
Citation: Wang, X.; Veeravalli, B.; Wu,

K.; Song, X. Extension of

Divisible-Load Theory from

Scheduling Fine-Grained to

Coarse-Grained Divisible Workloads

on Networked Computing Systems.

Mathematics 2023, 11, 1752. https://

doi.org/10.3390/math11071752

Academic Editor: Theodore E. Simos

Received: 20 February 2023

Revised: 30 March 2023

Accepted: 5 April 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Extension of Divisible-Load Theory from Scheduling
Fine-Grained to Coarse-Grained Divisible Workloads on
Networked Computing Systems
Xiaoli Wang 1,*, Bharadwaj Veeravalli 2, Kangjian Wu 1 and Xiaobo Song 3

1 School of Computer Science and Technology, Xidian University, Xi’an 710071, China
2 Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3,

Singapore 119077, Singapore
3 The 20th Research Institute of China Electronics Technology Group Corporation, Xi’an 710068, China
* Correspondence: wangxiaoli@mail.xidian.edu.cn

Abstract: The big data explosion has sparked a strong demand for high-performance data processing.
Meanwhile, the rapid development of networked computing systems, coupled with the growth of
Divisible-Load Theory (DLT) as an innovative technology with competent scheduling strategies,
provides a practical way of conducting parallel processing with big data. Existing studies in the area
of DLT usually consider the scheduling problem with regard to fine-grained divisible workloads.
However, numerous big data loads nowadays can only be abstracted as coarse-grained workloads,
such as large-scale image classification, context-dependent emotional analysis and so on. In view of
this, this paper extends DLT from fine-grained to coarse-grained divisible loads by establishing a
new multi-installment scheduling model. With this model, a subtle heuristic algorithm was proposed
to find a feasible load partitioning scheme that minimizes the makespan of the entire workload.
Simulation results show that the proposed algorithm is superior to the up-to-date multi-installment
scheduling strategy in terms of achieving a shorter makespan of workloads when dealing with
coarse-grained divisible loads.

Keywords: divisible load; coarse-grained workload; multi-installment scheduling; networked
computing; 68W15

1. Introduction

During the past few decades, the volume of available data worldwide has grown at an
unprecedented rate. In order to fully mine and analyze such massive data, the subject of
“big data” has become a hot topic. Various applications related to big data are still emerging,
such as smart cities, smart medical care, intelligent transportation systems, etc. The IMARC
Group expects the global big data market to expand from USD 162.6 billion in 2021 to USD
314.1 billion by 2027, at a CAGR of approximately 11% over the forecast period [1]. Like
computers and the Internet, big data is very likely to trigger a new round of technological
revolution. However, on the other hand, in the face of the explosive growth of data, the
computing capacity of a single server has been stretched. Therefore, we urgently need
networked computing systems to coordinate the computing power of multiple servers
that is able to take on an extremely complex computing workload including big data. In
order to efficiently accomplish workload computation and fully utilize compute resources,
studying how to schedule workloads reasonably in networked computing systems has
become a fundamental problem for researchers.

Although the amount of big data is remarkably immense, many big data workloads
can be regarded as divisible loads, even fine-grained ones. That is to say, the total workload
can be divided into arbitrary load partitions of any size. There is no interdependence
between them, no data transmission is required, and there is no particular order of task

Mathematics 2023, 11, 1752. https://doi.org/10.3390/math11071752 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11071752
https://doi.org/10.3390/math11071752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11071752
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11071752?type=check_update&version=1

Mathematics 2023, 11, 1752 2 of 12

execution. These divisions are supposed to be distributed to multiple servers in networked
computing systems by a competent divisible-load scheduling strategy to perform parallel
computing, so as to shorten the total makespan. This kind of divisible-load scheduling
strategy is collectively referred to as the Divisible-Load Theory (DLT) [2]. DLT has been
deeply studied with regard to various topologies of networked computing systems, such as
the tree network [3], bus network [4], complete b-Ary network [5], Gaussian, mesh, torus
network [6], cloud-computing platform [7], edge-computing architecture [8] and so on.

Existing studies have put forward various divisible-load scheduling models and
algorithms to address numerous distinct constraints emerging in a realistic networked
computing environment. For instance, the literature [9] considers communication and
computation startup overheads in the divisible-load scheduling models and proves that
startup overheads have an unneglectable impact on the makespan. The authors of [10]
designed a multi-installment scheduling model to deal with servers that have a limited
number of memory buffers and cannot hold the whole load package. To address the time-
varying issues of computing speeds and transmitting speeds, the authors of [11] proposed
two recursive algorithms and one iterative algorithm coping with two different situations:
one in which workloads arrive and depart based on a previously known schedule, and
one in which nothing occurs. The authors of [12] considered scheduling divisible loads
in systems with hierarchical memory, which has different time and energy efficiencies for
varying levels of memory. Core memory is time-efficient but too small to hold the whole
workload, while external memory is more costly both in terms of time and energy. Hence,
a multi-installment scheduling strategy was proposed to avoid using out-of-core storage.
One study [13] found that the computation and communication-rate-cheating problem
has a considerable impact on the applications of divisible-load scheduling. The authors
of [14] studied the influence of available server times on the makespan of divisible loads
in networked systems. The authors of [15] presented a next-generation novel multi-cloud
architecture with arbitrary server release times. Based on this architecture, a dynamic
scheduling strategy was proposed, which allows servers to estimate their ready times for
receiving and processing load fractions in order to guarantee load balancing and high
performance of the system. Besides server release times, the authors of [16] also considered
finite-size buffer capacity when scheduling computationally intensive divisible loads in bus
networks. One study [17] designed an efficient scheduling algorithm for fault workload
redistribution in response to frequent server failures.

The above studies are all at the theoretical level. In contrast, at the practical level, DLT
works spectacularly well in many big-data-related applications, such as real-time video
encoding [18], large-scale image processing [19], signature searching [20], data-intensive
flow optimization [21], dynamic voltage and frequency regulation [22] and so on. However,
successful applications of DLT are all based on fine-grained divisible loads [23–26] igu. For
example, in [18], when solving the problem of image processing, an image is regarded as
being composed of numerous pixels so that a large-scale image of several gigabytes can be
abstracted as a fine-grained divisible workload, and further be divided and allocated on
several servers in networked computing systems for parallel processing. However, in recent
years, with the diversity of big data applications and the development of deep learning
technology, people sometimes need to mine the correlation between data, so workloads
cannot simply be divided into independent load partitions and distributed to separate
servers for parallel computing. For example, when dealing with the problem of emotional
analysis [27], in order to extract and analyze people’s opinions on different products or
services, it is usually necessary to read through the whole text rather than just relying on a
word or character to complete emotional analysis. That is, data in this problem cannot be
abstracted into fine-grained divisible loads (a word or a character as a unit) but can only be
abstracted into coarse-grained divisible loads (a paragraph or a chapter as a unit). Another
intuitive example is that when addressing the problem of image classification [28], it is
almost impossible to classify the image correctly by merely observing a single pixel or a
part of the image. Similarly, data in this problem can no longer be arbitrarily divided and

Mathematics 2023, 11, 1752 3 of 12

processed separately. Hence, this problem should be treated with regard to coarse-grained
divisible-load scheduling.

Existing studies have proved that even fine-grained divisible-load scheduling prob-
lems in distributed computing systems are NP-hard [29], not to mention coarse-grained
load scheduling. Moreover, if we directly apply fine-grained scheduling models on coarse-
grained divisible loads and inadvertently assign fragmented load partitions to servers
without considering their granularity constraints, it will inevitably lead to partial loads
left to be completed. Even if we first round up the load partitions according to coarse
granularity and then distribute them, the efficiency of load processing is bound to be
affected on networked computing systems. Furthermore, it is likely to cause time conflicts
between two adjacent scheduling installments. Based on this background, in this paper,
we design a new multi-installment scheduling model for coarse-grained loads with the
objective of minimizing the makespan of the entire workload.

The rest of this paper is structured as follows. We first give a mathematical descrip-
tion of the coarse-grained divisible-load scheduling problem on networked computing
systems in Section 2, followed by a new multi-installment scheduling model. Section 3 puts
forward a heuristic algorithm to obtain a feasible load partitioning scheme, and Section 4
evaluates its performance through rigorous simulation experiments. Section 5 provides
the conclusions.

2. Coarse-Grained Divisible-Load Scheduling Model

Consider a networked computing system that consists of n + 1 servers connected
in a star topology, where p0 denotes the master server and {p1, p2, . . . , pn} represents
computing servers. Server p0 is accountable for dividing workloads and assigning load
fractions to servers {p1, p2, . . . , pn} in several installments, while the latter is responsible
for load computation. Each server has a constant computation startup overhead, denoted
as si for server pi, representing the time it takes to start specific components or programs
needed for load computation. It takes server pi time wi to compute the unit size of load,
so for a workload with size x, it requires time si + xwi. The master connects each server
via communication links, denoted as {l1, l2, . . . , ln}. Link li has a constant communication
startup overhead, defined as oi. It takes link li time zi to transmit the unit size of load, and
thus it requires time oi + xzi to transmit a workload with size x. The master p0 distributes
load fractions to servers in the order of p1 to pn. Each server starts computing when it
receives the whole part of its assignment from p0.

Figure 1 shows the Gantt chart for coarse-grained multi-installment scheduling. As
can be seen, the whole scheduling process is composed of m + 1 installments, where the
first m installments, termed as internal installments, are uniform. The last installment is
different from internal installments as it guarantees all servers finish computing at the
same time as much as possible. As for fine-grained divisible loads, to achieve the shortest
makespan, all servers involved in workload computation are supposed to complete their
computing simultaneously. If not, one can always transfer partial load fractions distributed
to the server that completes computation later to the server that finishes computing earlier,
thus decreasing the makespan of the entire workload. This is referred to as the Optimality
Principle in DLT [9]. However, when it comes to coarse-grained divisible loads, the Optimal-
ity Principle is no longer applicable. Still, we can find a feasible load partitioning scheme
in the last installment to make the completion time of all servers as close as possible.

Suppose the coarse-grained divisible load with size W arrives at the master at time
t = 0. Let granularity d represent the minimum scale of load partition. For example,
d could be the size of an image when dealing with image classification. The master assigns
server pi load αid and βid in every internal installment and the last installment, respectively,
where αi and βi are load partitioning coefficients that are integers greater than 0; that is,
αi ∈ N+ and βi ∈ N+. In each internal installment and the last installment, the total size of
load partitions that all servers are supposed to complete is dW/(m + 1)de. Table 1 lists the
commonly used notations in this paper for the reader’s convenience.

Mathematics 2023, 11, 1752 4 of 12

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 12

partitioning scheme in the last installment to make the completion time of all servers as
close as possible.

.

.

.

Installment m+1

Time

Installment 2Installmen 1

p1

p2

p3

pn

Installment 3

pn-1

.

.

.

.

.

.

.

.

.

.

.

.

...

...

Communication startup overhead Computation startup overhead Transmission time Computation time

The last installmentInternal installments

Se
rv

er
s

Figure 1. Multi-installment scheduling for coarse-grained divisible loads.

Suppose the coarse-grained divisible load with size W arrives at the master at time
0t = . Let granularity d represent the minimum scale of load partition. For example, d

could be the size of an image when dealing with image classification. The master assigns
server ip load i dα and i dβ in every internal installment and the last installment, re-
spectively, where iα and iβ are load partitioning coefficients that are integers greater
than 0; that is, i Nα +∈ and i Nβ +∈ . In each internal installment and the last installment,
the total size of load partitions that all servers are supposed to complete is (1)W m d+ .
Table 1 lists the commonly used notations in this paper for the reader’s convenience.

The total makespan depends upon the last server completing its assigned load frac-
tions. The shorter the makespan, the better the scheduling strategy. Therefore, our goal in
this paper is to search for a feasible load partitioning scheme that minimizes the makespan
of the entire coarse-grained workload.

Table 1. Notations and their meanings.

Notations Meanings
W Total size of the workload waiting to be processed
n Total number of computing servers

{ }1 2, ,..., np p p Computing servers

{ }1 2, ,..., nl l l Communication links

io Communication startup overhead of server ip

iz The time it takes for link il to transmit the unit size of load

is Computation startup overhead of server ip

iw The time it takes for server ip to complete the unit size of load
d Granularity d represents the minimum scale of load partition
m Total number of internal installments

1 2(, ,...,)nA α α α= The master assigns load i dα to server ip in each internal installment, where i Nα +∈

1 2(, ,...,)nB β β β= The master assigns load i dβ to server ip in the last installment, where i Nβ +∈
start
ijTI The start time of server ip in the j th internal installment

Figure 1. Multi-installment scheduling for coarse-grained divisible loads.

Table 1. Notations and their meanings.

Notations Meanings

W Total size of the workload waiting to be processed
n Total number of computing servers

{p1, p2, . . . , pn} Computing servers
{l1, l2, . . . , ln} Communication links

oi Communication startup overhead of server pi
zi The time it takes for link li to transmit the unit size of load
si Computation startup overhead of server pi
wi The time it takes for server pi to complete the unit size of load
d Granularity d represents the minimum scale of load partition
m Total number of internal installments

A = (α1, α2, . . . , αn) The master assigns load αid to server pi in each internal installment, where αi ∈ N+

B = (β1, β2, . . . , βn) The master assigns load βid to server pi in the last installment, where βi ∈ N+

TIstart
ij The start time of server pi in the jth internal installment

TIend
ij The end time of server pi in the jth internal installment

TLstart
i The start time of server pi in the last installment

TLend
i The end time of server pi in the last installment

T Makespan of the entire workload
i A subscript with a value ranging from 1 to n, corresponding to the ith server.
j A subscript with a value varying from 1 to m, corresponding to the jth installment.

The total makespan depends upon the last server completing its assigned load frac-
tions. The shorter the makespan, the better the scheduling strategy. Therefore, our goal in
this paper is to search for a feasible load partitioning scheme that minimizes the makespan
of the entire coarse-grained workload.

As for fine-grained divisible loads, there is no time interval for any server between
any two adjacent internal installments. By contrast, the load partitioning scheme is subject
to integer constraints for coarse-grained loads, and thus internal installments may not be
closely connected to each other. Therefore, in order to achieve the shortest makespan of
coarse-grained divisible loads, it is necessary to minimize the time gap between any two
adjacent internal installments. Let TIstart

ij and TIend
ij be the start and end time of server

pi in the jth internal installment, respectively. As for the first server p1, the start time of
its first installment is TIstart

11 = 0, while the start time TIstart
1j of its jth internal installment

depends on two factors: whether it has finished its computation in the j− 1th installment

Mathematics 2023, 11, 1752 5 of 12

and whether the master has finished transmitting load partitions for all servers in the
j− 1th installment. That is,

TIstart
1,j = max

{
TIend

1,j−1, TIstart
n,j−1 + on + znαnd

}
, j = 2, . . . , m. (1)

The end time of server pi in the jth internal installment equals its start time in the jth
internal installment plus the load transmission time and load computation time, as follows:

TIend
1,j = TIstart

1,j + o1 + s1 + (z1 + w1)α1d, j = 2, . . . , m. (2)

Server pi starts its first installment when its previous server pi−1 finishes load trans-
mission from the master. That is,

TIstart
i,1 = TIstart

i−1,1 + oi−1 + zi−1αi−1d, i = 2, . . . , n. (3)

The start time TIstart
i,j of server pi in the jth internal installment is determined by the

end time of its previous installment and the time when its previous server finishes receiving
its load fraction from the master. Hence, we have

TIstart
i,j = max

{
TIend

i,j−1, TIstart
i−1,j + oi−1 + zi−1αi−1d

}
, i = 2, . . . , n, j = 2, . . . , m. (4)

Therefore, the end time TIend
ij of server pi in the jth internal installment is

TIend
i,j = TIstart

i,j + oi + si + (zi + wi)αid, i = 2, . . . , n, j = 2, . . . , m. (5)

The start time TLstart
1 of the first server p1 in the last installment should be no earlier

than the end time of its internal installments or the time at which the master finishes load
transmitting for all servers in the internal installments. That is,

TLstart
1 = max

{
TIend

1,m , TIstart
n,m + on + znαnd

}
. (6)

The end time of server p1 in the last installment equals its start time in the last
installment plus the load transmission time and load computation time:

TLend
1 = TLstart

1 + o1 + s1 + (z1 + w1)β1d (7)

Similarly, the start time and end time of server pi in the last installment are as follows:

TLstart
i = max

{
TIend

i,m , TLstart
i−1 + on + znβnd

}
, i = 2, 3, . . . n. (8)

TLend
i = TLstart

i + oi + si + (zi + wi)βid, i = 2, 3, . . . n. (9)

The total makespan T depends upon the last server completing its assigned load
fractions in the last installment. Hence, we can obtain

T(A, B) = max
i=1∼n

{
TLend

i

}
(10)

where A = (α1, α2, . . . , αn) and B = (β1, β2, . . . , βn).
Based on the above analysis, we build a new multi-installment scheduling model for

coarse-grained divisible loads, aiming at a minimum makespan T on networked comput-
ing systems:

min
A,B

T(A, B) = min
A,B

{
max

i=1∼n

{
TLend

i

}}
, (11)

subject to

Mathematics 2023, 11, 1752 6 of 12

(a) αi ∈ N+, βi ∈ N+.

(b)
n
∑

i=1
αid ≥ W

m+1 ,
n
∑

i=1
βid ≥ W

m+1 .

where

(1)
TIstart

11 = 0.
TIstart

1,j = max
{

TIend
1,j−1, TIstart

n,j−1 + on + znαnd
}

, j = 2, . . . , m.

TIend
1,j = TIstart

1,j + o1 + s1 + (z1 + w1)α1d, j = 2, . . . , m.

(2)
TIstart

i,1 = TIstart
i−1,1 + oi−1 + zi−1αi−1d, i = 2, . . . , n.

TIstart
i,j = max

{
TIend

i,j−1, TIstart
i−1,j + oi−1 + zi−1αi−1d

}
, i = 2, . . . , n, j = 2, . . . , m.

TIend
i,j = TIstart

i,j + oi + si + (zi + wi)αid, i = 2, . . . , n, j = 2, . . . , m.

(3) {
TLstart

1 = max
{

TIend
1,m , TIstart

n,m + on + znαnd
}

.

TLend
1 = TLstart

1 + o1 + s1 + (z1 + w1)β1d.

(4) {
TLstart

i = max
{

TIend
i,m , TLstart

i−1 + on + znβnd
}

, i = 2, 3, . . . n.

TLend
i = TLstart

i + oi + si + (zi + wi)βid, i = 2, 3, . . . n.

As given in the proposed model, we aim to minimize the total makespan. This model
involves two sets of variables: load partitioning scheme A = (α1, α2, . . . , αn) for internal
installments and load partitioning scheme B = (β1, β2, . . . , βn) for the last installment.
Additionally, this model has two specified constraints. The first constraint indicates that
every load partition assigned to servers must be a positive integer since the scheduling
problem considered in this paper focuses on coarse-grained divisible loads. The second
constraint means that the total amount of load completed by all servers in each installment
should be at least as large as W/(m + 1) because the scheduling process is supposed to be
periodic for computational simplicity.

3. Heuristic Scheduling Algorithm

As for fine-grained workloads, one can obtain a closed-form solution to an optimal
load partitioning scheme for internal installments based on the assumption that the internal
scheduling time of each server is absolutely the same. Meanwhile, one can also obtain a
closed-form solution to an optimal load partitioning scheme for the last installment since
all servers finish computing simultaneously. However, for coarse-grained loads, the above
two conditions for obtaining an optimal load partition cannot be satisfied.

In order to obtain the shortest makespan of coarse-grained divisible loads, the time
consumed by each server in every internal installment should be as close as possible. Let U
be an upper bound for the completion time of servers in each internal installment. We can
obtain a solution to load partitioning scheme A = (α1, α2, . . . , αn) by looking for a feasible
value of U. The upper bound U satisfies

oi + si + (zi + wi)αid ≤ U < oi + si + (zi + wi)(αi + 1)d. (12)

Rearranging Equation (12) yields

(U − oi − si)

(zi + wi)d
− 1 < αi ≤

(U − oi − si)

(zi + wi)d
. (13)

Mathematics 2023, 11, 1752 7 of 12

According to constraints (a) and (b) in the proposed model, we have

n

∑
i=1

αi =

⌈
W

(m + 1)d

⌉
, αi ∈ N+. (14)

Substituting Equation (13) into Equation (14) results in

n

∑
i=1

[
U − oi − si
(zi + wi)d

]
− n <

⌈
W

(m + 1)d

⌉
≤

n

∑
i=1

[
U − oi − si
(zi + wi)d

]
(15)

Rearranging Equation (15), one can obtain the upper and lower bounds of U as follows:
U = 1

n
n
∑

i=1

1
(zi+wi)d

(⌈
W

(m+1)d

⌉
+

n
∑

i=1

oi+si
(zi+wi)d

)
.

U = 1

n
n
∑

i=1

1
(zi+wi)d

(⌈
W

(m+1)d

⌉
+ n +

n
∑

i=1

oi+si
(zi+wi)d

)
.

(16)

A feasible solution to load partitioning scheme A = (α1, α2, . . . , αn) that meets the
constraint in Equation (14) can be obtained via a binary search of U on interval

[
U, U

]
.

Similarly, let Y be an upper bound for the completion time of servers in the last
installment. By searching for the value of Y, one can obtain a feasible solution to load
partitioning scheme B = (β1, β2, . . . , βn). The upper bound Y satisfies

TLend
i (βi) ≤ Y < TLend

i (βi + 1) (17)

where TLend
i (βi) and TLend

i (βi + 1) represent the end times of server pi in the last install-
ment when it has been assigned load fractions βi and βi+1, respectively.

By substituting Equation (7) into Equation (17), we obtain

TLstart
1 + o1 + s1 + (z1 + w1)β1d ≤ Y < TLstart

1 + o1 + s1 + (z1 + w1)(β1 + 1)d. (18)

Rearranging Equation (18) yields

β1 =

⌊
Y− TLstart

1 − o1 − s1

(z1 + w1)d

⌋
(19)

Likewise, by bringing Equations (8) and (9) into Equation (17), we shall arrive at

βi =

Y−max
{

TIend
i,m , TLstart

i−1 + on + znβnd
}
− oi − si

(zi + wi)d

 (20)

According to constraints (a) and (b) in the proposed model, we have

n

∑
i=1

βi =

⌈
W

(m + 1)d

⌉
, βi ∈ N+. (21)

Hence, a feasible solution to load partitioning scheme B = (β1, β2, . . . , βn) that meets
the constraint in Equation (21) can be obtained via a binary search of Y on interval

[
Y, Y

]
=[

TIend
n,m, 2TIend

n,m

]
.

To sum up, via a binary search of U and Y, one can obtain a feasible solution to load
partitioning schemes A and B, respectively, thus solving the proposed model. Algorithm 1
shows the framework of this heuristic algorithm in detail.

Mathematics 2023, 11, 1752 8 of 12

Algorithm 1 A Heuristic Algorithm for Scheduling Coarse-Grained Divisible Loads

Input: W, m, oi, si, wi, zi with i = 1, 2, . . . , n.
Output: A feasible load partitioning scheme A = (α1, α2, . . . , αn) for internal installments and
B = (β1, β2, . . . , βn) for the last installment.
Step 1: Obtain the upper and lower bounds of U by Equation (16);
Step 2: U = (U + U)/2;
Step 3: Obtain load partition A for internal installments by Equation (13);
Step 4: If ∑n

i=1 αi > V, then U = U; else if ∑n
i=1 αi < V, then U = U;

Step 5: If A does not satisfy Equation (14), go to step 2;
Step 6: Y = 2TIend

n,m, Y = TIend
n,m;

Step 7: Y = (Y + Y)/2;
Step 8: Obtain load partition B for the last installment by Equations (19) and (20);
Step 9: If ∑n

i=1 βi > V, then Y = Y; else if ∑n
i=1 βi < V, then Y = Y;

Step 10: If B does not satisfy Equation (21), go to step 7;
Step 11: Return A and B.

Steps 1 to 5 in Algorithm 1 obtain a valid load partitioning scheme for internal in-
stallments via a binary search of U on interval

[
U, U

]
given in Equation (16), while

steps 6 to 10 obtain this for the last installment via a binary search of Y on interval[
Y, Y

]
=
[

TIend
n,m, 2TIend

n,m

]
. The complexity of steps 1, 3, 4, 5, 8 and 9 is O(n),while the

complexity of step 6 is O(nm). Therefore, in the best-case scenario, steps 2 to 5 and steps 7
to 10 only cycle once to find an optimal solution, and the overall time complexity of the
proposed heuristic scheduling algorithm is O(n + nm).

4. Experiments and Result Analysis

We will compare in this section the proposed model and algorithm with an up-to-date
periodic multi-installment scheduling model and algorithm proposed in [30] (abbreviated
as PMIS) under the scenarios of coarse-grained workloads. In the following simulations,
n = 15; that is, there are 15 servers involved in workload computation. The parameters of
the heterogenous networked computing system are given in Table 2.

Table 2. Parameters of the heterogeneous networked computing system.

Servers oi si zi wi

p1 3.66 0.02 0.8 8.63
p2 7.76 5.62 0.20 8.41
p3 7.60 1.61 0.11 17.20
p4 10.18 2.50 0.82 15.37
p5 1.43 1.52 0.63 13.41
p6 7.11 3.57 0.12 16.04
p7 0.67 1.68 0.48 18.35
p8 8.23 3.28 0.61 6.03
p9 1.64 1.73 0.87 6.79
p10 6.18 2.48 0.01 9.58
p11 6.89 1.83 0.75 9.04
p12 2.68 4.57 0.38 14.76
p13 3.79 3.18 0.19 5.69
p14 5.17 4.98 0.56 14.81
p15 8.53 3.95 0.32 5.18

We conduct three sets of experiments. In the first one, the size of workloads and its
granularity are set to be 10,000 and 8, respectively. That is, W = 10000 and d = 8. Addi-
tionally, we round up the number of load partitions obtained by PMIS to meet the coarse
granularity constraints. Figure 2 shows the makespan obtained by the two algorithms with
different numbers of installments varying from 1 to 20.

Mathematics 2023, 11, 1752 9 of 12

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 12

4. Experiments and Result Analysis
We will compare in this section the proposed model and algorithm with an up-to-

date periodic multi-installment scheduling model and algorithm proposed in [30] (abbre-
viated as PMIS) under the scenarios of coarse-grained workloads. In the following simu-
lations, 15n = ; that is, there are 15 servers involved in workload computation. The pa-
rameters of the heterogenous networked computing system are given in Table 2.

Table 2. Parameters of the heterogeneous networked computing system.

Servers io is iz iw
p1 3.66 0.02 0.8 8.63
p2 7.76 5.62 0.20 8.41
p3 7.60 1.61 0.11 17.20
p4 10.18 2.50 0.82 15.37
p5 1.43 1.52 0.63 13.41
p6 7.11 3.57 0.12 16.04
p7 0.67 1.68 0.48 18.35
p8 8.23 3.28 0.61 6.03
p9 1.64 1.73 0.87 6.79
p10 6.18 2.48 0.01 9.58
p11 6.89 1.83 0.75 9.04
p12 2.68 4.57 0.38 14.76
p13 3.79 3.18 0.19 5.69
p14 5.17 4.98 0.56 14.81
p15 8.53 3.95 0.32 5.18

We conduct three sets of experiments. In the first one, the size of workloads and its
granularity are set to be 10,000 and 8, respectively. That is, =10000W and 8d = . Addi-
tionally, we round up the number of load partitions obtained by PMIS to meet the coarse
granularity constraints. Figure 2 shows the makespan obtained by the two algorithms
with different numbers of installments varying from 1 to 20.

Figure 2. Makespan versus the number of installments.

In Figure 2, the X axis denotes different numbers of internal installments, while the
Y axis represents the total makespan. As seen from this figure, the algorithm proposed in
this paper outperforms PMIS in solving coarse-grained divisible-load scheduling prob-
lems as it can obtain a shorter makespan of workloads. Additionally, it is worth mention-
ing that for fine-grained workloads, it has been proved in [30] that the makespan first
decreases and then increases with an increase in the number of installments. However,

17,000

18,000

19,000

20,000

21,000

22,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ak

es
pa

n

Number of internal installments

Proposed PMIS

Figure 2. Makespan versus the number of installments.

In Figure 2, the X axis denotes different numbers of internal installments, while the Y
axis represents the total makespan. As seen from this figure, the algorithm proposed in this
paper outperforms PMIS in solving coarse-grained divisible-load scheduling problems as
it can obtain a shorter makespan of workloads. Additionally, it is worth mentioning that
for fine-grained workloads, it has been proved in [30] that the makespan first decreases
and then increases with an increase in the number of installments. However, one can
observe from Figure 2 that for coarse-grained divisible loads, the relationship between the
makespan and the number of installments no longer follows the above rule.

Next, we compare the proposed algorithm with PMIS for different sizes of workloads
ranging from 9000 to 10,000 with the same granularity, d = 8. Figure 3 shows the makespan
versus the size of workloads. As can be seen from this figure, the proposed algorithm is
superior to the existing algorithm in minimizing the makespan no matter how large the
workload is.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 12

one can observe from Figure 2 that for coarse-grained divisible loads, the relationship be-
tween the makespan and the number of installments no longer follows the above rule.

Next, we compare the proposed algorithm with PMIS for different sizes of workloads
ranging from 9000 to 10,000 with the same granularity, 8d = . Figure 3 shows the
makespan versus the size of workloads. As can be seen from this figure, the proposed
algorithm is superior to the existing algorithm in minimizing the makespan no matter
how large the workload is.

Figure 3. Makespan versus the size of workloads.

Additionally, Figure 4 shows a comparison of the results between the proposed al-
gorithm and PMIS under the same workload size (= 10000W) with various coarse granu-
larities varying from 1 to 20. On the one hand, we can observe from this figure that for
any granularity, the makespan obtained by the proposed algorithm is shorter than that
achieved by PMIS. On the other hand, with an increase in coarse granularity, the
makespan shows an upward trend. This is because the greater the granularity, the higher
the possibility that the gap between adjacent installments of each server turns out to be
large. For fully fine-grained workloads, the gap reaches the minimum; that is, there is no
time gap between any adjacent internal installments. By contrast, for coarse-grained work-
loads, with an increase of granularity, the time gap between internal installments may
become larger, and additionally, the differences in the end times of servers in the last in-
stallment may widen.

Figure 4. Makespan versus coarse granularity.

15,500

16,000

16,500

17,000

17,500

18,000

18,500

9,000 9,100 9,200 9,300 9,400 9,500 9,600 9,700 9,800 9,900 10,000

M
ak

es
pa

n

Size of workloads

Proposed PMIS

17,000
17,200
17,400
17,600
17,800
18,000
18,200
18,400
18,600
18,800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ak

es
pa

n

Coarse granularity

Proposed PMIS

Figure 3. Makespan versus the size of workloads.

Additionally, Figure 4 shows a comparison of the results between the proposed algo-
rithm and PMIS under the same workload size (W = 10000) with various coarse granulari-
ties varying from 1 to 20. On the one hand, we can observe from this figure that for any
granularity, the makespan obtained by the proposed algorithm is shorter than that achieved
by PMIS. On the other hand, with an increase in coarse granularity, the makespan shows
an upward trend. This is because the greater the granularity, the higher the possibility
that the gap between adjacent installments of each server turns out to be large. For fully

Mathematics 2023, 11, 1752 10 of 12

fine-grained workloads, the gap reaches the minimum; that is, there is no time gap between
any adjacent internal installments. By contrast, for coarse-grained workloads, with an
increase of granularity, the time gap between internal installments may become larger, and
additionally, the differences in the end times of servers in the last installment may widen.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 12

one can observe from Figure 2 that for coarse-grained divisible loads, the relationship be-
tween the makespan and the number of installments no longer follows the above rule.

Next, we compare the proposed algorithm with PMIS for different sizes of workloads
ranging from 9000 to 10,000 with the same granularity, 8d = . Figure 3 shows the
makespan versus the size of workloads. As can be seen from this figure, the proposed
algorithm is superior to the existing algorithm in minimizing the makespan no matter
how large the workload is.

Figure 3. Makespan versus the size of workloads.

Additionally, Figure 4 shows a comparison of the results between the proposed al-
gorithm and PMIS under the same workload size (= 10000W) with various coarse granu-
larities varying from 1 to 20. On the one hand, we can observe from this figure that for
any granularity, the makespan obtained by the proposed algorithm is shorter than that
achieved by PMIS. On the other hand, with an increase in coarse granularity, the
makespan shows an upward trend. This is because the greater the granularity, the higher
the possibility that the gap between adjacent installments of each server turns out to be
large. For fully fine-grained workloads, the gap reaches the minimum; that is, there is no
time gap between any adjacent internal installments. By contrast, for coarse-grained work-
loads, with an increase of granularity, the time gap between internal installments may
become larger, and additionally, the differences in the end times of servers in the last in-
stallment may widen.

Figure 4. Makespan versus coarse granularity.

15,500

16,000

16,500

17,000

17,500

18,000

18,500

9,000 9,100 9,200 9,300 9,400 9,500 9,600 9,700 9,800 9,900 10,000

M
ak

es
pa

n

Size of workloads

Proposed PMIS

17,000
17,200
17,400
17,600
17,800
18,000
18,200
18,400
18,600
18,800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ak

es
pa

n

Coarse granularity

Proposed PMIS

Figure 4. Makespan versus coarse granularity.

5. Conclusions

In this paper, we first described a normalized mathematical description of the coarse-
grained divisible-load scheduling problem under heterogeneous networked computing
systems. To solve this problem, we established a new multi-installment scheduling model
with the objective of achieving a minimized makespan of workloads. The scheduling
process comprises two distinct parts: multiple internal installments and the last installment.
Taking full advantage of coarse granularity, we obtained valid variation ranges for the
upper bounds of the completion time of servers in each internal installment and the last
installment through strict mathematical derivation. Through a binary search, a feasible
load partitioning scheme could be found efficiently. Finally, simulation results show that
the proposed algorithm is superior to the existing scheduling algorithm in obtaining a
shorter makespan when dealing with coarse-grained workloads under various conditions.
Extensions of this work could consider two aspects. The first is how to find an optimal
number of installments for coarse-grained workloads, and the second is how to accelerate
the convergence speed of the proposed heuristic algorithm. These are expected to be
open-ended problems at this juncture.

Author Contributions: Conceptualization, X.W. and B.V.; methodology, X.W. and B.V.; software,
K.W.; data curation, X.S.; writing—original draft preparation, X.W. and K.W.; writing—review and
editing, B.V.; funding acquisition, X.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
U22A2098, No. 62172457, No. 62272367), the Key Research and Development Program of Shaanxi
Province (No. 2022ZDLGY01-06 and No. 2022ZDLGY01-01) and the Key Laboratory of Cognitive
Radio and Information Processing, Ministry of Education, Guilin University of Electronic Technology
(CRKL220206).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2023, 11, 1752 11 of 12

References
1. IMARC Group. Big Data Software Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022–2027.

2021. Available online: https://www.imarcgroup.com/big-data-software-market (accessed on 20 February 2023).
2. Yang, C.; Fei, W.; Robertazzi, T. Integrating Amdahl-like Laws and Divisible Load Theory. Parallel Process Lett. 2021, 31, 2150008.
3. Ghanbari, S.; Othman, M.; Bakar, M.R.A.; Leong, W.J. Multi-objective method for divisible load scheduling in multi-level tree

network. Future Gener. Comput. Syst. 2015, 54, 132–143. [CrossRef]
4. Carroll, T.E.; Grosu, D. A Strategyproof Mechanism for Scheduling Divisible Loads in Bus Networks without Control Processors.

In Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium, Rhodes Island, Greece, 25–29 April
2006; pp. 1–8.

5. Chen, C.Y. Divisible Nonlinear Load Distribution on Complete b-Ary Trees. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 998–1013.
[CrossRef]

6. Zhang, Z.; Robertazzi, T.G. Scheduling Divisible Loads in Gaussian, Mesh and Torus Network of Servers. IEEE Trans. Comput.
2015, 64, 3249–3264. [CrossRef]

7. Wu, Z.; Sun, J.; Zhang, Y.; Zhu, Y.; Li, J.; Plaza, A.; Benediktsson, J.A.; Wei, Z. Scheduling-Guided Automatic Processing of Massive
Hyperspectral Image Classification on Cloud Computing Architectures. IEEE Trans. Cybern. 2020, 51, 588–3601. [CrossRef]

8. Chen, W.; Zhu, Y.; Liu, J.; Chen, Y. Enhancing Mobile Edge Computing with Efficient Load Balancing Using Load Estimation in
Ultra-Dense Network. Sensors 2021, 21, 3135. [CrossRef]

9. Bharadwaj, V.; Li, X.; Chi, C.K. Design and analysis of load distribution strategies with start-up costs in scheduling divisible loads
on distributed networks. Math. Comput. Model. 2000, 32, 901–932. [CrossRef]

10. Berlińska, J.; Drozdowski, M. Heuristics for multi-round divisible loads scheduling with limited memory. Parallel Comput. 2010,
36, 199–211. [CrossRef]

11. Fei, W.; Yang, C.; Robertazzi, T. Optimal Divisible Load Scheduling for Resource-Sharing Network. arXiv 2019, arXiv:1902.01898.
12. Marszalkowski, J.; Drozdowski, M.; Singh, G. Time-energy trade-offs in processing divisible loads on heterogeneous hierarchical

memory systems. J. Parallel Distrib. Comput. 2020, 144, 206–219. [CrossRef]
13. Ghanbari, S.; Othman, M. Time Cheating in Divisible Load Scheduling: Sensitivity Analysis, Results and Open Problems. Procedia

Comput. Sci. 2018, 125, 935–943. [CrossRef]
14. Hu, M.; Veeravalli, B. Requirement-Aware Strategies with Arbitrary Processor Release Times for Scheduling Multiple Divisible

Loads. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 1697–1704. [CrossRef]
15. Kang, S.; Veeravalli, B.; Aung, K. Dynamic scheduling strategy with efficient node availability prediction for handling divisible

loads in multi-cloud systems. J. Parallel Distrib. Comput. 2018, 113, 1–16. [CrossRef]
16. Veeravalli, B.; Barlas, G. Scheduling Divisible Loads with Processor Release Times and Finite Size Buffer Capacity Constraints in

Bus Networks. Cluster Comput. 2003, 6, 63–74.
17. Tong, W.; Xiao, S.; Li, H. Fault-Tolerant Scheduling Algorithm with Re-allocation for Divisible Loads on Homogeneous Distributed

System. IAENG Int. J. Comput. Sci. 2018, 45, 450–457.
18. Li, P.; Veeravalli, B.; Kassim, A. Design and implementation of parallel video encoding strategies using divisible load analysis.

IEEE Trans. Circuits Syst. Video Technol. 2005, 15, 1098–1112.
19. Aali, S.N.; Bagherzadeh, N. Divisible load scheduling of image processing applications on the heterogeneous star and tree

networks using a new genetic algorithm. Concurr. Comput. 2020, 10, 1–15.
20. Ying, Z.; Robertazzi, T.G. Signature Searching in a Networked Collection of Files. IEEE Trans. Parallel Distrib. Syst. 2014, 25,

1339–1348. [CrossRef]
21. Zhang, J.; Shi, L.; Liu, Y.; Robertazzi, T.G. Optimizing Data Intensive Flows for Networks on Chips. Parallel Process. Lett. 2021, 31,

2150013. [CrossRef]
22. Yu, H.; Ha, Y.; Veeravalli, B.; Chen, F.; El-Sayed, H. DVFS-Based Quality Maximization for Adaptive Applications with

Diminishing Return. IEEE Trans. Comput. 2020, 70, 803–816. [CrossRef]
23. Tan, X.; Golikov, P.; Vijaykumar, N.; Pekhimenko, G. GPUPool: A Holistic Approach to Fine-Grained GPU Sharing in the Cloud.

In Proceedings of the 31st International Conference on Parallel Architectures and Compilation Techniques, Chicago, IL, USA,
8–12 October 2022; pp. 317–332.

24. Li, Y.; Wen, M.; Fei, J.; Shen, J.; Cao, Y. A Fine-Grained Modeling Approach for Systolic Array-Based Accelerator. Electronics 2022,
11, 2928. [CrossRef]

25. Souri, A.; Zhao, Y.; Gao, M.; Mohammadian, A.; Shen, J.; Al-Masri, E. A Trust-Aware and Authentication-Based Collaborative
Method for Resource Management of Cloud-Edge Computing in Social Internet of Things. IEEE Trans. Comput. Soc. Syst. 2023,
early access. [CrossRef]

26. Choudhary, A.; Govil, M.; Singh, G.; Awasthi, L.; Pilli, E. Energy-aware scientific workflow scheduling in cloud environment.
Cluster Comput. 2022, 25, 3845–3874. [CrossRef]

27. Birjali, M.; Kasri, M.; Beni-Hssane, A. A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowl.
Based Syst. 2021, 226, 107134. [CrossRef]

28. Sharma, S.; Guleria, K. Deep learning models for image classification: Comparison and applications. In Proceedings of the IEEE
International Conference on Advance Computing and Innovative Technologies in Engineering, Greater Noida, India, 28–29 April
2022; pp. 1733–1738.

https://www.imarcgroup.com/big-data-software-market
http://doi.org/10.1016/j.future.2015.03.015
http://doi.org/10.1109/TAES.2019.2923300
http://doi.org/10.1109/TC.2015.2389843
http://doi.org/10.1109/TCYB.2020.3026673
http://doi.org/10.3390/s21093135
http://doi.org/10.1016/S0895-7177(00)00179-5
http://doi.org/10.1016/j.parco.2010.02.004
http://doi.org/10.1016/j.jpdc.2020.05.015
http://doi.org/10.1016/j.procs.2017.12.119
http://doi.org/10.1109/TPDS.2011.31
http://doi.org/10.1016/j.jpdc.2017.10.006
http://doi.org/10.1109/TPDS.2013.258
http://doi.org/10.1142/S0129626421500134
http://doi.org/10.1109/TC.2020.2997242
http://doi.org/10.3390/electronics11182928
http://doi.org/10.1109/TCSS.2023.3241020
http://doi.org/10.1007/s10586-022-03613-3
http://doi.org/10.1016/j.knosys.2021.107134

Mathematics 2023, 11, 1752 12 of 12

29. Wang, X.; Veeravalli, B.; Song, J. Multi-Installment Scheduling for Large-Scale Workload Computation with Result Retrieval.
Neurocomputing 2021, 458, 579–591. [CrossRef]

30. Wang, X.; Veeravalli, B. Performance Characterization on Handling Large-Scale Partitionable Workloads on Heterogeneous
Networked Compute Platforms. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 2925–2938. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.neucom.2020.03.124
http://doi.org/10.1109/TPDS.2017.2693149

	Introduction
	Coarse-Grained Divisible-Load Scheduling Model
	Heuristic Scheduling Algorithm
	Experiments and Result Analysis
	Conclusions
	References

