
Citation: Gahima, S.; Díez, P.;

Stefanati, M.; Rodríguez Matas, J.F.;

García-González, A. An Unfitted

Method with Elastic Bed Boundary

Conditions for the Analysis of

Heterogeneous Arterial Sections.

Mathematics 2023, 11, 1748. https://

doi.org/10.3390/math11071748

Academic Editor: Fernando Simoes

Received: 19 February 2023

Revised: 22 March 2023

Accepted: 30 March 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Unfitted Method with Elastic Bed Boundary Conditions for
the Analysis of Heterogeneous Arterial Sections
Stephan Gahima 1,2, Pedro Díez 1,2, Marco Stefanati 3, José Félix Rodríguez Matas 3

and Alberto García-González 1,2,*

1 Laboratori de Càlcul Numèric, E.T.S. de Ingeniería de Caminos, Universitat Politècnica de Catalunya,
08034 Barcelona, Spain

2 The International Centre for Numerical Methods in Engineering, CIMNE, 08034 Barcelona, Spain
3 Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical

Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
* Correspondence: berto.garcia@upc.edu

Abstract: This manuscript presents a novel formulation for a linear elastic model of a heterogeneous
arterial section undergoing uniform pressure in a quasi-static regime. The novelties are twofold.
First, an elastic bed support on the external boundary (elastic bed boundary condition) replaces
the classical Dirichlet boundary condition (i.e., blocking displacements at arbitrarily selected nodes)
for elastic solids to ensure a solvable problem. In addition, this modeling approach can be used
to effectively account for the effect of the surrounding material on the vessel. Secondly, to study
many geometrical configurations corresponding to different patients, we devise an unfitted strategy
based on the Immersed Boundary (IB) framework. It allows using the same (background) mesh
for all possible configurations both to describe the geometrical features of the cross-section (using
level sets) and to compute the solution of the mechanical problem. Results on coronary arterial
sections from realistic segmented images demonstrate that the proposed unfitted IB-based approach
provides results equivalent to the standard finite elements (FE) for the same number of active degrees
of freedom with an average difference in the displacement field of less than 0.5%. However, the
proposed methodology does not require the use of a different mesh for every configuration. Thus, it
is paving the way for dimensionality reduction.

Keywords: elastic bed boundary condition; robin boundary condition; immersed boundary method;
level set; arterial biomechanics; unfitted method

MSC: 65H99

1. Introduction

Ischemic heart disease is the first cause of death globally, accounting for 27% of fa-
talities in 2019 [1,2], with coronary atherosclerosis being the cause of most myocardial
infarctions [3]. Atherosclerotic plaques (within the coronaries) result from a complex in-
flammatory process starting with the accumulation and retention of low-density lipoprotein
within the intima. The result is a build-up of material (cholesterol and other lipid compo-
sitions) within the wall layers, producing stenosis and blood flux reduction in the vessel.
Typically, a patient presents either stable or unstable (low or high risk of rupture) plaque.
The fast distinction between these two groups is crucial regarding the treatment and disposi-
tion of the patient [4]. Thus, the need for patient-specific approaches is self-evident. It is here
where computation-supported decision-making processes play a crucial role. This work con-
tributes with a new approach to modeling two-dimensional coronary sections undergoing
uniform physiological internal pressure in a quasi-static regime. Holzapfel et al. [5] showed
that the pertinence and accuracy of the results depend on the method used to define material
properties and to acquire in vivo patient-specific geometries. Typical methods for geometry
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acquisition include Magnetic Resonance Imaging [6,7], Computer Tomography [8,9], Opti-
cal Coherence Tomography [10,11], and Intravascular Ultrasound [12,13], among others.
Hyperelastic [14,15], piece-wise homogeneous [16,17], incompressible [18,19], and plane
strain [20,21] hypotheses characterize the two-dimensional models. In this work, we have
used for the mechanical properties of all plaque components (i.e., normal vessel wall, loose
matrix, calcification, and lipid core) a linear approximation of the stress–strain curve up to
around 10% deformation reported by [22,23]. In particular, the rational behind using linear
properties was to test the proposed approach, since it allows reducing the calculation times.
However, recent studies use linear mechanical properties of the arterial tissue to perform
clinical predictions based on geometrical and biomechanical markers obtained from finite
element simulation [24]. In addition, the proposed methodology can directly accommodate
a nonlinear hyper-elastic behavior of the tissues composing the coronary plaque.

One of the main problems when solving a finite element problem is to properly con-
strain the structure to prevent rigid body motion. The simplest approach to fixing the
singularity and suppressing rigid-body modes consists in blocking three degrees of freedom
(an isostatic condition with vertical displacements in two arbitrary nodes and horizontal
displacement in another, for example). Thus, it is about setting essential (Dirichlet type)
boundary conditions (BC) in arbitrarily selected nodes. In addition, blocking axial displace-
ment and allowing free radial expansion [25,26] is another possibility. In addition, fixing
two adjacent points [27,28], or the entire external boundary [29], or creating a soft and
compressible layer surrounding the section with a zero-displacement BC constraining the
latter [30,31] are examples of BCs used to suppress rigid body motions. All these methods
struggle, to different degrees, to consider what surrounds the coronary section. Some of
them depend on arbitrary choices (e.g., choosing the nodes where to impose BC). Few
works have attempted to account for the influence of the surrounding tissue on the artery.
In [32], an elastic bed boundary condition was applied along the coronary artery to simulate
the effect of the myocardial tissue. In [33], the artery is surrounded by the cardiac wall for
half of its circumference to simulate the coronary artery embedded into the myocardium,
with the cardiac wall modeled using finite elements. We propose to assume the section to
be surrounded by a material along its external boundary. This embedding matrix produces
a linear elastic reaction, and it is described with an elastic bed coefficient α to be assessed
depending on the stiffness of the surrounding medium.

Additionally, to improve the computational efficiency of the realistic calculation and
analysis process, the numerical methodology proposed here implements the aforemen-
tioned elastic bed coefficient in an Immersed Boundary (IB) [34] framework with a generic
description of the domain based on level sets. IB (combined with elastic bed BC) bases its
simulations on a unique (background) mesh supporting the solutions corresponding to
different configurations (different patients). It allows comparing solutions and opens the
door to reduced-order modeling leading to fast simulations for different patient-specific
geometries from initial medical images (with the same degrees of freedom), avoiding indi-
vidual meshing and preprocessing steps. This methodology is motivated by its potential
applicability with voxelized data [35], such as medical images. Via segmentation [36–39],
it is possible to identify the different components’ contours, and the IB performs the stress
analysis on a refined voxelized background mesh to increase accuracy. In general, an IB
approach allows seamless integration of structural analysis in a medical image process-
ing pipeline.

The remainder of the paper is structured as follows: Section 2 describes the problem
statement (Section 2.1), presents the level set approach (Sections 2.2 and 2.3), and includes
the description of the IB framework (Section 2.4), emphasizing the details of the mathemati-
cal formulation required in the weak form of the problem (Section 2.5). Section 3 shows the
results of the proposed methodology, finishing with a discussion and the main conclusions
in Section 4.
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2. Materials and Methods

With a patient-specific application in mind, the discretization method to be used has
to handle different configurations corresponding to various patients effortlessly. More-
over, input (the diversity of arterial cross-section geometries) and output (the solution
in terms of deformation, strains, and stresses) data are to be expressed in homogeneous
formats to ease the analysis and the possible application of reduced-order models. Here,
level sets defined on a background mesh (discretizing a background domain ΩB) describe
the diversity of the geometric configurations, that is, all the possible instances of the ac-
tual computational domain, Ω. It comes naturally to solve the problem with an unfitted
approach. Specifically, it uses the background mesh not only to describe the geometry
(actually the same background mesh for all the possible geometries) but also to com-
pute the solution, following an IB methodology. Thus, one may prescind the conformal
meshes adapted to the geometry that change from case to case. Note that to solve the
problem with conformal finite elements, the mesh must be such that it tallies with Ω,
matching the boundary ∂Ω. Such an approach requires ad-hoc meshing algorithms, espe-
cially for convoluted geometries, and complicates comparing different configurations and
their solutions.

2.1. Problem Statement

Let the section occupy a region Ω ⊂ R2 with boundary ∂Ω. The intrinsic heterogeneity
of arterial cross-sections is described by dividing Ω into different subdomains Ω1, Ω2, . . . ,
corresponding to homogeneous regions having different material properties i.e., normal
vessel wall, loose matrix, calcification, and lipid core (see Figure 1). Without body forces,
the equilibrium is governed by

∇ · σ(u) = 0 in Ω, (1)

with boundary conditions

σ(u) · n̂ = t on ΓN , (2)

σ(u) · n̂ = αu (α < 0) on ΓR, (3)

where σ is the Cauchy stress tensor and u is the displacement field; t is the surface traction, α
is the elastic bed coefficient, and n̂ is the outward unit normal to the boundary. Equation (3)
represents the Robin boundary condition, physically corresponding to an elastic bed
condition, simulating the surrounding tissue of the artery. The Neumann and elastic bed
boundaries cover the whole boundary, i.e., ∂Ω = ΓN ∪ ΓR.

Figure 1. Schematic description of Problem (1) in the Euclidean space. In particular, Ω =
⋃4

k=1 Ωk
with ∂Ω = ΓN ∪ ΓR where ΓN and ΓR are depicted in red and cyan, respectively.
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The weak form of Problem 1 (physically corresponding to the principle of virtual
work) reads: find u ∈

[
H1(Ω)

]2 such that∫
Ω

σ(u) : ε(v) dΩ −
∫

ΓR

αu · v dΓ =
∫

ΓN

t · v dΓ, (4)

for all v ∈
[
H1(Ω)

]2. H1(Ω) is the Sobolev space of order 1 on Ω; refer to [40] for details.
Note that the test function v is also seen as a virtual infinitesimal displacement (a perturba-
tion from the equilibrium configuration of the body) consistent with the imposed boundary
displacements, and ε(v) = 1/2(∇v +∇v>). The elastic bed BC (3) is an alternative to the
standard practice of suppressing rigid-body motions by prescribing displacements at some
arbitrarily selected points. As shown in the following, enforcing an isostatic scheme by
prescribing point displacements and elastic bed BC produce similar results. We advocate
the latter because the elastic bed BC includes physical information about the surrounding
medium and does not require selecting arbitrary points to prescribe displacements. This is
crucial for model order reduction, where one has to perform operations with the solutions
of different configurations, and hence, they need to be comparable.

2.2. Level Set Description of the Domain and Subdomains

As introduced previously, the domain Ω is divided into n subdomains Ωi, i = 1, . . . , n.
The n subdomains cover Ω, that is

Ω =
n⋃

k=1

Ωk. (5)

Level set functions implicitly describe the geometry of Ω and its subdomains in a
unique framework. A background domain ΩB, having a simple geometry (here rectangle
or square shape), is introduced to accommodate all possible instances of Ω, resulting in
Ω ⊂ ΩB; see Figure 2A.

Figure 2. (A) The background domain ΩB and (B) (one of its possible) mesh Th(ΩB) (for more details
regarding accurate estimations of the displacement fields at the interfaces, see Section 2.4). Inner and
cut (by ∂Ω) elements T ∈ Th are in blue and yellow, respectively.

A standard level set to describe Ω in ΩB is a continuous function φ taking values in ΩB

such that φ(x) > 0 for x ∈ Ω and negative elsewhere. Thus, φ(x) = 0 for x ∈ ∂Ω. Typically,
φ is a signed distance to ∂Ω [41,42]. For a configuration such as the one in Figure 3, with two
non-connected parts of the boundary, ΓN and ΓR, it is convenient to describe Ω using two
level sets to distinguish between the two. Thus, Ω is identified with φ(1) and φ(2) such that:
φ(1)(x) = 0 on ΓN , and φ(2)(x) = 0 on ΓR. Both level sets are positive in Ω; see Figure 3B,C
for an illustration. Note that one may recover a standard level set for Ω by just taking
φ = φ(1)φ(2). Then, following the ideas in [43], new level set functions are introduced to
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describe the n subdomains. Function φ(3) provides the information to identify Ω1 and
distinguish it from the remainder subdomains. In particular, φ(3)(x) > 0 for x ∈ ⋃n

k=2 Ωk
and is negative elsewhere in Ω (that is in Ω1). Similarly, φ(4) is positive in

⋃n
k=3 Ωk and

negative in the remainder, that is in
⋃2

k=1 Ωk. The last hierarchical level set needed is φ(n+1)

identifying Ωn−1 because then Ωn is precisely the remainder (φ(n+1) > 0). The values of
φ(k) with k = 3, . . . , n + 1 outside Ω are not relevant. This is consistent with the hierarchical
character of this approach. A visualization of the hierarchical level sets is illustrated in the
panels of Figure 3 and summarized in Table 1.

Table 1. Level set-based criteria to classify a point x in Ω and its subdomains.

Condition Classification

φ(1) > 0 and φ(2) > 0 x ∈ Ω
φ(1) > 0 and φ(2) > 0 and φ(3) < 0 x ∈ Ω1
φ(1) > 0 and φ(2) > 0 and φ(3) > 0 and φ(4) < 0 x ∈ Ω2
φ(1) > 0 and φ(2) > 0 and φ(3) > 0 and φ(4) > 0 and φ(5) < 0 x ∈ Ω3
φ(1) > 0 and φ(2) > 0 and φ(5) > 0 x ∈ Ω4

Figure 3. (A) Ω embedded in ΩB. Level set (B) φ(1) = 0 describes ΓN , and (C) φ(2) = 0 describes
ΓR. (D) φ(3) = 0 describes the interfaces between the subset

⋃4
k=2 Ωk and the background domain.

(E) φ(4) = 0 describes the interfaces between Ω3 ∪Ω4 and ΩB \Ω3 ∪Ω4 and finally, (F) φ(5) = 0
describes the interface between Ω4 and the rest.
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The approach described above is similar to the front-tracking method used to simulate
multiphase flow with a fixed grid for the flow [44], with the difference that the front does
not change with time, and therefore, the level set is computed only once at the beginning of
the analysis.

2.3. Discretization of the Level Set Functions in a Background Mesh

With a finite element (FE) discretization of ΩB (see Figure 2), the level set approach
is implemented. A tessellation Th of ΩB consisting of ne elements Te, e = 1, 2, . . . , ne (h
stands for the characteristic size of the elements) is introduced, such that ΩB =

⋃ne
e=1 Te.

The number of nodes in the mesh is denoted by np and the corresponding shape functions
are denoted by Ni(x), for i = 1, 2, . . . , np c[cyan]. Thus, each level set φ(k), k = 1, . . . , n + 1,
is represented in the background mesh as

φ(k)(x) ≈
np

∑
i=1

[Φk]i Ni(x), (6)

with Φk ∈ Rnp being the vector of nodal values describing φ(k). In this framework, n + 1
vectors in Rnp describe any geometrical configuration. This standardized representation
allows for dimensionality reduction given the variance in the population of input samples
(each corresponding to a different patient). To ease the task of the machine learning
algorithms to be used in dimensionality reduction, standard geometric normalizations are
performed previously to store the information in the discrete level set format. For instance,
all samples are centered (their barycenter is translated to the origin of coordinates) and
rotated such that the principal axes of inertia are parallel to the coordinate axes.

2.4. Unfitted Approach: Solving the Problem in the Background Mesh

The framework for approximating the level set over Th(ΩB) just described is used
to solve the original problem (4) using an unfitted approach based on the ideas of the
Immersed Boundary Method (IBM). Thus, the displacement field u(x) is approximated in
the background mesh using a standard FE approximation, namely

u(x) ≈
np

∑
i=1

Ui Ni(x), (7)

with Ui ∈ R2 being the displacement vector in node i. All vectors Ui, i = 1, 2, . . . , np, are
collected in the standard vector of nodal displacements U ∈ R2np . Using the Galerkin
strategy to solve Equation (4) results in a linear system of equations for U:

[K + M]U = F, (8)

where matrices K and M in R2np×2np are the discrete counterparts of the two bilinear forms
in the left-hand side of Equation (4) and F ∈ R2np is the discretization of the linear form in
the right-hand side.

Note that a node i in the mesh is represented by the degrees of freedom ` = 2(i− 1)+ 1
and `+ 1 in U, and some other node j is represented by ˜̀ = 2(j− 1)+ 1 and ˜̀ + 1. Assuming
these relations, some illustrative examples of the expressions for the corresponding entries
in the matrices and the right-hand-side vector are given below

[K]` ˜̀ =
∫

Ω
σ

([
Ni(x)

0

])
: ε

([
Nj(x)

0

])
dΩ ; [K]`, ˜̀+1 =

∫
Ω

σ

([
Ni(x)

0

])
: ε

([
0

Nj(x)

])
dΩ

[M]` ˜̀ = −
∫

ΓR

α

[
Ni(x)

0

]
·
[

Nj(x)
0

]
dΓ ; [M]`, ˜̀+1 = −

∫
ΓR

α

[
Ni(x)

0

]
·
[

0
Nj(x)

]
dΓ
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[F]` =
∫

ΓN

t ·
[

Ni(x)
0

]
dΓ ; [F]`+1 =

∫
ΓN

t ·
[

0
Ni(x)

]
dΓ.

Note that all the integrals in the expressions above are defined in Ω, ΓR, and ΓN ,
and not in the background domain ΩB where the FE functions Ni(x) are supported. In par-
ticular, evaluating the local contributions (the integrals are restricted to some element Te)
requires identifying whether an element intersects ΓR or ΓN . Thus, the main implementa-
tion challenge of the unfitted approach is classifying the elements Th of ΩB inside Ω, those
outside, and those crossed by the interfaces. For a given configuration, the geometrical
information is encoded in the level sets, as described in Section 2.2. This allows elaborating
a list of the elements in Th that are completely inside Ω, namely IΩ such that if e ∈ IΩ,
then Te ⊂ Ω. Similarly, lists IΓR and IΓN are such that if e ∈ IΓR then Te

⋂
ΓR 6= ∅, and if

e ∈ IΓN then Te
⋂

ΓN 6= ∅. Figure 4 shows an example of such classification. The elements
indexed in these three lists are active, meaning that they play a role in the solution for the
configuration described by the level sets. Thus, Te is said to be active if e ∈ IΩ

⋃ IΓR

⋃ IΓN .
Accordingly, all the nodes belonging to active elements are active nodes since the cor-
responding degrees of freedom are the unknowns of (8) (the non-active nodes are to be
eliminated from the system).

Figure 4. (A) Elements Te for e ∈ IΩ
⋃ IΓR

⋃ IΓN , are colored in violet (e ∈ IΩ), magenta
(e ∈ IΓN ), and cyan (e ∈ IΓR ), being ΓN and ΓR the black lines. The square background domain ΩB

(2.5× 2.5 mm2) is meshed with np = 1002 nodes and ne = 2× 992 elements. Close-ups for better
illustration in panels (C), and (D). Panel (B) illustrates that in the elements crossed by the boundary,
the quadrature is enriched to avoid having no integration points in the part of the element outside Ω.
This suggests using in these elements closed quadratures (as the third-degree closed Newton–Cotes
quadrature [45]).

The computation of the elementary contributions to the stiffness matrix K is standard
for the elements completely inside Te for e ∈ IΩ (violet elements in Figure 4A). The only
particular feature to be accounted for is that the material properties of each Gauss point
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in the numerical quadrature belong to a subdomain Ωk. With the values of the level sets
interpolated at the Gauss point, following the classification described in Table 1, the material
properties are quickly recovered. Note that for the example shown in Figure 4A, only two
level sets, φ(1) and φ(2), are required. In the elements crossed by the interfaces ΓR and ΓN ,
the integration has to exclude the part of the domain outside Ω. There, a more refined
quadrature is used, and null material properties are assigned to the integration points
outside Ω. A closed quadrature is preferred to avoid accounting for integration points
inside elements with a small portion inside Ω. These geometric checks are performed
by setting a tolerance and considering that the distance to the interface is zero when it is
below this value. Computing elementary contributions to matrix M and vector F requires
integrating within the portion of ΓR or ΓN in the element Te. Thus, for e ∈ IΓN , Te intersects
ΓN and contributes to F. Analogously, for e ∈ IΓR , Te intersects ΓR and contributes to M.

For e ∈ IΓN , the elementary contribution from element Te to F requires computing∫
ΓN

⋂
Te
[t]1Ni(x)dΓ and

∫
ΓN

⋂
Te
[t]2Ni(x)dΓ, (9)

for all the nodes i in element Te. If the load corresponds to a pressure p applied in the
internal wall, then t = −pn̂, recalling that n̂ = [n1 n2]

> is the outward unit normal. Thus,
[t]1 = −pn1 and [t]2 = −pn2. This integral, as it is standard in the FE practice, is computed
in a reference element (for linear triangles, it is handy using the triangle with vertices (0, 0),
(1, 0) and (0, 1), see Figure 5), where the shape functions are defined (and available in
their analytical expressions) in terms of the reference coordinates (ξ, η), namely N̂(i)(ξ, η),
for (i) = 1, 2, 3. Mesh connectivity provides the link between the local numbering of the
node inside the element, (i) (from 1 to 3 in the case of linear triangles), and the global
numbering i (from 1 to np). Since Te is crossed by ΓN , it is important to identify the entry
and exit points in the element, that is the points {PI , PI I} = ΓN

⋂
∂Te; see Figure 5. This

task is performed while identifying the elements in IΓN , and it is straightforward after
the nodal values of φ(1). Recall that φ(1)(x) = 0 for x ∈ ΓN . Same rationale works for ΓR,
using φ(2). A quadrature is required to integrate along the segment PI PI I (a portion of
ΓN). Here, a Simpson quadrature is adopted and involves computing the values of the
function to be integrated on the endpoints of the interval and in the midpoint, Pm; see
Figure 5. The general expression for Simpson quadrature to approximate the integral of
some function ψ reads:∫ PI I

PI

ψ dΓ ≈ |PI PI I |
6

(ψ(PI) + 4ψ(Pm) + ψ(PI I)), (10)

where |PI PI I | is the length of the interval PI PI I . Thus, computing the terms in (9) requires
obtaining the values of Ni in the three points PI , PI I and Pm. These values are easily obtained
after their coordinates in the reference element, (ξ I , ηI), (ξ I I , ηI I) and (ξm, ηm). Then, it
suffices using the quadrature given in (10) for ψ(x) = −pn1Ni(x) and ψ(x) = −pn2Ni(x)
to obtain the horizontal and vertical components of the nodal forces (on node i from
element e).
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Figure 5. Element Te (right) described in the Cartesian coordinate system (x1, x2) is mapped into
reference element (left) described by (ξ, η) coordinates. Outward normal n̂ to the portion of ΓN

(respectively, ΓR) in Te is to be determined in the Cartesian framework. The two points where the
interface meets the boundary of Te (entry and exit points, here denoted by I and I I) are necessary to
numerically integrate the coefficients of F (respectively M) along ΓN (respectively, ΓR).

Similarly, for e ∈ IΓR , the elementary contribution from Te to M requires computing
terms of the form ∫

ΓR
⋂

Te
αNi(x)Nj(x)dΓ. (11)

This is achieved by taking ψ(x) = αNi(x)Nj(x) and using the quadrature (10) accord-
ingly. In the unfitted solution, the degrees of freedom corresponding to nodes that do not
belong to any of the active elements (those with index e in

⋃ IΓR

⋃ IΓN ) must be removed
from system (8).

The number of active nodes (that is the number of nodes in the active elements) is
denoted by nact and indicates the measure of the size of the system to be solved. Note that
in conformal FE, nact is the number of nodes in the mesh. On the other hand, in an unfitted
approach, nact < np.

The proposed methodology has been entirely implemented in Matlab R2022b, The
MathWorks Inc, and executed in a 3.2 GHz Apple M1 with 8 GB RAM.

2.5. Validating the Methodolgy

The solution of an infinite linear elastic solid with a cylindrical cavity of radius rint
subjected to internal pressure p (Figure 6A) is considered.

Figure 6. Verification problem. (A) Infinite solid with a cylindrical cavity of radius rint subjected to
internal pressure p; (B) Infinite cylinder of inner radius rint and external radius rext subjected to an
internal pressure p and elastic bed boundary conditions at rext.
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Assuming cylindrical coordinates, the analytical solution of the problem is [46]

ur = p
r2

int
2µr

, uθ = uz = 0, (12)

where µ = µ(E, v) is the shear modulus of the material, E and ν are its Young’s modulus
and Poisson ratio, respectively, and r ≥ rint is the radial coordinate. The strain and stress
fields are obtained with the constitutive equations for a linear elastic solid as

εrr =
∂ur

∂r
= − p

2µ

( rint
r

)2
, (13)

εθθ =
ur

r
=

p
2µ

( rint
r

)2
, (14)

εzz = 0, (15)

σrr = −p
( rint

r

)2
, (16)

σθθ = p
( rint

r

)2
, (17)

σzz = 0. (18)

This problem is equivalent to that of an infinite cylinder of internal radius rint and
external radius, rext, subjected to internal pressure, p (applied at r = rint), and elastic bed
BC on r = rext (see Figure 6B), with the ballast coefficient α given as

α = − 2µ

rext
, (19)

obtained from (3) together with (12), and (16)–(18).
With this problem at hand, the accuracy of the methodology is quantified in terms of

local and global quantities. The displacement field is a local quantity of accuracy, and the
total deformation energy (TDE) is used as a global metric to assess the convergence for the
numerical solution. The TDE for the infinite cylinder in Figure 6B is given by

TDE =
1
2

∫ 2π

0

∫ rext

rint

(σrrεrr + σθθεθθ)r drdθ =

= π
∫ rext

rint

[(
p2r4

int
2µr4

)
+

(
p2r4

int
2µr4

)]
r dr =

πp2r4
int

2µ

(
1

r2
int
− 1

r2
ext

)
> 0.

(20)

Note that (20) only accounts for the elastic energy stored in the cylinder and not in the
elastic bed. Numerically, the TDE is calculated as

TDEnum =
1
2

U>K U, (21)

where U corresponds to the displacement vector of the active nodes in the background mesh,
and K is the stiffness matrix associated with the active elements in the background mesh.

3. Results
3.1. Covergence Analysis

To show the accuracy of the methodology, problem (1) is solved using the proposed
Immersed Boundary Robin-based (IBR) model, on the idealized geometry domain of
Figure 6B, for an internal pressure of p = 10−2 MPa. Consequently, the analytical solution
of the problem is calculated for the infinite solid with a cylindrical cavity at rint (Figure 6A).
Recall that, to make equivalent both the analytical results with the Robin-based approach,
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the ballast coefficient α of Equation( 19) is used. The different model parameters used for
this study are reported in Table 2.

Table 2. Model parameters: Young’s modulus E, Poisson ratio ν and the ballast coefficient α.

E (MPa) ν α (MPa/mm) rint (mm) rext (mm)

7.3313× 10−1 0.475 −1.2426× 10−1 1.5 4

Figure 7A represents the relative error of the displacements at an arbitrary point with
radius r ∈ {rint, rext} (compared to the analytical solution obtained using Equation (12)) of
both the proposed Immersed Boundary Robin-based approach (in black) and the classical
FE approach in red (which is calculated for completeness in the analysis).

Figure 7. Relative error of (A) displacements magnitude and (B) TDE obtained for the IBR (black)
and classical FE (red) formulations.

In addition, recalling Equations (20) and (21), the relative error (with respect to the
analytical value) of the total deformation energy (TDE) is also calculated for both the IBR
and the classical FE models and represented in Figure 7B in black and red, respectively.
It is worth noting the convergence behavior by increasing the number of active nodes,
which means refining the conformal mesh for the classical FE approach and the unfitted
background mesh for the IBR solution; the solution improves faster for a smaller number
of active nodes using our IBR methodology until a stabilization plateau, where the relative
error of TDE stagnates at a value close to 10−4. This is likely due to truncation errors
affecting quantities computed in the unfitted procedure, mainly integrals in elements
divided by boundaries. This level of accuracy is perfectly acceptable in this type of model.

3.2. Elastic Bed Coeficient α: Sensitivity Analysis

As mentioned in Section 2.1, the elastic bed coefficient α represents an elastic bed
boundary condition that simulates the interaction of the body with its surroundings.
Therefore, it is also possible to tune α so that it only avoids rigid body motions (and
not influencing nodal displacements and stresses). For this study, Figure 8A shows a
realistic arterial section where the proposed α analysis is applied under an internal pressure
p = 2.6267× 10−2 MPa. Homogeneous linear elastic material properties were used, being
the material parameters reported in Table 3.
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Table 3. Material parameters of the piece-wise homogeneous domain Ω =
⋃4

k=1 Ωk (i.e., normal
vessel wall, loose matrix, calcification, and lipid core), E (Young’s modulus) and ν (Poisson ratio).

Subdomain Material E [MPa] ν Ref.

Ω1
Normal

vessel-wall 0.73 0.475 [22]

Ω2 Loose matrix 0.431 0.475 [22]
Ω3 Calcification 1.5× 104 0.3 [23]
Ω4 Lipid core 1.8841× 10−1 0.475 [22]

According to this, the graph in Figure 8B shows that by decreasing the elastic bed
coefficient α, the average displacements at the external boundary (u|ΓR

) becomes unaffected
by the surroundings while eliminating rigid body motion. That is to say, the left part of the
graph corresponds to the limit value of a floating object with no surrounding stiffness: the
small values of α do only suppress rigid-body modes. The limit case for large values of α
has zero displacements in the external boundary, as it is reflected in the plot.

Figure 8. (A) Realistic arterial (coronary) section domain Ω =
⋃4

k=1 Ωk. (B) Elastic bed coef-
ficient against average displacement on ΓR for the coronary section under an internal pressure
p = 2.6267× 10−2 MPa.

3.3. Characteristic Length h of the Background Mesh Th(ΩB): Sensitivity Analysis

A relevant parameter in the IBR methodology is the characteristic length h of the
background mesh. It is strictly related to the number of active nodes (nact) by inverse
proportionality, meaning the smaller the h value, the greater the nact value. It is possible
to verify how the IBR solution, in terms of displacements and TDE, converges to those
obtained with the classical FE method using a very fine mesh. For this, six background
meshes Th(i)(ΩB) i = 1, . . . , 6 are used with a decreasing value of h as i increases.

Figure 9 shows the results of such analysis for the section depicted in Figure 8.
Figure 9A reports the error for both displacements and TDE associated with the six back-
ground meshes with respect to the conformal mesh solution, where it is shown the clear
error decreases by increasing the number of active nodes. As an example, Figure 9B shows
a plot of the local displacements difference error associated with the finest background
mesh developed for this analysis. Table 4 shows the maximum differences in TDE and the
displacement magnitude for the different background meshes considered in the analysis.
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Figure 9. (A) Convergence profile for the maximum difference for TDE and displacement magnitude.
(B) A plot of the local difference in displacement magnitude for a subset of the nodes in the conformal
mesh. In particular, B refers to mesh 6 from Table 4.

Table 4. Results of the sensitivity analysis about the characteristic length h for TDE and displacement
magnitude. From mesh 5, there are more active nodes (nact) in the background than nodes in the
conformal mesh (nact conformal mesh = 64, 552).

Mesh # nact Diff. for TDE
max Diff. for
Displacement

Magnitude

1 414 39.3% 93.6%
2 1507 13.4% 36.7%
3 5734 5.9% 24.6%
4 22, 270 2.4% 8.8%
5 87, 776 0.9% 6.7%
6 348, 550 0.15% 1.75%

3.4. Realistic Immersed Boundary Robin-Based approach

Figure 10 shows a comparison between the IBR methods and the classical FE approach
for a realistic coronary section, described in Figure 10A, subjected to an internal pressure of
p = 10−2 MPa. The model parameters used for this study are shown in Table 5, being the
material properties reported in Table 3.

Figure 10. Realistic arterial (coronary) section (A) domain Ω =
⋃4

k=1 Ωk displacements distribution
(B) using IBR and (C) classical framework. Panel (D) depicts relative local error for displacements.
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Table 5. Background mesh Th(ΩB) and conformal mesh Th(Ω) parameters.

nact Active Elements α (MPa/mm)

Th(ΩB) 42,397 83,378 −1.7736× 10−4
Th(Ω) 47,505 94,210

Figure 10B shows the displacement field obtained with the proposed Immersed Bound-
ary method (obtaining a total deformation energy TDE = 6.8226× 10−3), while Figure 10C
corresponds to the solution obtained with the classical FE method (TDE = 6.8248× 10−3).
Differences in the total deformation energy are found to be less than 0.05%, with a max-
imum difference in the displacement magnitude of less than 5% (Figure 10D), being an
average error of less than 0.5% in the section. Figure 11A,B show the distribution of the Von
Misses stress obtained for both methodologies, IBR method, and the classical FE method,
respectively, showing a highly similar stress distribution.

Figure 11. Realistic arterial (coronary) section domain Ω =
⋃4

k=1 Ωk Von Misses stress distribution
using (A) IBR methods and (B) classical framework.

4. Discussion

Computational engineering is considered a potentially powerful tool for biomedical
sciences. Nevertheless, one of the most critical drawbacks is the time required to develop
credible and accurate numerical solutions where fast patient-specific decision making is
necessary, i.e., in the vascular biomechanics field. Advancing in this direction, the article
presents a novel formulation that combines hierarchical level sets (from a 2D arterial seg-
mentation) with an Immerse Boundary-Robin-based (IBR) formulation to obtain stress and
strain distributions in arterial sections under physiological conditions of blood pressure.

The hierarchical level sets allow us to describe the arterial geometries (segmenta-
tions), including internal materials distributions (healthy tissue, lipid core, calcified core,
among others) and their properties in a highly standardized format. The use of level
sets also allows for using a single background mesh to simulate different patient-specific
arterial segmentations, all with the same number of degrees of freedom, thus avoiding the
preprocessing stages for developing a different conformal finite element mesh per geometry.
Furthermore, having the same number of degrees of freedom allows developing so-called
“a posteri” reduced-order models (ROMs) or dimensionality reduction methodologies to-
ward fast (even real-time) simulations. It is worth mentioning that despite vascular tissues
exhibiting nonlinear behavior, here, a simple linear elastic model is adopted to demonstrate
the performance of the proposed approach in the benchmarks selected. Note that the
proposed formulation is straightforwardly generalizable to any type of material model. As
expected, the accuracy of the IBR depends on the size of the background mesh relative to
the minimum size of the heterogeneity. One way to overcome this limitation is to consider
an adaptive background mesh with a higher element density near the heterogeneities.

Using the elastic bed boundary conditions (instead of classical Dirichlet) allows us to
effectively remove the rigid body motion without altering the natural deformation of the



Mathematics 2023, 11, 1748 15 of 17

arterial section due to the internal pressure. However, this boundary condition may also be
used to account for the effect of the surrounding tissue on the artery in case the information
is known. For instance, a uniform ballast coefficient, α, may represent an artery entirely
surrounded by tissue as could be the case of the middle cerebral artery or a penetrating
myocardial coronary artery. It could also be used to model a partially surrounded artery
by specifying a non-uniform ballast coefficient along the external contour of the section.
The results obtained with the proposed methodology in terms of displacement and stress
fields were very similar compared to those imposing isostatic Dirichlet-type boundary
conditions, which are widely accepted in the scientific community. To the best knowledge
of the authors, this is the first attempt to propose Immersed Boundary methods with elastic
bed boundary conditions for this type of simulation, showing the strong potential of the
methodology for biomechanical applications.
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