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Abstract: The construction of information granules is a significant and interesting topic of Granular
Computing (GrC) in which information granules play a vital role in representing and describing data,
and it has become one of the most effective frameworks for solving complex problems. In this study,
we are interested in the collaborative impacts of several different characteristics on constructing
information granules, and a novel synergistic mechanism of the principle of justifiable granularity is
utilized in developing information granules. The synergistic mechanism is finalized with a two-phase
process—to start with, the principle of justifiable granularity and Fuzzy C-Means Clustering method
are combined to develop a collection of information granules. First, the available experimental data is
transformed (normalized) into fuzzy sets following the standard Fuzzy C-Means Clustering method.
Then, information granules are developed based on the elements located in different clusters with
the use of the principle of justifiable granularity. In the sequel, the positions of information granules
are updated by considering the collaborative impacts of the other information granules with the
parameters of specifying the level of influence. Experimental studies are conducted to illustrate the
nature and feasibility of the proposed framework based on the synthetic data as well as a series of
publicly available datasets coming from KEEL machine learning repositories.

Keywords: information granules; the principle of justifiable granularity; synergistic mechanism;
collaborative construction

MSC: 68T37

1. Introduction

As a new interdisciplinary research field, Granular Computing (GrC) [1] plays a vital
role in data mining by generalizing different forms of information granules. The concept
of granular computing achieves rapid development as a human-centric data processing
pattern that mainly concentrates on information granules and the processing of information
granules. Information granules [2,3] are a collection of general and abstract entities that
converge based on their indistinguishability, compactness, functionality, or similarity. As is
commonly recognized, information granules can be expressed in several different forms,
such as sets and intervals, fuzzy sets [1], rough sets [4], shadowed sets [5], probabilistic
sets [6], and so on. The development of information granules has occupied a key position
in describing data in the framework of granular computing.

The construction of information granules in different formalisms has attracted much
attention in describing and representing data [7–11]. Since the theory of fuzzy sets pro-
posed by L. A. Zadeh [12], it has become a generalized form to represent information and
knowledge. To be more specific, fuzzy sets show a strong capacity for dealing with infor-
mation with fuzziness and uncertainty. For example, Zhang et al. [13] present an original
design of interval type-2 information granules based on a collection of type-1 fuzzy sets
by engaging the principle of justifiable granularity, where an information granule is gener-
ated by maximizing the product of two generic characteristics of coverage and specificity.
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Based on the correlation among features, an improved version of a top-down granulation
model is offered by incorporating the principal component analysis [14]. Ouyang et al. [15]
design a model for rule formation based on the information sub-granules, which are
constructed by combining the Fuzzy C-Means and Density-Based Spatial Clustering of
Applications with Noise (DBSCAN). At the same time, many scholars have also proposed
targeted methods to build information granules in both the input and output spaces. For
instance, Lu et al. [16,17] realize the formation of input hyper-box information granules
by implementing the hyper-box iteration granulation algorithm governed by information
granularity on the input space. Shan et al. [18] present the concept of interval granular
fuzzy models. Jing et al. [19] associate information granules and propose an approach to
construct granular models directly based on information granules expressed both in input
and output spaces. In addition, considering the distribution of the data sets, information
granules of higher order or information granules of higher type are developed [20,21],
which achieve better performance to some extent.

Many scholars focus their attention on developing ways of constructing information
granules. The principle of justifiable granularity is regarded as a general method to design a
single information granule based on the available experimental evidence [22–24]. While the
typical clustering algorithms, for instance, Fuzzy C-Means Clustering (FCM), are utilized
to construct a series of information granules with respect to different features of the entire
data space [25]. To achieve satisfactory results for the construction process, the principle
of justifiable granularity and the FCM algorithm are commonly utilized in a collaborative
manner—FCM is applied to cluster the data, and the principle of justifiable granularity
is used to construct an information granule based on the elements in different clusters.
Several related works focus on developing augmented frameworks for granular models,
such as fuzzy classifiers [26,27] and fuzzy rule-based models [28–30]. Various variant
fuzzy rule-based models have also been studied and implemented in various fields. For
example, the model based on Mamdani and Larsen fuzzy inference is used to select the color
constancy algorithm for dark image enhancement [31], and the Zadeh dominated fuzzy
rule composition algorithm is used to solve the positioning problem in iris recognition [32].
The combination of the Mamdani model and hierarchical clustering is utilized to predict
fault severity in industrial manufacturing [33]. At the same time, the granular models have
been widely used in various fields, such as quantifying the quality of numerical models [34],
data fusion [35], transferring knowledge [36], facial semantic description [37], time series
prediction [38], long-term prediction [39], controlling complex nonlinear systems [40],
anomaly detection [41], implementing missing data interpolation [42], and conformance
checking techniques [43], attacks detection [44–46], image classification [47], and some
other practical complex problems [48,49], and achieving quite good results.

As one of the most important ways of developing information granules, the principle
of justifiable granularity processes with the optimization of the upper and lower bounds
by achieving a compromise of two conflicting criteria, i.e., coverage and specificity, which
consider both the completeness as well as the accuracy in expressing the experimental
evidence. However, there is an emerging challenge: with the data scale and the diversity
of the feature space increasing, the complexity of data processing becomes more difficult.
A more special situation arises when the interaction among the features in different data
spaces or different features in the same data space will directly influence the locations of
information granules. In other words, the information granules of the same data space or
different data spaces will be influenced by each other.

The purpose of this paper is to focus on the collaborative development of information
granules with the use of the principle of justifiable granularity, which fully takes into
consideration that the information granules in the data space will impact the position of
a selected information granule. Compared to the traditional ways of developing infor-
mation granules, the proposed method, named synergistic mechanism of the principle of
justifiable granularity, takes all the features as a whole, and the construction process of a
selected information granule is realized by considering the impacts of other features with
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the parameters of specifying the levels of influence. First, the feature space is clustered
following the basic Fuzzy C-Means Clustering, and information granules are decided based
on the elements positioned in different clusters, respectively. Second, the locations of the
information granules are updated by including the impacts of other information granules
in determining the coverage criterion. Finally, the optimal positions of the information
granules in the feature space are decided using the principle of justifiable granularity, and
the overall performance of the synergistic mechanism is evaluated with the AUC values.

The study is structured as follows: Section 2 introduces the basic ideas of the theory
and development of fuzzy sets with the use of the principle of justifiable granularity. In
Section 3, the synergistic mechanism of the principle of justifiable granularity in building
different information granules is illustrated in detail. Experimental studies are carried out
in Section 4 to verify the feasibility of the proposed mechanism, in which synthetic data
and a series of publicly available machine learning data sets are applied in the experiments.
Section 5 presents the conclusions and future directions.

2. Construction of Fuzzy Sets with the Use of the Principle of Justifiable Granularity

In real-world systems, we usually encounter objects whose belongingness to a given
category is neither full belongingness nor full exclusion. For instance, considering the
height of an adult male person, we qualify a person as being tall if they have a height of
1.9 m, whereas we consider a person to be short if they have a height of 1 m. Usually, we
cannot distinguish a difference of 0.1 m in height, so we may qualify a person with a height
of 1.89 m as being tall. However, questions come with that: how do we qualify a person of
1.7 m as being tall or short? What are the height range values to qualify a person as being
tall? It is obvious that no single number can be given to qualify a person as tall or short.
Fuzzy sets provide an idea to deal with cases where an object of the universe is compatible
with a class by membership values. Conceptually, a fuzzy set A [12] is described by a
membership function, which maps the elements of a universe X to the unit interval [0, 1].

A : X → [0, 1], (1)

where [0, 1] means real numbers between 0 and 1 (including 0 and 1).
The α-cut of a fuzzy set A, denoted by Aα, is a set which consists of the elements of

the universe whose membership values are equal to or larger than a certain value α, where
α ∈ [0, 1] [44]. It is expressed by the following equality:

Aα = {x ∈ X|A(x) ≥ α}. (2)

An illustration of the concept of the α-cut is presented in Figure 1b.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 21 
 

 

justifiable granularity, takes all the features as a whole, and the construction process of a 
selected information granule is realized by considering the impacts of other features with 
the parameters of specifying the levels of influence. First, the feature space is clustered 
following the basic Fuzzy C-Means Clustering, and information granules are decided 
based on the elements positioned in different clusters, respectively. Second, the locations 
of the information granules are updated by including the impacts of other information 
granules in determining the coverage criterion. Finally, the optimal positions of the infor-
mation granules in the feature space are decided using the principle of justifiable granu-
larity, and the overall performance of the synergistic mechanism is evaluated with the 
AUC values. 

The study is structured as follows: Section 2 introduces the basic ideas of the theory 
and development of fuzzy sets with the use of the principle of justifiable granularity. In 
Section 3, the synergistic mechanism of the principle of justifiable granularity in building 
different information granules is illustrated in detail. Experimental studies are carried out 
in Section 4 to verify the feasibility of the proposed mechanism, in which synthetic data 
and a series of publicly available machine learning data sets are applied in the experi-
ments. Section 5 presents the conclusions and future directions. 

2. Construction of Fuzzy Sets with the Use of the Principle of Justifiable Granularity 
In real-world systems, we usually encounter objects whose belongingness to a given 

category is neither full belongingness nor full exclusion. For instance, considering the 
height of an adult male person, we qualify a person as being tall if they have a height of 
1.9 m, whereas we consider a person to be short if they have a height of 1 m. Usually, we 
cannot distinguish a difference of 0.1 m in height, so we may qualify a person with a height 
of 1.89 m as being tall. However, questions come with that: how do we qualify a person 
of 1.7 m as being tall or short? What are the height range values to qualify a person as 
being tall? It is obvious that no single number can be given to qualify a person as tall or 
short. Fuzzy sets provide an idea to deal with cases where an object of the universe is 
compatible with a class by membership values. Conceptually, a fuzzy set A [12] is de-
scribed by a membership function, which maps the elements of a universe X to the unit 
interval [0, 1]. 

[ ]10 ,X:A → , (1)

where [0, 1] means real numbers between 0 and 1 (including 0 and 1). 
The α-cut of a fuzzy set A, denoted by Aα, is a set which consists of the elements of 

the universe whose membership values are equal to or larger than a certain value α, where 
α∈ [0, 1] [44]. It is expressed by the following equality: 

( ){ }αα ≥∈= xAXxA . (2)

An illustration of the concept of the α-cut is presented in Figure 1b. 

  

(a) (b) 

Figure 1. Membership function of a fuzzy set (a) and α-cut of a fuzzy set (b). Figure 1. Membership function of a fuzzy set (a) and α-cut of a fuzzy set (b).

Considering the formation of information granules in the form of fuzzy sets with a
finite support [a, b]. Any fuzzy set can be described by a certain unimodal membership
function of some parametric form (g, f ) with g(a) = 0, g(m) = f (m) = 1, and f (b) = 0, where g
is a non-decreasing function and f is a non-increasing function, as shown in Figure 1a.
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The principle of justifiable granularity provides a general idea of how to construct
a single information granule by achieving a sound compromise between two essential
requirements: coverage and specificity. It is intuitively apparent that the two requirements
are in conflict, as follows:

• Coverage (cov) implies the ability of the information granule to reflect the experimental
data. In other words, it is anticipated that the information granule will “cover” more
experimental data. For instance, if an information granule is an interval, then the
more data included in the bounds of the interval, the better. In the case of fuzzy sets,
we expect that the sum value of the membership grades of the data included in the
bounds of the information granule will be as high as possible. However, it is required
that the information granule be specific enough.

• The specificity (sp) criterion concerns the semantic meaning of the information gran-
ules. This requires the information granules to be highly detailed (more specific), so
we expect a smaller information granule.

The principle of justifiable granularity aims at the optimization of the fuzzy sets by
independently adjusting the lower and upper bounds a and b, respectively. The modal
value of m is taken as a numeric representative of xk, say their mean or median. Let us
consider a one-dimensional data set {xk}, k = 1, 2, . . . , N. The optimization criterion Q
involves two conflicting requirements: coverage and specificity, denoted by cov and sp,
respectively. Assuming the following form of Q:

Q = cov ∗ sp. (3)

Considering the elements positioned on the right side of m, i.e., [m, b], the coverage
and specificity are defined in the usual way:

cov = card{xk|xk ∈ [m, b]}, (4)

sp = 1− |b−m|
|xmax −m| . (5)

As for the elements positioned in [a, m], we have the two criteria and optimize the
lower bound a in a similar manner:

cov = card{xk|xk ∈ [a, m]}, (6)

sp = 1− |m− a|
|m− xmin|

. (7)

The generalized version of the problem arises when the data are weighted, i.e., we
have (xk, wk), k = 1, 2, . . . , N. Then the coverage is modified in the following way:

cov = ∑
k:xk∈[m,b]

min(A(xk), wk), (8)

cov = ∑
k:xk∈[a,m]

min(A(xk), wk). (9)

The specificity remains the same as the formulas presented in the previous case.
The maximization of Q leads to the optimal value of the upper bound of the fuzzy set

A, say as follows:
bopt = arg MaxbQ(b). (10)

The optimal value of the lower bound of the fuzzy set A is obtained in an analogous
way:

aopt = arg MaxaQ(a). (11)
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3. Synergistic Mechanism of the Principle of Justifiable Granularity

We are interested in forming information granules for individual variables in the case
of multivariable data, such as pairs of data (xk, yk), k = 1, 2, . . . , N, by invoking a certain
mechanism of synergy in their formation. Considering a collection of one-dimensional
weighted data (xk, wk) and (yk, vk), the same construction as above is realized for both the
two data sets. As a result, we produce fuzzy sets A with the bounds a and b and modal
value m for {xk}, as well as fuzzy sets B with the bounds c and d and modal value n for {yk}.
The coverage and specificity expressions are analogous to the ones presented above.

As xk and yk are related, it is anticipated that A and B are related, and they could
be constructed together in some synergistic way. To accomplish that, we consider that
xk and yk are “weighted” by the membership grades of the other fuzzy set. This means
that the determination of A is influenced by the membership grades of B and vice versa.
Considering the way in which we are proceeding with the formation of A and B, we are
referring to their formation as being synergistic.

In a nutshell, in the construction of A, we are using the weight of xk resulting from B, say
B(yk). More generally, let us consider a certain function F for B(yk), say F(B(yk)). Likewise, in
the construction of B, we weight the data yk by the membership grades of A, say F(A(xk)).

The first step is the formation of fuzzy sets A for xk and B for yk individually. It can be
processed using the principle of justifiable granularity. In what follows, we can optimize A
by taking into account the membership grades of B as well as optimize B by taking into
account the membership grades of A. We have the weighted average value to serve as the
numeric representative of xk, and it is presented as follows:

m =

N
∑

k=1
xkB(yk)

N
∑

k=1
B(yk)

, (12)

For yk:

n =

N
∑

k=1
yk A(xk)

N
∑

k=1
A(xk)

. (13)

In terms of the optimized criterion Q used for the construction of fuzzy set A, we have
the expression as follows:

Q = cov ∗ sp. (14)

For the upper bound b, the coverage is expressed as follows:

cov = ∑
k:xk∈[m,b]

A(xk)Bα1(yk), (15)

where α1 ∈ [0, 1] indicates the parameter for specifying the impact of fuzzy set B on the
determination of fuzzy set A. It should be noticed that when α1 = 0, the impact of fuzzy set
B should be ignored, and the synergistic mechanism is the same as the traditional principle
of justifiable granularity.

Additionally, the specificity is expressed as the same as in Equation (5).
As for the construction of fuzzy set B, we have analogous expressions.
Similarly, for the upper bound d, the coverage is expressed as follows:

cov = ∑
k:yk∈[n,d]

B(yk)Aβ1(xk), (16)

where β1 ∈ [0, 1] implies the parameter of specifying the impact of fuzzy set A on the
determination of fuzzy set B. Moreover, when β1 = 0, there is no impact of fuzzy set A
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on the construction of fuzzy set B. The synergistic mechanism performs as well as the
traditional principle of justifiable granularity.

In Algorithm 1, we present the synergistic mechanism of constructing information
granules with the use of the principle of justifiable granularity.

Algorithm 1: Synergistic mechanism of the principle of justifiable granularity

Input: Two-dimensional data set in pairs (xk, yk), k = 1, 2, . . . , N; number of clusters c; fuzzy
coefficient m = 2.0; impact factor α1, β1, iteration of the optimization process epoch;
Output: Optimized information granules A and B
1: Initialize the position of information granules A and B following standard FCM
2: Select the prototypes vi and wi, i = 1, 2, . . . , c, as the numeric representative of the principle of
justifiable granularity
3: while iter = 1, 2, . . . , epoch do
4: update the position of information granules A and B
5: cov = ∑

k:xk∈[m,b]
A(xk)Bα1 (yk)

6: sp = 1− |b−m|
|xmax−m|

7: Q = cov ∗ sp
8: end while
9: bopt = arg MaxbQ(b)

As an extension, let us consider a more complex situation when another data space
{zk}, k = 1, 2, . . . , N is included and it results in a fuzzy set C that further influences the
construction of fuzzy sets A and B. To determine the optimal bounds of C, the numeric
representative w is taken as the weighted mean value of {zk}, and the upper and lower
bounds are f and e, respectively, which are decided following the pattern of the principle of
justifiable granularity.

In this case, the coverage for constructing fuzzy set A is expressed as follows:

cov = ∑
k:xk∈[m,b]

A(xk)Bα1(yk) Cα2(zk), (17)

where α1, α2 ∈ [0, 1] imply the impacts of fuzzy sets B and C on the design of fuzzy set A,
respectively. When α1, α2 = 0, there is no impact from fuzzy sets B and C, and it performs
the same as the principle of justifiable granularity.

To generalize a comprehensive construction process, the development of fuzzy sets B
and C can be expressed as follows:

For the upper bound, the coverage for B is expressed as follows:

cov = ∑
k:yk∈[n,d]

B(yk)Aβ1(xk)Cβ2(zk), (18)

where β1, β2 ∈ [0, 1] means the influence of A and C on the design of fuzzy set B. To be
specific, the impacts of fuzzy sets A and C are not considered in the construction process.

The coverage for C is described as follows:

cov = ∑
k:zk∈[w, f ]

C(zk)Aγ1(xk)Bγ2(yk), (19)

where γ1, γ2 ∈ [0, 1] means the influence of A and B on the design of fuzzy set C.
The general idea about the collaborative development of fuzzy sets A, B, and C is

illustrated in Figure 2.
As shown in Figure 2a, two information granules (A and B) are developed in the

proposed synergistic manner. To be more specific, the construction of A is influenced by the
information granule B with a factor of α1, whereas the construction of B is influenced by
the information granule A with a factor of β1. Considering the collaborative construction
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for three information granules A, B, and C, as presented in Figure 2b, the construction of
A is influenced by the information granules B and C with factors α1 and α2, respectively,
while B are developed with the influence of A and C (with factors β1 and β2) and C are
developed with the influence of A and B (with factors γ1 and γ2). It should be noticed that
when a certain factor equals 0, for instance, when we have α1 = 0 in Figure 2a, then fuzzy
set B has no influence on the construction of A. In Figure 2b, when α1 = 0, it indicates that
there is no influence of B on the construction of A; moreover, when α1 = α2 = 0, there is no
impact of B and C on A.
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4. Experimental Studies

In this section, a series of experiments are presented to qualify the performance of
the synergistic mechanism of the principle of justifiable granularity. The experiments are
conducted on a computer with an AMD 6-core r5-3600 4.2 GHZ CPU. NVIDIA GeForce
RTX 3060Ti 8 GB, and DDR4 16 GB memory. Python, MATLAB, and several data analysis
tools, including NumPy, Pandas, Matplotlib, etc., are used to complete the verification
experiments.

4.1. Synthetic Data Set

To start with the examples based on the synthetic data, let us consider a group of three
two-dimensional Gaussian distributed data sets {xk, yk}, k = 1, 2, . . . , N, where N = 300. The
mean vectors m and the covariance matrix δ are summarized as follows:

Group 1 : m = [2, 3], δ =

[
2 0
0 0.5

]
, N1 = 100,

Group2 : m = [−2,−3], δ =

[
1 0
0 1

]
, N2 = 100,

Group3 : m = [1,−1], δ =

[
1 0
0 0.5

]
, N3 = 100.

The plot of the data set is presented in Figure 3.
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As the most commonly used ways of developing information granules, the principle
of justifiable granularity and FCM usually perform in a cooperative manner. First, FCM
is utilized to generate several information granules by conducting the typical clustering
process; then, the principle of justifiable granularity is applied to design a single information
granule based on the available experimental evidence located in different clusters. To be
specific, to develop a collection of information granules for the synergistic data, the data
set is normalized following the basic Fuzzy C-Means Clustering method, the prototypes pj,
j = 1, 2, . . . , c, and the membership grades uij are updated as follows iteratively:

pj =

N
∑

i=1
um

ij ∗ xi

N
∑

i=1
um

ij

, (20)

uij =
1

c
∑

k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

, (21)

where m means the fuzziness coefficient, and usually m = 2.0.
As shown in Figure 4, the data set is clustered into three clusters following the FCM

method with an iteration of 20.
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Figure 4. Results of fuzzy clustering.

In the sequel, the membership grades are used for the collaborative design of infor-
mation granules with the proposed synergistic mechanism of the principle of justifiable
granularity in the two-dimensional data space. Let us consider different values of the
parameters α1 and α2; the positions of the information granules are illustrated as shown in
Figure 5. Here α1 and α2 are both unified influence parameters, that is, when one of the
fuzzy sets is constructed, the other two fuzzy sets have an influence on the constructed
fuzzy set. For example, when building fuzzy set 0, the influence parameters of fuzzy set 1
and fuzzy set 2 are α1 and α2. When building fuzzy set 1, α1 is the influence of fuzzy set 0
on fuzzy set 1, and α2 is the influence of fuzzy set 2 on fuzzy set 0. Similarly, when building
fuzzy set 2, α1 is the influence of fuzzy set 0 on fuzzy set 2, and α2 is the influence of fuzzy
set 1 on fuzzy set 2. With different values of α1 and α2, the corresponding fuzzy sets have
different degrees of influence on the constructed fuzzy sets.

As shown in Figure 5, it is evident that with the increase of the impact parameters α1,
and α2 of the synergistic mechanism, the location of the constructed information granule
becomes closer to the corresponding information granules. Take the 0th cluster (marked
as the N colored blue) as an example; it can be seen that with the increasing values of α1
(which specifies the impact of the 1th cluster, marked as the • colored red), the location
of information granule 0 will become closer to the 1th cluster. In a similar manner, with
the increasing values of α2 (which specifies the impact of the 2th cluster, marked as the
F colored yellow), the location of information granule 0 will become closer to the 2th
cluster. This situation is also applicable to the construction of information granules 1 and
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2. It should be noted that when α1 = α2 = 0, it indicates that the information granules are
constructed without the impact of the other information granules; in other words, when
α1 = α2 = 0, it is a special case that the synergistic mechanism performs the same as the
traditional pattern of the principle of justifiable granularity.
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Figure 5. Information granules constructed in a collaborative pattern with different values of param-
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To evaluate the performance of the information granules, we present the curves by
plotting the coverage-specificity (cov-sp) values for obtaining the upper bounds with a
pair of selected parameters when α1 = α2 = 0.5 (which is correlated to the results shown in
Figure 5d). As shown in Figure 6.
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As shown in Figure 6, regardless of the dimensionality for each cluster of the data
set, it is obvious that with the increase of the cov, the values of sp keep decreasing, which
shows the same performance of the construction of information granules with the use of
the principle of justifiable granularity.

Moreover, the positions of different information granules as well as the AUC val-
ues, which specify the overall performance of the proposed synergistic mechanism by
calculating the areas of cov-sp curves, x- and y-ordinates, are summarized in Table 1.

From the results presented in Table 1, the AUC values obtained for both dimensions
of the upper and lower bounds show good performance with a collection of reasonable
values that are greater than 0.6. Furthermore, the ranges determined with the constructed
information granules can cover most of the elements in the data set.

When changing the values of α1 and α2 the upper and lower bounds of the information
granules also change. Here we take cluster 0 in the 1st dimension as an example, and the
results are recorded in Table 2.
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Table 1. The summary of the AUC values and bounds of different information granules.

Dimensions
Upper/Lower

Bounds

0th Cluster (Marked as NNN
Colored Blue)

1st Cluster (Marked as
• Colored Red)

2nd Cluster (Marked as FFF
Colored Yellow)

AUC Values of a/b AUC Values of a/b AUC Values of a/b

1st dimension
upper bound b 0.703 4.342 0.755 0.802 0.742 3.292
lower bound a 0.695 −1.300 0.704 −3.632 0.732 −1.349

2nd dimension
upper bound b 0.720 3.691 0.682 −0.366 0.654 0.272
lower bound a 0.703 1.352 0.627 −4.162 0.762 −2.610

Table 2. Summary of the bounds of information granules and AUC values for different values of α1

and α2.

Values of Parameters
α1 And α2

Bounds of Information
Granule [a, b]

Values of AUC

Upper Bound Lower Bound

α1 = 0, α2 = 0 [0.072, 3.597] 0.790 0.823
α1 = 0.1, α2 = 0.1 [−0.133, 4.037] 0.765 0.795
α1 = 0.1, α2 = 0.5 [−0.476, 4.272] 0.733 0.767
α1 = 0.1, α2 = 0.8 [−0.833, 4.272] 0.726 0.756
α1 = 0.5, α2 = 0.1 [−1.300, 4.272] 0.720 0.704
α1 = 0.5, α2 = 0.5 [−1.300, 4.342] 0.703 0.695
α1 = 0.5, α2 = 0.8 [−1.300, 4.342] 0.707 0.695
α1 = 0.8, α2 = 0.1 [−1.300, 4.342] 0.692 0.627
α1 = 0.8, α2 = 0.5 [−1.300, 4.382] 0.686 0.634
α1 = 0.8, α2 = 0.8 [−1.300, 4.342] 0.696 0.645
α1 = 1.0, α2 = 1.0 [−1.351, 4.342] 0.704 0.622

In Table 2, the results show that with the use of the proposed synergistic mechanism,
the positions of the 1st dimension (x-coordinate) of the 0th information granule are changing
with different values of α1 and α2. When α1 = 0, α2 = 0, it indicates that the determination
of information granule 0 is not influenced by information granules 1 and 2. In this case, the
information granules are developed using the principle of justifiable granularity, ignoring
their synergistic nature. Compared with the information granule constructed based on the
principle of justifiable granularity, the parameters of α1 and α2 are included for considering
the influence of other information granules. To be more specific, for a given parameter α1,
with an increasing value of α2, it is obvious that the range of the bounds of the information
granules for each dimension becomes wider. Similarly, for a given parameter α2, with an
increasing value of α1, the range of the bounds of the information granules for each dimen-
sion becomes wider as well. It implies that with the increasing values of the parameters of
the synergistic mechanism, the coverage of information granules is also increasing.

At the same time, the AUC values are obtained for the upper and lower bounds
to evaluate the performance of the construction process. As the AUC values presented
in Table 1 show, their values are greater than 0.6. This also means that, compared with
the information granules constructed based on the principle of justifiable granularity, the
information granules constructed under the synergistic mechanism not only have higher
coverage of the data set but also consider the specificity of the data.

To further verify the overall performance of the proposed model, the constructed
multidimensional information granule is regarded as a whole to compute the coverage and
specificity, referred to here as COV and SP. The two criteria are expressed as follows:

COV implies that the data is covered in the area of the information granule:

COVi =
1
Ni

card{xk|xk ∈ Mi }, (22)

where Ni is the number of data that belong to the ith cluster. Mi means the area of the ith
information granule.



Mathematics 2023, 11, 1750 12 of 19

SP is taken as the product of the specificities of each dimension, and it can be expressed
as follows:

SPi =

(
1−

∣∣a+i1 − a−i1
∣∣

|xi1,max − xi1,min|

)
∗
(

1−
∣∣a+i2 − a−i2

∣∣
|xi2,max − xi2,min|

)
∗ . . . . . . ∗

(
1−

∣∣a+in − a−in
∣∣

|xin,max − xin,min|

)
. (23)

Considering a two-dimensional information granule, Mi can be expressed as
Mi = [ai1

−, ai1
+] × [ai2

−, ai2
+], then COV can be rewritten as follows:

COVi =
1
Ni

card
{

xk
∣∣xk1 ∈ [ai1

−, ai1
+]∪ xk2 ∈ [ai2

−, ai2
+]
}

, (24)

where xk1 and xk2 are the 1st dimension and the 2nd dimension of the data xk, respectively.
SP can be expressed as follows:

SPi =

(
1−

∣∣a+i1 − a−i1
∣∣

|xi1,max − xi1,min|

)
∗
(

1−
∣∣a+i2 − a−i2

∣∣
|xi2,max − xi2,min|

)
. (25)

We plot the curve of coverage and specificity with respect to different values of α1 and
α2, the results are plotted as shown in Figure 7.
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As shown in Figure 7, a similar conclusion can be obtained as above: with increasing
values of COV, the values of SP keep decreasing.

In addition, we consider the overall performance of the global coverage and specificity
by calculating the entire data sets regardless of the different clusters.

The global coverage, Covg, is decided as follows:

Covg =
c

∑
i=1

COVi, (26)
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where c is the number of clusters. It should be noted here that if an element is covered by
more than one cluster at the same time, it is counted only once.

We also define the global specificity, Specg, as follows:

Specg =
1
c

c

∑
i=1

SPi. (27)

Finally, the optimization criterion Vg can be expressed as follows:

Vg = Covg ∗ Specg. (28)

We plot the curves of Covg, Specg, and Vg with respect to different numbers of clusters,
say c = 3, 4, 5, 6, 7, 8, 9, and 10. The results are as shown in Figure 8.
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As shown in Figure 8, with the increasing number of clusters c (which means more
information granules are to be constructed and the construction process will be realized in
a collaborative way), the overall performance index Vg decreases accordingly. The global
specificity of Specg shows an increase when the number of clusters increases from 3 to 4
and a decrease from 4 to 8; moreover, there is a slight increase when c = 9 and a decrease
when c = 10. The global specificity of Specg achieves its optimal value when c = 4. At the
same time, the global coverage of Covg increases when the value of c increases from 3 to 7,
decreases with the value of c from 7 to 10, and reaches its highest when c = 7.

4.2. KEEL Machine Learning Data Sets

In this part, several publicly available machine learning data sets coming from the
KEEL machine learning repository [45] are considered in the experiments.
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4.2.1. Iris Data Set

The Iris data set consists of 50 instances and four attributes, which contain three classes
of features, and each class refers to a type of iris plant. One class is linearly separable from
the other two; the latter are NOT linearly separable from each other. The four attributes are
referred to as sepal length, sepal width, petal length, and petal width, respectively. The
AUC values and the bounds of information granules are summarized in Table 3.

Table 3. The summary of the AUC values and optimized bounds of information granules (α1 = α2 = 0.5).

Attributes Upper/Lower
Bounds

0th Cluster 1st Cluster 2nd Cluster

AUC Values of a/b AUC Values of a/b AUC Values of a/b

Sepal Length upper bound b 0.525 7.200 0.717 6.701 0.678 6.003
lower bound a 0.687 5.800 0.689 5.500 0.683 4.899

Sepal Width upper bound b 0.779 3.400 0.814 3.200 0.550 3.901
lower bound a 0.687 2.700 0.643 2.499 0.554 2.800

Petal Length upper bound b 0.529 6.100 0.754 5.102 0.587 4.003
lower bound a 0.768 4.397 0.731 3.298 0.628 1.300

Petal Width
upper bound b 0.526 2.300 0.701 1.801 0.568 1.502
lower bound a 0.727 1.399 0.737 0.999 0.660 0.200

From the results presented in Table 3, we can find that for each information granule
constructed based on different cluster numbers from 0 to 2, the AUC values obtained for
both dimensions for obtaining the upper bound and lower bound show good performance
with a collection of reasonable values that are greater than 0.5, and this indicates that the
areas determined with the constructed information granules can cover most of the elements
in the data set. The maximal AUC value is obtained when optimizing the upper bound
of the 1st cluster for attribute sepal width, while the minimal value is obtained when
optimizing the upper bound of the 0th cluster for attribute sepal length. Coordinately, the
upper bound and lower bound of information granules for different clusters are optimized
as shown in the table.

The cov-sp curves of the information granules obtained based on different clusters are
plotted in Figure 9.
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As shown in Figure 9, the curves of cov-sp are plotted with respect to different pairs of
α1, and α2 values for the three clusters, respectively. In general, despite the values of α1,
and α2, it can be found that a greater value of coverage corresponds to a smaller value of
specificity, which implies the same tendency for the changing of coverage and specificity in
the traditional principle of justifiable granularity.

4.2.2. Banana Data Set

The Banana data set is an artificial data set where the instances belong to several
clusters with a banana shape. There are two attributes, At1 and At2, which correspond to
the x axis and y axis, respectively. There are two types of 5300 data in total.

The AUC values and the bounds of information granules are shown in Table 4.

Table 4. The summary of the AUC values and bounds of information granules (α = 0.5).

Attributes Upper/Lower
Bounds

0th Cluster 1st Cluster

AUC Values of a/b AUC Values of a/b

At1
upper bound b 0.698 0.624 0.708 1.471
lower bound a 0.735 −1.640 0.714 −1.042

At2
upper bound b 0.724 0.732 0.758 1.721
lower bound a 0.716 −1.401 0.671 −0.472

As the results in Table 4 present, we can find that for each information granule,
the AUC values of both dimensions of the upper bounds and lower bounds show good
performance with a maximal value of 0.758 (when optimizing the upper bound of the
1st cluster for attribute At2) and a minimal value of 0.671 (when optimizing the lower
bound of the 1st cluster for attribute At2). This indicates that the areas determined with the
constructed information granules (expressed with the upper and lower bounds) can cover
most of the elements in the data set.

In Figure 9, we plot the cov-sp curves for different information granules designed
based on the clusters.

The curves of cov-sp values under different α values for the Banana Data Set are as
shown in Figure 10. In this case, only one granularity parameter α is included in the
synergistic mechanism; the value of cov keeps increasing with an increasing value of α,
while the value of sp decreases.
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4.2.3. Appendicitis Data Set

The Appendicitis data set records patients with appendicitis. The data represents
seven medical measures taken over 106 patients. The seven medical measures are recorded
as At1, At2, At3, At4, At5, At6, and At7.

The AUC values and the bounds of information granules are shown in Table 5.
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Table 5. The summary of the AUC values and bounds of information granules (α = 0.5).

Attributes Upper/Lower
Bounds

0th Cluster 1st Cluster

AUC Values of a/b AUC Values of a/b

At1
upper bound b 0.732 0.520 0.740 0.628
lower bound a 0.624 0.187 0.687 0.351

At2
upper bound b 0.719 0.627 0.726 0.884
lower bound a 0.559 0.187 0.513 0.360

At3
upper bound b 0.740 0.472 0.740 0.684
lower bound a 0.574 0.089 0.662 0.360

At4
upper bound b 0.737 0.471 0.682 0.520
lower bound a 0.584 0.089 0.538 0.098

At5
upper bound b 0.703 0.471 0.675 0.521
lower bound a 0.673 0.058 0.485 0.058

At6
upper bound b 0.731 0.628 0.813 0.796
lower bound a 0.563 0.187 0.521 0.360

At7
upper bound b 0.734 0.471 0.756 0.627
lower bound a 0.523 0.089 0.683 0.351

From the results presented in Table 5, we can find that for each information granule,
the AUC values obtained for both dimensions of the upper bounds and lower bounds
show good performance, among which the maximal value is 0.813 (when optimizing the
upper bound of the 1st cluster for attribute At6). The minimal AUC value is 0.485 when
optimizing the lower bound of the 1st cluster for attribute At5. Corresponding to the
obtained AUC values, the upper and lower bounds that determine the updated optimal
position of the information granules developed with the synergistic mechanism of the
principle of justifiable granularity are presented.

As shown in Figure 11, we present the curves of cov-sp with different pairs of α1, and
α2 values. Similar to the changing of coverage and specificity in the traditional principle of
justifiable granularity, the results of the proposed mechanism indicate that a greater value
of coverage corresponds to a smaller value of specificity. Considering the parameter of
granularity α, the value of cov keeps increasing with an increasing value of α, while the
value of sp decreases.
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5. Conclusions

Information granules play an important role in describing and expressing data in
different forms, including sets and intervals, fuzzy sets, rough sets, and so on. Fuzzy sets
show good performance in dealing with information with fuzziness and uncertainty. In
practical complex environments, with the rapid development of data size, the data with
multimodality become significantly more challenging to process and manage. There is a
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commonly encountered situation where data is collected with different characteristics, and
those with different features will be influenced by each other. In this study, a synergistic
mechanism of the principle of justifiable granularity in developing information granules is
proposed, in which information granules are constructed by considering the influence of
other information granules in the same feature space or different feature spaces. In other
words, a collection of information granules is designed in a collaborative manner rather
than based on some experimental evidence alone. First of all, the Fuzzy C-Means Clustering
method is utilized to cluster the data space into different clusters, and then information
granules are developed with the use of the principle of justifiable granularity based on
the data located in the different clusters. Then, the position of each information granule is
updated while considering the impact of the other information granules in the data space,
and the level of impact is specified according to the parameters of information granularity
α. The main significance of this study lies in the fact that the synergistic mechanism of the
principle of justifiable granularity takes full consideration of the collaborative impacts of
different information granules. The performance of the proposed mechanism is evaluated
with the AUC values that are determined based on the coverage and specificity of the
principle of justifiable granularity. Finally, a series of experimental studies are conducted
to verify the feasibility of the proposed mechanism. From the results of the experiments,
we can find that (i) with increasing values of the impact parameters, the location of the
information granule becomes closer to the other ones that influence its development;
(ii) the AUC values can achieve a reasonable value of greater than 0.7, and it can be found
that the information granules constructed under the synergistic mechanism show good
performance.

In future studies, it is worth considering information granules developed based on hetero-
geneous or separately non-linear data. Moreover, an interesting idea lies in the application of
the synergistic mechanism of the principle of justifiable granularity to deal with real industry
problems such as mine pressure prediction, image edge detection, and so on.
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