mean

the left Krasner hypermodule. Note that a non-zero hypermodule always has two different
subhypermodules, which are trivial subhypermodules. It is known that a non-empty subset
K of an S-hypermodule N is a subhypermodule of N if and only if a− b ⊆ K and ra ∈ K
for all a, b ∈ K and r ∈ S.

Let N be a S-hypermodule and x ∈ N. Then S · x = {s · x : s ∈ S} is a subhypermodule
of a hypermodule N.

Let K and T be subhypermodules of N. Then K + T = {x ∈ k + t : k ∈ K, t ∈ T} is a
subhypermodule of N. Let N and K be S-hypermodules and let f : N → K be a function.
If f (x + y) ⊆ f (x) + f (y) and f (s.x) = s. f (x) for every x, y ∈ K and s ∈ S, f is called a
hypermodule S-homomorphism from N to K. Instead of this statement, if the inclusion
satisfies f (x + y) = f (x) + f (y), then f is said to be a strong S-homomorphism from N to K.
The class of every strong S-homomorphism from N to K is denoted by HomS(N, K); sets are
defined as ker( f ) := {x ∈ N : f (x) = 0K} and Im( f ) := {y ∈ K :∃x ∈ N, y ∈ f (x)}. The
homomorphism f ∈ HomS(N, K) is called strongly injective if f (x1) = f (x2) implies x1 = x2
for every x1, x2 ∈ N, and f is called strongly surjective if K = f (N). To simplify denoting
annihilator of an S-hypermodule N for a subhypermodule K, we use the symbol K :S N,
and the set is a hyperideal, which is defined as {s ∈ S : s.N ⊆ K}. Another representation
of D :S N is AnnS(N).

As a generalization of a prime spectrum of the ring of commutative topology de-
fined on S with Zariski topology [16] inspired by the interaction between the theoretical
properties of the hyperring S of the text, over a commututive hyperring S on a several
hypermodule N, we examine a Zariski topology on these spectrum XN of pseudo-prime
subhyper-modules, and we give the interaction between topological hyperspace.

We give topological conditions such as connectedness, Noetherianness, and irreducibil-
ity in the pseudo-prime spectrum of hypermodules and obtain more information about
the algebraic hyperstructure of these hypermodules. Further, we prove this topologi-
cal hyperspace in terms of spectral hyperspace, which is a topological hyperspace and
homeomorphic to Spec(S) for any hyperring S.

2. Condition of Pseudo-Prime for Krasner Hypermodules

In this section, we present pseudo-prime subhypermodules as a new concept of
hypermodules theory. Then we investigate the connection between spectral hyperspace
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and Zariski topology. Recall from [17] that a proper hyperideal J of a hyperring S is called
prime if for hyperideals X, Y of S the relation XY ⊆ J implies X ⊆ J or Y ⊆ J.

Definition 1. Let N be an S-hypermodule and K be a subhypermodule of N.

(1) K is called pseudo-prime if (K :S N) is a prime hyperideal of S.
(2) We call a pseudo-prime spectrum of N as the set of all pseudo-prime submodules of N expressed

by XN . For any prime hyperideal J ∈ XS = Spec(S), the collection N of whole pseudo-prime
subhypermodules of N with (K : N) = J

(3) We define the set V(K) = {Y ∈ XN : K ≤ Y}.
(4) If XN 6= ∅, the function η : XN → Spec(S/Ann(N)) via

η(Y) = (Y : N)/Ann(N)

is called natural map of XN . If either N = {0} or N 6= {0} and the natural map of XN is
strongly surjective, then we call N pseudo-primeful.

(5) If the natural map of XN is strongly injective, then we call N a pseudo-injective.

According to our above definition, prime hyperideals of a hyperring S and the pseudo-
prime S-hypermodule of the hypermodule S are the same. It is obtained that the concept
of prime hyperideal to hypermodules is a strong notion of the strongly pseudo-prime
subhypermodule S. Let N be an S-hypermodule. Following [18], a proper subhypermodule
K of N is called prime if, for a hyperideal J of S and a subhypermodule X of N, the ralation

[J.X] =
⋃{ p

∑
j=1

uj.xj : l ∈ N, uj ∈ J and xj ∈ X, for all j

}

implies J ⊆ (K : N) or X ⊆ K.
Therefore, a proper subhypermodule K of N is prime if N/K is a torsion-free S/(K : N)-

hypermodule, i.e., N/K is a hypermodule on S such that the only element destroyed
by a non-zero divisor of hyperring S/(K : N) is zero. Using Definition 1, every prime
subhypermodule K is a pseudo-prime subhypermodule because (K : N) ∈ Spec(S).

Recall from [11] that a hypermodule N is multiplication S-hypermodule if, for each
subhypermodule K of N, there exists a hyperideal J of S with K = [J.N]. A proper
subhypermodule K of N is called maximal if for each subhypermodule L of N with
K ≤ L ≤ N, then K = L or L = N.

Lemma 1. The following assertions are equivalent for a finitely generated S-hypermodule N.

(1) N is a multiplication hypermodule.
(2) N is a pseudo-injective hypermodule.
(3)

∣∣XN,J
∣∣ ≤ 1 for each maximal hyperideal J of S.

(4) N/J.N is simple for each maximal hyperideal J of S.

Proof. (1)⇒ (2) and (2)⇒ (3) are clear.
(3) ⇒ (4) It can be proven clearly that J.N = N for a maximal hyperideal J of S.

Hence, suppose that J.N 6= N and K/J.N ⊂ N/J.N. Then K is a proper subhypermodule
containing the subhypermodule J.N of N. Thus we have J = (J.N : N) = (K : N). Since K
and J.N belong to XN:J , then K = J.N by the assumption. Therefore, N/J.N is a simple
S-hypermodule. By [11], N is a multiplication hypermodule.

Further, we use the concept of pseudo-prime subhypermodules to describe another
new hypermodule class, namely, the topological hypermodule. We explore some algebraic
properties of this hypermodule class. Then, in the next section, we connect a topology
to the set of all pseudo-prime subhypermodules of topological hypermodules, called the
Zariski topology. Let L be a subset of XN for an S-hypermodule N. We show as notation
the intersection of all elements in L by =(L).
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Definition 2. Let N be an S-hypermodule.

(1) A subhypermodule K of N is called pseudo-semiprime if it is an intersection of pseudo-prime
subhypermodules of N.

(2) A pseudo-prime subhypermodule K of N is called extraordinary if, whenever T and L are
pseudo-semiprime subhypermodules of N, T ∩ L ≤ K implies that L ⊆ K or T ⊆ K.

(3) The pseudo-prime radical of K is shown as notation Prad(K) is the intersection of each
pseudo-prime subhypermodules of N containing K, i.e.,
Prad(K) = =(V(K)) =

⋂
P

P∈V(K)
. If V(K) = ∅, then we get Prad(K) = N for a subhyper-

module K of N.
(4) If K = Prad(K), then the subhypermodule K of N is said to be a pseudo-prime

radical subhypermodule.
(5) If XN = ∅ or each pseudo-prime subhypermodule of N is extraordinary, then N is said to

be topological.

Using Definition 2 we prove that every prime hyperideal of S is an extraordinary
pseudo-prime subhypermodule for the S-hypermodule S.

Theorem 1. Let N be a topological S-hypermodule. Then the following statements hold.

(1) Every strong homomorphic image of N is a topological S-hypermodule.
(2) NJ is a topological SJ-hypermodule for every prime hyperideal J of S.

Proof. (1) Let K be a subhypermodule of N. We have a factor S-hypermodule N/K, say L.
Let U/K be a pseudo-prime subhypermodule of L. Since (U/K : L) = (U : N), we obtain
that U is a pseudo-prime subhypermodule of N. Let V/K and W/K be pseudo-semiprime
subhypermodule of L so that V/K ∩W/K ⊆ U/K. Therefore, V and W are pseudo-semiprime
subhypermodules of N such that V ∩W ⊆ U. By the hypothesis, V ⊆ U or W ⊆ U. Therefore,
V/K ⊆ U/K or W/K ⊆ U/K. Consequently, L is a topological S-hypermodule.

(2) Let L be a pseudo-prime subhypermodule of the SJ-hypermodule NJ and let Ψ:
N → NJ be the canonical strong homomorphism. First we shall prove that L ∩ N is a pseudo-
prime subhypermodule of N. Let I and I′ be hyperideals of S so that I I′ ⊆ (L ∩ N :S N). Using
the canonical strong homomorphic image of N by Ψ, we have

(
IJ I′J
)

; NJ ⊆ L = (L ∩ N)J .

Since L is a pseudo-prime subhypermodule of the SJ-hypermodule NJ , either IJ ⊆
(

L : NJ
)

or I′J ⊆
(

L : NJ
)
. Therefore, we have I.N ⊆ (I.N)J ∩ N ⊆ L ∩ K or I : N ⊆ L ∩ K. It

follows that L ∩ K is a pseudo-prime subhypermodule of N. Take pseudo-semiprime
subhypermodules K1 and K2 of NJ with K1∩ K2 ⊆ L. We have that K1∩ N and K2∩ N are
pseudo-semiprime subhypermodules of N with (K1 ∩ N) ∩ (K2 ∩ N) = (K1 ∩ K2) ∩ N ⊆
L∩N that K1 = (K1 ∩ N)J ⊆ (L ∩ N)J = H or K2 = (K2 ∩ N)J ⊆ (L ∩ N)J = H. Therefore,
H is extraordinary and NJ is a topological SJ-hypermodule.

Recall that the pseudo-prime subhypermodules of S as on S-hypermodule are the
pseudo-prime hyperideals for any hyperring S. In the following theorem, we extend the
fact in Theorem 1 to multiplication hypermodules.

Theorem 2. Let N be a finitely generated S-hypermodule. Then the following assertions are equivalent.

(1) N is a multiplication hypermodule.
(2) There exists a hyperideal J of S such that V(K) = V(J.K) for every subhypermodule K of N.
(3) N is a topological hypermodule.

Proof. (1)⇒ (2) Clear.
(2)⇒ (3) Let L be a pseudo-prime subhypermodule of N. Assume that K and U are

pseudo-semiprime subhypermodules of N with K ∩U ⊆ L. Then we have V(K) = V(J.N)

and V(U) = V
(

J
′

: N
)

for hyperideals J and J′ of S. Take some collection of pseudo-prime
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subhypermodules {K′α}α∈Ω such that K =
⋂

α∈Ω
K′α. Therefore, we get (J ∩ J′).N ⊆ K′α for

every α ∈ Ω using the conclusion

K′α ∈ V(K) ⊆ V(K) ∪V(U) = V(J.N) ∪V(J′.N = V((J ∩ J′).N)).

Hence (J ∩ J′).N ⊆ ⋂
α∈Ω

K′α = K. By a similar way, we have the conclusion (J ∩ J′).N ⊆

U. Thus (J ∩ J′).N ⊆ K ∩U ⊆ L. It follows from J ∩ J′ ⊆ (L : N) that L ∈ V(J.N) = V(K)
or L ∈ V(J : N) = V(U), that is K ⊆ L or U ⊆ L.

(3)⇒ (1) Clear by Lemma 2.

Definition 3. Let N be an S-hypermodule. Then N is called content if b ∈ c(b)N, where
c(b) =

⋂
{J : J is a hyperideal of S and b ∈ J.N} for every b ∈ N.

It is can be seen that N is a content S-hypermodule if and only if
( ⋂

α∈Ω
Jα

)
.N =⋂

α∈Ω
(Jα.N) for every family of {Jα : α ∈ Ω} of S.

Theorem 3. Let N be an S-hypermodule. Consider the following conditions:

(1) N is a content and pseudo-injective S-hypermodule.
(2) Prad(K) =

√
(K : N)N for every subhypermodule K of N.

Then if N satisfies one of these above conditions, it is topological.

Proof. If Prad(L) = N, then we have V(K) = V(S.N). Suppose that Prad(L) 6= N.
Therefore, Prad(L) is a pseudo-semiprime subhypermodule of N. There exist pseudo-prime
subhypermodules Lα for every α ∈ Ω with Prad(L) =

⋂
α∈Ω

Lα and (Lα : N) = pα ∈ Spec(S).

Therefore pαN = (pα : N).N = ((pα : N).N : N) and N is pseudo-injective for every α ∈ Ω
with Lα = pαN. Since N is a content hypermodule,

Prad(L) =
⋂

α∈Ω

Lα =
⋂

α∈Ω
(pαN) =

( ⋂
α∈Ω

pα

)
N

=
⋂

α∈Ω
(Lα : N)N =

( ⋂
α∈Ω

Lα : N

)
N

= (Prad(L) : N)N.

Then we obtain V(L) = V(Prad(L)) = V((Prad(L) : N)N). It follows from Theorem 2
that N is a topological hypermodule.

Suppose that, for all subhypermodule K of N, Prad(K) =
√
(K : N)N. Then V(K) =

V(Prad(K)) = V
(√

(K : N)N
)

. It follows from Theorem 2 that N is a
topological hypermodule.

3. Pseudo-Prime Spectrum over Topological Hypermodules

We denote N as a topological S-hypermodule in the rest of this text. In [11], we
investigated the Zariski topology over multiplication hypermodules. Zariski topology is
built on topological modules in [16]. In this section, inspired by this source, this class will
be examined in hypermodules by looking at it from a different spectrum. Briefly, J and J
will be used instead of S/Ann(N) and J/Ann(N) for every hyperideal J ∈ Vs(Ann(N)).

Theorem 4. If XN is connected for a pseudo-primeful S-hypermodule N, then XS is connected.

Proof. Let ϕ : XN → Spec(S/Ann(N)) be a natural map. As ϕ is surjective, we must show
that ϕ is continuous. Take a hyperideal J of S containing Ann(N). Let K ∈ ϕ−1

(
VS(J

))
.

There is a hyperideal J′ ∈ VS(J
)

such that ϕ(K) = J′. Thus J ⊆ (K : N) = J. It follows from
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J.N ⊆ K that K ∈ VN(J.N). Let L ∈ VN(J.N). Then we obtain J ⊆ (J.N : N) ⊆ (L : N).
Therefore L ∈ ϕ−1

(
VS(J

))
. ϕ is continuous as ϕ−1

(
VS(J

))
= VN(J.N).

In the following proposition, we obtain basic properties of the subhypermodules of N,
taking the topological hyperspace XN as a T1-hyperspace.

Proposition 1. Let Y ⊆ XN and K ∈ XN,J for any J ∈ Spec(S). Then the following statements hold.

(1) Cl(Y) = V(=(Y)). Thus Y = V(=(Y)) if and only if Y is closed.
(2) 〈0〉 ∈ Y provided that Y is dense in XN .
(3) XN is a T0-hyperspace.
(4) Every pseudo-prime subhypermodule of N is a maximal element in the set of whole pseudo-

prime subhypermodules of N if and only if XN is a T1-hyperspace.
(5) Spec(S) is a T1-hyperspace provided that XN is a T1-hyperspace.

Proof. (1) The inclusion V(=(Y)) ⊇ Y is clear. Let V(K) be any closed subset of XN
containing Y. Then, V(=(Y)) ⊆ V(=(V(K))) = V(Prad(K)) = V(K) since =(V(K)) ⊆
=(Y). It follows that V(=(Y)) is the smallest closed subset of XN containing Y. Therefore,
the equality is obtained.

(2) It can be seen clearly due to condition (1).
(3) To show XN is a T0-hyperspace, we have to prove that all closures of distinct points

in XN are distinct. Let H and K be any distinct point of XN . According to condition (1), we
have Cl({H}) = V(H) 6= V(K) = Cl({K}); this is also desired.

(4) Topologically, we know that for XN to be a T1-hyperspace, it must be that each
singleton subset is closed. Let L be a maximal element in the set of all pseudo-prime
subhypermodules of N; using condition (1) we get that Cl({L}) = V(L) = {L}. Therefore,
{L} is closed. We obtain that XN is a T1-hyperspace. Conversely, let {L} be closed as XN is
a T1-hyperspace. Therefore, we can write the following equality:

{L} = Cl({L}) = V(=({L})) = V(L).

Therefore L is a maximal element in the set of whole pseudo-prime subhypermodules
of N.

(5) Let L be a pseudo-prime subhypermodule of N. We have Cl({L}) = V(L) using
condition (1). Let H ∈ V(L). By the hypothesis, we have (L : N) = (H : N) ∈ Max(S).
Thus, L and H are prime subhypermodules of N. By Theorem 2, we can write H = L. It
follows from Cl({L}) = L that XN is a T1-hyperspace.

Definition 4. A topological hyperspace N is called irreducible if for every decomposition
N = N1 ∪ N2 as closed subsets N1 and N2 of N provided that N1 = NN2 = N. In addition, a
maximal irreducible subset of N is said to be an irreducible component of N.

The next theorem reveals the relation between pseudo-prime subhypermodules of the
S-hypermodule N and an irreducible subset of the topological hyperspace XN . It is clear
that for a hyperring S, a subset K of Spec(S) is irreducible if and only if =(K) is a prime
hyperideal of S.

Theorem 5. Let N be an S-hypermodule and K be a subset of XN . Then =(K) is a pseudo-prime
subhypermodule of N if and only if K is an irreducible hyperspace.

Proof. (⇒) Let us take a pseudo-prime subhypermodule =(K) of N with K ⊆ K1 ∪ K2
where K1 and K2 are closed subsets of XN . Thus there exist subhypermodules L and T
of N such that V(L) = K1 and V(T) = K2. Therefore, =(V(L) ∪V(T)) = =(V(L)) ∩
=(V(T)) = Prad(L) ∩ Prad(T) ⊆ =(K). Then we have that =(K) is an extraordinary
subhypermodule because N is a topological hypermodule. It is obtained that Prad(L) ⊆
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=(L) or Prad(T) ⊆ =(K) and so K ⊆ V(=(K)) ⊆ V(Prad(L)) = V(L) = K1 or K ⊆ K2. It
means that K is irreducible.

(⇐) Let K be an irreducible hyperspace, T and U be hyperideals of S with TU ⊆
(=(K) : N). Then we have K ⊆ V(=(K)) ⊆ V((TU).N) = V(T.N) =

⋃
V(U.N). By the

assumption, we obtain that K ⊆ V(T.N) or K ⊆ V(U.N). Therefore, T.N ⊆ Prad(T.N) =
=(V(U.N)) ⊆ =(N) or U.N ⊆ =(K). Since T ⊆ (=(K) : N) or U ⊆ (=(K) : N), then =(K)
is a pseudo-prime subhypermodule of N.

Corollary 1. Let N be an S-hypermodule and let K be a subhypermodule of N.

(1) Prad(K) is a pseudo-prime subhypermodule of N if and only if V(K) is an irreducible hyperspace.
(2) Prad(0) is a pseudo-prime subhypermodule of N if and only if N is an irreducible hyperspace.
(3) If XN,U 6= ∅ for any u ∈ Spec(S), then XN,U is an irreducible hyperspace.

Proof. (1) It follows from Prad(K) = =(V(K)) that the proof is obtained directly
using Theorem 3.

(2) Clear from (1) by taking K = (0).
(3) Since =(XN,U : N) =

⋂
Q∈XN,U

(Q : N) = U ∈ Spec(S), the claim holds due

to Theorem 3.

Definition 5. Let N be an S-hypermodule and U be a hyperideal of S. Then U is said to be a
radical hyperideal of S if U =

⋂
i

ui where ui runs through VS(U).

Lemma 2. Let N be a non-zero pseudo-primeful S-hypermodule and U be a radical hyperideal of S.
Then Ann(N) ⊆ U if and only if (U.N : N) = U.

Proof. (⇒) By the hypothesis, Ann(N) ⊆ U =
⋂
i

ui , where ui runs through VS(U). Then

there is a pseudo-prime subhypermodule Ki of N with (Ki : N) = ui for a pseudo-primeful

S-hypermodule N and ui ∈ VS(Ann(N)). We have U ⊆ (U.N : N) =

((⋂
i

ui

)
.N : N

)
⊆⋂

i
(ui.N : N) ⊆ ⋂

i
(Ki : N) =

⋂
i

ui = U. Hence (U.N : N) = U.

(⇐) It is clear.

Let N be an S-hypermodule and L be a subhypermodule of N. In [19], L is called
small if N 6= T + L for every proper subhypermodule T of N. Following [19], we denote by
Rad(N) the sum of all small subhypermodules of N.

Now let us adapt Nakayama’s Lemma to hypermodules in the next proposition.

Proposition 2. Let N be a pseudo-primeful S-hypermodule and U be a hyperideal of S that is
contained in Rad(S) such that U.N = N. Then N = (0).

Definition 6. Let T be closed subset of a topological hyperspace N and a be an element of T. If
T = Cl({a}), then a is said to be the generic point of T.

By Proposition 1 (1), we obtain that each element K of XN is a generic point of the irre-
ducible closed subset V(K). Note that if the topological hyperspace is a T0-hyperspace, the
general point T of a closed subset of the topological hyperspace is unique by Proposition 1.
The following theorem is an excellent implementation of Zariski topology on hypermodules.
Indeed, the following theorem shows that there is a relationship between the irreducible
closed subsets of XN and the pseudo-prime subhypermodules of the S-hypermodule N.

Theorem 6. Let N be a S-hypermodule and U ⊆ XN . Then U is an irreducible closed subset of
XN if and only if U = V(W) for each W ∈ XN .



Mathematics 2023, 11, 1754 8 of 10

Proof. (⇒) It follows from Proposition 1 that U = V(W) is an irreducible closed subset of
XN for each pseudo-prime subhypermodule W of N.

(⇐) Let U = V(W) be an irreducible closed subset of XN . Therefore, we have
U = V(T) for some subhypermodule T of N and =(U) = =(V(T)) = Prad(T) ∈ XN by
using Theorem 5. Then we get U = V(T) = V(Prad(T)). This completes the proof.

Recall from [17] that a hyperring S is said to be Noetherian if it satisfies the ascending
chain condition on hyperideals of S, i.e., for each ascending chain of hyperideals

J1 ⊆ J2 ⊆ . . . ,

there is an element k ∈ N such that Jk = Jt for every k ≥ t.

Definition 7. A topological hyperspace X is said to be Noetherian hyperspace if the open subset of
the hyperspace possesses the ascending chain condition.

We use the notion of Noetherian S-hypermodules for pseudo-prime spectrum of
hypermodules and radical hyperideals of S satisfying the ascending chain condition ACC.

Theorem 7. Let N be an S-hypermodule. Then N possesses Noetherian pseudo-prime spectrum if
and only if the ACC is provided pseudo-prime radical subhypermodules of N.

Proof. (⇒) Let N have a Noetherian pseudo-prime spectrum and

U1 ⊆ U2 ⊆ . . .

be an ascending chain of pseudo-prime radical subhypermodules of N. Hence
Uj = =

((
V
(
Uj
)))

= Prad
(
Uj
)

for j ∈ N. It follows that V(U1) ⊇ V(U2) ⊇ . . . is a de-
scending chain of closed subsets of XN . By the hypothesis there exists an element l ∈ N
such that V(Ul) = V(Ul+n) for each n ∈ N. Thus

N1 = Prad(Ul) = =(V(Ul)) = =(V(Ul+n)) = Prad(Ul+n) = Ul+n.

(⇐) Suppose that the ACC is provided for pseudo-prime radical subhypermodules of
N. Let

V(U1) ⊇ V(U2) ⊇ . . .

be a descending chain of closed subsets of XN for Uj ≤ N. Then =(V(U1)) ⊆ =(V(U2)) ⊆
. . . is an ascending chain of psudo-prime radical subhypermodules =

(
V
(
Uj
))

= Prad
(
Uj
)

of the hypermodule N. By the hypothesis, there is an element l ∈ N such that =(V(Ul)) =

=
(

V
(

Ul+j

))
for each j ∈ N. It follows from Proposition 1 that V(Ul) = V(=(V(Ul))) =

V
(
=
(

V
(

Ul+j

)))
= V

(
Ul+j

)
. Therefore, XN is a Noetherian hyperspace.

Definition 8. Let S be a hyperring according to the Zariski topology and N be an S-hypermodule
with topological hyperspace. A topological hyperspace N is called a spectral hyperspace if it is
homeomorphic to Spec(S).

Theorem 8. Let N be an S-hypermodule. Then XN is a spectral hyperspace if each of the following
conditions are met.

(1) There exists a hyperideal J of S so that V(U) = V(J.N) for a Noetherian hyperring S and for
every subhypermodule U of N.

(2) Let N be an content pseudo-injective S-hypermodule and Spec(S) be a Noetherian
topological hyperspace.
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Proof. (1) If it is shown that every subset of XN is quasi-compact, the desired result is
obtained. Let K be an open subset of XN and {Ai}i∈N be an open cover of K. Then there exist
subhypermodules L and Li so that K = XN\V(L), Ai = XN\V(Li) for every i ∈ I and K ⊆⋃
i∈I

Ai = XN\
⋂
i∈I

V(Li). By assumption, there is a hyperideal Ii in S so that V(Li) = V(Ii.N)

for every i ∈ I. Then we have L ⊆ XN\V
(

∑
i∈I

Ii.N
)

= XN\V
((

∑
i∈I

Ii

)
.N
)

. As S is a

Noetherian hyperring, there is a finite subset I′ of I so that L ⊆ ⋃
j∈I′

Aj. Hence XN is a both

of Noetherian hyperspace and spectral hyperspace.
(2) Let us show that XN is Noetherian. Let V(L1) ⊇ V(L2) ⊇ . . . be a descend-

ing chain of closed subsets of XN. Therefore, Prad(L1) ⊆ Prad(L2) ⊆ . . . As Spec(S) is
Noetherian, the ACC (Prad(L1) : N) ⊆ (Prad(L2) : N) ⊆ . . . of radial hyperideals shall be
stationary by Theorem 8. Therefore there exists an element l ∈ N so that (Prad(Ll) : N) =(

Prad
(

Ll+j

)
: N
)
= . . . , for every j = 1, 2, . . . If the proof technique in Theorem 3 is applied,

it is seen that Prad
(

Lj
)
=
(

Prad
(

Lj
)

: N
)
.N. Thus, we get Prad(Ll) = Prad

(
Ll+j

)
= . . . for

every j = 1, 2, . . . It follows that V(Ll) = V(Prad(Ll)) = V
(

Prad
(

Ll+j

))
= V

(
Ll+j

)
= . . .

Therefore, XN is Noetherian, and the desired result is achieved.
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