Article

Subclasses of p-Valent Functions Associated with Linear q-Differential Borel Operator

Adriana Cătaş ${ }^{1, *,+(\mathbb{D}}$, Emilia-Rodica Borşa ${ }^{1,+(\mathbb{D}}$, Sheza M. El-Deeb ${ }^{2,3,+\mathbb{D}}$
1 Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, Romania
2 Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
3 Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah 52571, Saudi Arabia
* Correspondence: acatas@uoradea.ro or acatas@gmail.com
\dagger These authors contributed equally to this work.

Abstract: The aim of the present paper is to introduce and study some new subclasses of p-valent functions by making use of a linear q-differential Borel operator. We also deduce some properties, such as inclusion relationships of the newly introduced classes and the integral operator $\mathcal{J}_{\mu, p}$.

Keywords: p-valent; analytic function; starlike functions; convex functions; close-to-convex functions; fractional derivative; linear q-differential Borel operator

MSC: 05A30; 30C45; 11B65; 47B38
check for
updates
Citation: Cătaş, A.; Borşa, E.-R.;
El-Deeb, S.M. Subclasses of p-Valent Functions Associated with Linear q-Differential Borel Operator. Mathematics 2023, 11, 1742. https://doi.org/10.3390/ math11071742

Academic Editors: Juan Eduardo Nápoles Valdes and Miguel Vivas-Cortez

Received: 15 February 2023
Revised: 22 March 2023
Accepted: 31 March 2023
Published: 5 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Let \mathcal{A}_{p} denote the class of functions of the form:

$$
\begin{equation*}
\mathcal{F}(\varsigma)=\varsigma^{p}+\sum_{j=p+1}^{\infty} a_{j} \varsigma^{j} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\Delta=\{\varsigma \in \mathbb{C}:|\varsigma|<1\}$.
Let $\mathcal{P}_{p, k}(\alpha)$ be the class of functions $h(\varsigma)$ analytic in Δ satisfying the properties $h(0)=p$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\Re\{h(\varsigma)\}-\alpha}{p-\alpha}\right| d \theta \leq k \pi \tag{2}
\end{equation*}
$$

where $\varsigma=r e^{i \theta}, k \geq 2$ and $0 \leq \alpha<p$. This class was introduced by (Aouf [1] with $\lambda=0$). We note that
(i) $\mathcal{P}_{1, k}(\alpha)=\mathcal{P}_{k}(\alpha)(k \geq 2,0 \leq \alpha<1)$ (see Padmanabhan and Parvatham [2]);
(ii) $\mathcal{P}_{1, k}(0)=\mathcal{P}_{k}(k \geq 2)$ (see Pinchuk [3] and Robertson [4]);
(iii) $\mathcal{P}_{p, 2}(\alpha)=\mathcal{P}(p, \alpha)(0 \leq \alpha<p, p \in \mathbb{N})$, where $\mathcal{P}(p, \alpha)$ is the class of functions with a positive real part greater than α (see [1]);
(iv) $\mathcal{P}_{p, 2}(0)=\mathcal{P}(p)(p \in \mathbb{N})$, where $\mathcal{P}(p)$ is the class of functions with a positive real part (see [1]).
From (2), we have $h(\varsigma) \in \mathcal{P}_{p, k}(\alpha)$ if and only if there exists $h_{1}, h_{2} \in \mathcal{P}_{p}(\alpha)$ such that

$$
\begin{equation*}
\mathcal{G}(\varsigma)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(\varsigma)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(\varsigma)(\varsigma \in \Delta) \tag{3}
\end{equation*}
$$

For two functions $\mathcal{F}(\varsigma)$ given by (1) and $\mathcal{H}(\varsigma)$ given by

$$
\mathcal{H}(\varsigma)=\varsigma^{p}+\sum_{j=p+1}^{\infty} b_{j} \zeta^{j}
$$

the Hadamard product (or convolution) is defined by

$$
\begin{equation*}
(\mathcal{F} * \mathcal{H})(\varsigma)=\varsigma^{p}+\sum_{j=p+1}^{\infty} a_{j} b_{j} \varsigma^{j}=(\mathcal{H} * \mathcal{F})(\varsigma) \tag{4}
\end{equation*}
$$

Define here a Borel distribution with parameter λ, which is a discrete random variable denoted by χ. This variable takes the values $1,2,3, \ldots$ with the probabilities $\frac{e^{-\lambda}}{1!}, \frac{2 \lambda e^{-2 \lambda}}{2!}, \frac{9 \lambda^{2} e^{-3 \lambda}}{3!}, \ldots$, respectively.

Wanas and Khuttar [5] recently introduced the Borel distribution (BD) whose probability mass function is (see [6,7])

$$
P(\chi=\rho)=\frac{(\rho \lambda)^{\rho-1} e^{-\lambda \rho}}{\rho!}, \quad \rho=1,2,3, \ldots
$$

Wanas and Khuttar studied a series $\mathcal{M}(\lambda ; \zeta)$ whose coefficients are probabilities of the Borel distribution (BD)

$$
\begin{align*}
\mathcal{M}_{p}(\lambda ; \varsigma) & =\varsigma^{p}+\sum_{j=p+1}^{\infty} \frac{[\lambda(j-p)]^{j-p-1} e^{-\lambda(j-p)}}{(j-p)!} \varsigma^{j},(0<\lambda \leq 1) \tag{5}\\
& =\varsigma^{p}+\sum_{j=p+1}^{\infty} \phi_{j, p}(\lambda) \varsigma^{k},(0<\lambda \leq 1)
\end{align*}
$$

where

$$
\begin{equation*}
\phi_{j, p}(\lambda)=\frac{[\lambda(j-p)]^{j-p-1} e^{-\lambda(j-p)}}{(j-p)!} \tag{6}
\end{equation*}
$$

We propose a linear operator $\mathcal{D}(p, \lambda ; \varsigma) \mathcal{F}: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$ as follows

$$
\begin{aligned}
\mathcal{D}(p, \lambda ; \varsigma) \mathcal{F}(\varsigma) & =\mathcal{M}_{p}(\lambda ; \varsigma) * \mathcal{F}(\varsigma) \\
& =\varsigma^{p}+\sum_{j=p+1}^{\infty} \frac{[\lambda(j-p)]^{j-p-1} e^{-\lambda(j-p)}}{(j-p)!} a_{j} \varsigma^{j},(0<\lambda \leq 1) .
\end{aligned}
$$

In a recent paper, Srivastava [8] studied various types of operators regarding q-calculus. We recall further some important definitions and notations. The q-shifted factorial is defined for $\lambda, q \in \mathbb{C}$ and $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ as follows

$$
(\mu ; q)_{j}= \begin{cases}1 & j=0 \\ (1-\mu)(1-\mu q) \ldots\left(1-\mu q^{j-1}\right) & j \in \mathbb{N}\end{cases}
$$

By using the q-gamma function $\Gamma_{q}(\varsigma)$, we get

$$
\left(q^{\mu} ; q\right)_{j}=\frac{(1-q)^{j} \Gamma_{q}(\mu+j)}{\Gamma_{q}(\mu)}, \quad\left(j \in \mathbb{N}_{0}\right)
$$

where (see [9])

$$
\Gamma_{q}(\varsigma)=(1-q)^{1-\varsigma} \frac{(q ; q)_{\infty}}{\left(q^{\zeta} ; q\right)_{\infty}}, \quad(|q|<1)
$$

Furthermore, we note that

$$
(\mu ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-\mu q^{j}\right), \quad(|q|<1)
$$

and, the q-gamma function $\Gamma_{q}(\zeta)$ is known

$$
\Gamma_{q}(\varsigma+1)=[j]_{q} \Gamma_{q}(\varsigma)
$$

where $[j]_{q}$ denotes the basic q-number defined as follows

$$
[j]_{q}:= \begin{cases}\frac{1-q^{j}}{1-q}, & j \in \mathbb{C} \tag{7}\\ 1+\sum_{i=1}^{j-1} q^{i}, & j \in \mathbb{N} .\end{cases}
$$

Using the definition from (7), we have the next two products:
(i) For a non negative integer j, the q-shifted factorial is defined by

$$
[j]_{q}!:= \begin{cases}1, & \text { if } \\ j_{j}=0 \\ \prod_{n=1}[n]_{q}, & \text { if }\end{cases}
$$

(ii) For a positive number r, the q-generalized Pochhammer symbol is given by

$$
[r]_{q, j}:=\left\{\begin{array}{lll}
1, & \text { if } & j=0 \\
{ }_{r=j-1}^{r j-1}[n]_{q}, & \text { if } & j \in \mathbb{N}
\end{array}\right.
$$

In terms of the classical (Euler's) gamma function $\Gamma(\varsigma)$, we have

$$
\Gamma_{q}(\varsigma) \rightarrow \Gamma(\varsigma) \quad \text { as } q \rightarrow 1^{-}
$$

Furthermore, we notice that

$$
\lim _{q \rightarrow 1^{-}}\left\{\frac{\left(q^{\mu} ; q\right)_{j}}{(1-q)^{j}}\right\}=(\mu)_{j}
$$

2. Preliminaries

In order to establish our new results, we have to recall the construct of a q-derivative operator. Considering $0<q<1$, the q-derivative operator [10] (see also other specific and generalized results [11-15]) for $\mathcal{D}(p, \lambda ; \varsigma) \mathcal{F}$ is defined by

$$
\begin{aligned}
\mathcal{D}_{q}(\mathcal{D}(p, \lambda ; \varsigma) \mathcal{F}(\varsigma)) & :=\frac{\mathcal{D}(p, \lambda ; \zeta) \mathcal{F}(\varsigma)-\mathcal{D}(p, \lambda ; \varsigma) \mathcal{F}(q \varsigma)}{\zeta(1-q)} \\
& =[p]_{q} \varsigma^{p-1}+\sum_{j=p+1}^{\infty}[j]_{q} \frac{[\lambda(j-p)]^{j-p-1} e^{-\lambda(j-p)}}{(j-p)!} a_{j} \varsigma^{j-1}
\end{aligned}
$$

where $[j]_{q}$ is defined in (7)
For $\alpha>-1$ and $0<q<1$, we obtain the linear operator $\mathcal{D}_{p, \lambda}^{\mu, \eta} \mathcal{F}: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$ by

$$
\mathcal{D}_{p, \lambda}^{\mu, q} \mathcal{F}(\varsigma) * \mathcal{N}_{p, \mu+1}^{q}(\varsigma)=\frac{\varsigma}{[p]_{q}} \mathcal{D}_{q}(\mathcal{D}(p, \lambda ; \varsigma) \mathcal{F}(\varsigma)), \varsigma \in \Delta,
$$

where the function $\mathcal{N}_{p, \alpha+1}^{q}$ is given by

$$
\mathcal{N}_{p, \mu+1}^{q}(\varsigma):=\varsigma^{p}+\sum_{j=p+1}^{\infty} \frac{[\mu+1]_{q, j-p}}{[j-1]_{q}!} \varsigma^{j}, \varsigma \in \Delta .
$$

A simple computation shows that

$$
\begin{align*}
\mathcal{D}_{p, \lambda}^{\mu, q} \mathcal{F}(\varsigma) & : \quad=\varsigma^{p}+\sum_{j=p+1}^{\infty} \frac{[j]_{q}![\lambda(j-p)]^{j-p-1} e^{-\lambda(j-p)}}{[p]_{q}[\mu+1]_{q, j-p}(j-p)!} a_{j} \varsigma^{j} \\
& =z^{p}+\sum_{j=p+1}^{\infty} \phi_{j} a_{j} \varsigma^{j} \quad(0<\lambda \leq 1, \mu>p, 0<q<1, \varsigma \in \Delta) . \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
\phi_{j}=\frac{[j]_{q}![\lambda(j-p)]^{j-p-1} e^{-\lambda(j-p)}}{[p]_{q}[\mu+1]_{q, j-p}(j-p)!} \tag{9}
\end{equation*}
$$

For $\delta \geq 0$, with the aid of the operator $\mathcal{D}_{p, \lambda}^{\mu, q}$ one can defined the linear q-differential Borel operator $\mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$ as follows:

$$
\begin{aligned}
\mathcal{G}_{p, q, \lambda, \delta}^{\mu, 0} \mathcal{F}(\varsigma): & =\mathcal{D}_{p, \lambda}^{\mu, q} \mathcal{F}(\varsigma) \\
\mathcal{G}_{p, q, \lambda, \delta}^{\mu, 1} \mathcal{F}(\varsigma): & =(1-\delta) \mathcal{G}_{p, q, \lambda, \delta}^{\mu, 0} \mathcal{F}(\varsigma)+\delta \frac{\varsigma}{p}\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, 0} \mathcal{F}(\varsigma)\right)^{\prime} \\
= & \varsigma^{p}+\sum_{j=p+1}^{\infty} \frac{[j]_{q}![\lambda(j-p)]^{j-p-1} e^{-\lambda(j-p)}}{[p]_{q}[\mu+1]_{q, j-p}(j-p)!}\left[1+\delta\left(\frac{j}{p}-1\right)\right] a_{j} \varsigma^{j} \\
\mathcal{G}_{p, q, \lambda, \delta}^{\mu, 2} \mathcal{F}(\varsigma): & =(1-\delta) \mathcal{G}_{p, q, \lambda, \delta}^{\mu, 1} \mathcal{F}(\varsigma)+\delta \frac{\mathcal{S}}{p}\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, 1} \mathcal{F}(\varsigma)\right)^{\prime} \\
= & \varsigma^{p}+\sum_{j=p+1}^{\infty} \frac{[j]_{q}![\lambda(j-p)]^{j-p-1} e^{-\lambda(j-p)}}{[p]_{q}[\mu+1]_{q, j-p}(j-p)!}\left[1+\delta\left(\frac{j}{p}-1\right)\right]^{2} a_{j} \varsigma^{j} \\
& \cdot \\
& \cdot \\
& \cdot \\
\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma): & =\varsigma^{p}+\sum_{j=p+1}^{\infty} \frac{[j]_{q}![\lambda(j-p)]^{j-p-1} e^{-\lambda(j-p)}}{[p]_{q}[\mu+1]_{q, j-p}(j-p)!}\left[1+\delta\left(\frac{j}{p}-1\right)\right]^{m} a_{j} \varsigma^{j},(10) \\
& \left(m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \delta \geq 0,0<\lambda \leq 1, \mu>p, 0<q<1\right) .
\end{aligned}
$$

From the relation (10), we can easily deduce that the next relations held for all $\mathcal{F} \in \mathcal{A}_{p}$:

$$
\begin{equation*}
\text { (i) } \varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)\right)^{\prime}=\mu \mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)-(\mu-p) \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma) \tag{11}
\end{equation*}
$$

and
(ii) $\delta \zeta\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)\right)^{\prime}=p \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m+1} \mathcal{F}(\varsigma)-p(1-\delta) \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)$

Remark 1. By particularizing the parameters p and m, we derive the following operators based on Borel distribution:
(1) Letting $p=1$, we obtain that $\mathcal{G}_{1, q, \lambda, \delta}^{\mu, m}=: \mathcal{I}_{q, \lambda, \delta^{\prime}}^{\mu, m}$, where the operator $\mathcal{I}_{q, \lambda, \delta}^{\mu, m}$ is defined as follows:

$$
\mathcal{I}_{q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma):=\varsigma+\sum_{j=2}^{\infty} \frac{[j]_{q}![\lambda(j-1)]^{j-2} e^{-\lambda(j-1)}}{[\mu+1]_{q, j-1}(j-1)!}[1+\delta(j-1)]^{m} a_{j} \varsigma^{j}
$$

(2) Letting $p=1$ and $m=0$, we deduce that $\mathcal{G}_{1, q, \lambda, \delta}^{\mu, 0}=: \mathcal{B}_{\lambda}^{\mu, q}$, where the operator $\mathcal{B}_{\lambda}^{\mu, q}$, introduced by El-Deeb and Murugusundaramoorthy [16];
(3) Letting $q \rightarrow 1^{-}$and $p=1$, we deduce that $\lim _{q \rightarrow 1^{-}} \mathcal{G}_{1, q, \lambda, \delta}^{\mu, m}:=\mathcal{R}_{\lambda, \delta}^{\mu, m}$, where the operator $\mathcal{R}_{\lambda, \delta}^{\mu, m}$ is defined as follows

$$
\mathcal{R}_{\lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma):=\varsigma+\sum_{j=2}^{\infty} \frac{j[\lambda(j-1)]^{j-2} e^{-\lambda(j-1)}}{(\mu+1)_{j-1}}[1+\delta(j-1)]^{m} a_{j} \varsigma^{j} ;
$$

(4) Putting $q \rightarrow 1^{-}, p=1$ and $m=0$, we obtain that $\lim _{q \rightarrow 1^{-}} \mathcal{G}_{1, q, \lambda, \delta}^{\mu, 0}:=\mathcal{M}_{\lambda}^{\mu}$, where the operator $\mathcal{M}_{\lambda}^{\mu}$, studied by El-Deeb and Murugusundaramoorthy [16].

Now we introduce the following classes $\mathcal{S}_{p}^{k}(\alpha), \mathcal{C}_{p}^{k}(\alpha)$ and $\mathcal{K}_{p}^{k}(\beta, \alpha)$ of the class \mathcal{A}_{p} for $0 \leq \alpha, \beta<p, p \in \mathbb{N}$ and $k \geq 2$ as follows:

$$
\begin{aligned}
\mathcal{S}_{p}^{k}(\alpha) & =\left\{\mathcal{F}: \mathcal{F} \in \mathcal{A}_{p} \text { and } \frac{\varsigma \mathcal{F}^{\prime}(\varsigma)}{\mathcal{F}(\varsigma)} \in \mathcal{P}_{p, k}(\alpha), \varsigma \in \Delta\right\}, \\
\mathcal{C}_{p}^{k}(\alpha) & =\left\{\mathcal{F}: \mathcal{F} \in \mathcal{A}_{p} \text { and } 1+\frac{\varsigma \mathcal{F}^{\prime \prime}(\varsigma)}{\mathcal{F}^{\prime}(\varsigma)} \in \mathcal{P}_{p, k}(\alpha), \varsigma \in \Delta\right\},
\end{aligned}
$$

and

$$
\mathcal{K}_{p}^{k}(\beta, \alpha)=\left\{\mathcal{F}: \mathcal{F} \in \mathcal{A}_{p}, g \in \mathcal{S}_{p}^{2}(\alpha) \text { and } \frac{\varsigma \mathcal{F}^{\prime}(\varsigma)}{g(\varsigma)} \in \mathcal{P}_{p, k}(\beta), \varsigma \in \Delta\right\}
$$

Obviously, we know that

$$
\begin{equation*}
\mathcal{F}(\varsigma) \in \mathcal{C}_{p}^{k}(\alpha) \Leftrightarrow \frac{\zeta \mathcal{F}^{\prime}(\varsigma)}{p} \in \mathcal{S}_{p}^{k}(\alpha) \tag{13}
\end{equation*}
$$

Remark 2. By particularizing the parameter k, we obtain the following classes:
(i) $\mathcal{S}_{p}^{2}(\alpha)=\mathcal{S}_{p}^{*}(\alpha)(0 \leq \alpha<p, p \in \mathbb{N})$, where $\mathcal{S}_{p}^{*}(\alpha)$ is the well-known class of p-valently starlike functions of order α and was studied by Patil and Thakare [17];
(ii) $\mathcal{C}_{p}^{2}(\alpha)=\mathcal{C}_{p}(\alpha)(0 \leq \alpha<p, p \in \mathbb{N})$, where $\mathcal{C}_{p}(\alpha)$ is the well-known class of p-valently convex functions of order α and was studied by Owa [18];
(iii) $\mathcal{K}_{p}^{2}(\beta, \alpha)=\mathcal{K}_{p}(\beta, \alpha)(0 \leq \alpha<p, p \in \mathbb{N})$, where $\mathcal{K}_{p}(\beta, \alpha)$ is the class of all p-valently close-to-convex functions of order β and type α and was introduced by Aouf [19].

Next, by making use of the operator defined by (10), we obtain the following subclasses $\mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha), \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha)$ and $\mathcal{K}_{p, q, \lambda, \delta}^{\mu, m, k}(\beta, \alpha)$ of the class \mathcal{A}_{p} as follows:

$$
\begin{align*}
& \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha)=\left\{\mathcal{F}: \mathcal{F} \in \mathcal{A}_{p} \text { and } \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma) \in \mathcal{S}_{p}^{k}(\alpha), \varsigma \in \Delta\right\}, \tag{14}\\
& \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha)=\left\{\mathcal{F}: \mathcal{F} \in \mathcal{A}_{p} \text { and } \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma) \in \mathcal{C}_{p}^{k}(\alpha), \varsigma \in \Delta\right\}, \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{K}_{p, q, \lambda, \delta}^{\mu, m, k}(\beta, \alpha)=\left\{\mathcal{F}: \mathcal{F} \in \mathcal{A}_{p} \text { and } \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma) \in \mathcal{K}_{p}^{k}(\beta, \alpha), \varsigma \in \Delta\right\} \tag{16}
\end{equation*}
$$

We can easily see that

$$
\begin{equation*}
\mathcal{F}(\varsigma) \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha) \Leftrightarrow \frac{\varsigma \mathcal{F}^{\prime}(\varsigma)}{p} \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha) \tag{17}
\end{equation*}
$$

In order to establish our main results, we will require the following lemmas.
Lemma 1 ([20,21]). Let $\Phi(r, s)$ be complex valued function, $\Phi: \mathcal{D} \rightarrow \mathbb{C}, \mathcal{D} \subset \mathbb{C} \times \mathbb{C}(\mathbb{C}$ is the complex plane) and let $r=r_{1}+i r_{2}, s=s_{1}+i s_{2}$. Suppose that $\Phi(r, s)$ satisfies the following conditions:
(i) $\Phi(r, s)$ is continuous in a domain \mathcal{D};
(ii) $(1,0) \in \mathcal{D}$ and $\Re\{\Phi(1,0)\}>0$;
(iii) $\Re\left\{\Phi\left(i r_{2}, s_{1}\right)\right\} \leq 0$ for all $\left(i r_{2}, s_{1}\right) \in \mathcal{D}$ and such that $s_{1} \leq-\frac{1}{2}\left(1+r_{2}^{2}\right)$.

Let $h(\varsigma)=1+\sum_{m=1}^{\infty} c_{m} \varsigma^{m}$, be regular in Δ such that $\left(h(\varsigma), \varsigma h^{\prime}(\varsigma)\right) \in \mathcal{D}$ for all $\varsigma \in \Delta$. If

$$
\Re\left\{\Phi\left(h(\varsigma), \varsigma h^{\prime}(\varsigma)\right)\right\}>0 \quad(\varsigma \in \Delta)
$$

then

$$
\Re\{h(\varsigma)\}>0 \quad(\varsigma \in \Delta)
$$

Lemma 2 ([22]). Let Φ be convex and \mathcal{F} be starlike in Δ. Then, for Y analytic in Δ with $\mathrm{Y}(0)=1$, $\frac{\Phi * Y \mathcal{F}}{\Phi * \mathcal{F}}$ is contained in the convex hull of $\mathrm{Y}(\Delta)$.

3. Inclusion Properties Involving the Operator $\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m}$

Further, we assume throughout this paper that $k \geq 2, p \in \mathbb{N}, m \in \mathbb{N}_{0}, \delta \geq 0,0<\lambda \leq$ $1,0<q<1, \varsigma \in \Delta$ and the power are the principal values.

Theorem 1. For $0 \leq \zeta \leq \alpha<p$ and $\mu>p$, then

$$
\mathcal{S}_{p, q, \lambda, \delta}^{\mu-1, m, k}(\alpha) \subset \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\zeta)
$$

where ζ is given by

$$
\begin{equation*}
\zeta=\frac{2[p-2 \alpha(p-\mu)]}{\sqrt{(2 \mu-2 p-2 \alpha+1)^{2}+8(p-2 \alpha(p-\mu))}+(2 \mu-2 p-2 \alpha+1)} . \tag{18}
\end{equation*}
$$

Proof. Assume that $\mathcal{F} \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu-1, m, k}(\alpha)$ and let

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)}=M(\varsigma)=(p-\zeta) h(\varsigma)+\zeta \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
h(\varsigma)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(\varsigma)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(\varsigma) \tag{20}
\end{equation*}
$$

and $h_{i}(z)(i=1,2)$ are analytic in Δ with $h_{i}(0)=1, i=1,2$. Using (11) and (19), we have

$$
\begin{equation*}
\mu \frac{\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)}=(p-\zeta) h(\varsigma)+\zeta-\mu+p \tag{21}
\end{equation*}
$$

By computing the logarithmical derivative of (21) with respect to ς, we have

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)}-\alpha=\zeta-\alpha+(p-\zeta) h(\varsigma)+\frac{(p-\zeta) \varsigma h^{\prime}(\varsigma)}{(p-\zeta) h(\varsigma)+\zeta-\mu+p} \tag{22}
\end{equation*}
$$

Now we show that $M(\varsigma) \in \mathcal{P}_{p, k}(\alpha)$ or $h_{i}(\varsigma) \in \mathcal{P}, i=1,2$. From (20) and (22), we have

$$
\begin{aligned}
& \frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)}-\alpha=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{\zeta-\alpha+(p-\zeta) h_{1}(\varsigma)+\frac{(p-\zeta) \varsigma h_{1}^{\prime}(\varsigma)}{(p-\zeta) h_{1}(\zeta)+\zeta-\mu+p}\right\} \\
&-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{\zeta-\alpha+(p-\zeta) h_{2}(\zeta)+\frac{(p-\zeta) \varsigma h_{2}^{\prime}(\varsigma)}{(p-\zeta) h_{2}(\varsigma)+\zeta-\mu+p}\right\}
\end{aligned}
$$

and this implies that

$$
\Re\left\{\zeta-\alpha+(p-\zeta) h_{i}(\varsigma)+\frac{(p-\zeta) \varsigma h_{i}^{\prime}(\varsigma)}{(p-\zeta) h_{i}(\zeta)+\zeta-\mu+p}\right\}>0(\varsigma \in \Delta ; i=1,2) .
$$

We form the function $\Phi(r, s)$ by choosing $r=h_{i}(\varsigma)$ and $s=\varsigma h_{i}^{\prime}(\varsigma)$. Thus

$$
\Phi(r, s)=\zeta-\alpha+(p-\zeta) r+\frac{(p-\zeta) s}{(p-\zeta) r+\zeta-\mu+p}
$$

Then, we have
(i) $\Phi(r, s)$ is continuous function in $\mathcal{D}=\left(\mathbb{C} \backslash \frac{\zeta-\mu+p}{\zeta-p}\right) \times \mathbb{C}$;
(ii) $(1,0) \in \mathcal{D}$ and $\Re\{\Phi(1,0)\}=p-\alpha>0$;
(iii)

$$
\begin{aligned}
\Re\left\{\Phi\left(i r_{2}, s_{1}\right)\right\} & =\Re\left\{\zeta-\alpha+(p-\zeta) i r_{2}+\frac{(p-\zeta) s_{1}}{(p-\zeta) i r_{2}+\zeta-\mu+p}\right\} \\
& =\zeta-\alpha+\frac{(p-\zeta)(\zeta-\mu+p) s_{1}}{(p-\zeta)^{2} r_{2}^{2}+(\zeta-\mu+p)^{2}} \\
& \leq \zeta-\alpha-\frac{(p-\zeta)(\zeta-\mu+p)\left(1+r_{2}^{2}\right)}{2\left[(p-\zeta)^{2} r_{2}^{2}+(\zeta-\mu+p)^{2}\right]} \\
& =\frac{R+E r_{2}^{2}}{2 C}
\end{aligned}
$$

for all $\left(i r_{2}, s_{1}\right) \in \mathcal{D}$ such that $s_{1} \leq-\frac{1}{2}\left(1+r_{2}^{2}\right)$,
where

$$
\begin{gathered}
R=2(\zeta-\alpha)(\zeta-\mu+p)^{2}-(p-\zeta)(\zeta-\mu+p), \\
E=2(\zeta-\alpha)(p-\zeta)^{2}-(p-\zeta)(\zeta-\mu+p), \\
C=(p-\zeta)^{2} r_{2}^{2}+(\zeta-\mu+p)^{2} .
\end{gathered}
$$

We note that $\Re\left\{\Phi\left(i r_{2}, s_{1}\right)\right\}<0$, if and only if $R \leq 0, E<0$ and $C>0$. From $R \leq 0$, we obtain ζ as given by (18), and from $0 \leq \zeta<\alpha<p$, we have $E<0$. By applying Lemma $1, h_{i}(\varsigma) \in \mathcal{P}(i=1,2)$ and consequently $M(\varsigma) \in \mathcal{P}_{p, k}(\gamma)$ for $\varsigma \in \Delta$. This completes the proof of Theorem 1.

Theorem 2. For $0 \leq \zeta \leq \alpha<p$ and $\mu>p$, then

$$
\mathcal{C}_{p, q, \lambda, \delta}^{\mu-1, m, k}(\alpha) \subset \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, k}(\zeta)
$$

where ζ is given by (18).

Proof. Let

$$
\begin{aligned}
\mathcal{F} & \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu-1, m, k}(\alpha) \Rightarrow \mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma) \in \mathcal{C}_{p}^{k}(\alpha) \\
& \Rightarrow \frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)\right)^{\prime}}{p} \in \mathcal{S}_{p}^{k}(\alpha) \\
& \Rightarrow \mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m}\left(\frac{\varsigma^{\prime} \mathcal{F}^{\prime}(\varsigma)}{p}\right) \in \mathcal{S}_{p}^{k}(\alpha) \\
& \Rightarrow \frac{\varsigma \mathcal{F}^{\prime}(\varsigma)}{p} \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu-1, m, k}(\alpha) \subset \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\zeta) \\
& \left.\Rightarrow \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \frac{\varsigma^{\prime} \mathcal{F}^{\prime}(\varsigma)}{p}\right) \in \mathcal{S}_{p}^{k}(\zeta) \\
& \Rightarrow \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma) \in \mathcal{C}_{p}^{k}(\zeta) \\
& \Rightarrow \mathcal{F} \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, k}(\zeta) .
\end{aligned}
$$

This completes the proof of Theorem 2.
Theorem 3. For $0 \leq \beta \leq \alpha<p$ and $\mu>p$, then

$$
\mathcal{K}_{p, q, \lambda, \delta}^{\mu-1, m, k}(\beta, \alpha) \subset \mathcal{K}_{p, q, \lambda, \delta}^{\mu, m, k}(\beta, \alpha) .
$$

Proof. Let $\mathcal{F} \in \mathcal{K}_{p, q, \lambda, \delta}^{\mu-1, m, k}(\beta, \alpha)$. Then, there exists $G(\varsigma) \in \mathcal{S}_{p}^{2}(\alpha) \equiv S_{p}^{*}(\alpha)$ such that

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\zeta)\right)^{\prime}}{G(\zeta)} \in \mathcal{P}_{p, k}(\beta) \tag{23}
\end{equation*}
$$

Then

$$
G(\varsigma)=\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} g(\zeta) \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu-1, m, 2}(\alpha)
$$

We set

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} g(\varsigma)}=\mathcal{R}(\varsigma)=(p-\beta) h(\varsigma)+\beta \tag{24}
\end{equation*}
$$

where $h(\varsigma)$ is given by (20). By using (11) in (23), we get

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} g(\varsigma)}=\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m}\left(\varsigma \mathcal{F}^{\prime}(\varsigma)\right)\right)^{\prime}+(\mu-p) \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m}\left(\varsigma \mathcal{F}^{\prime}(\varsigma)\right)}{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} g(\varsigma)\right)^{\prime}+(\mu-p) \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} g(\varsigma)} \tag{25}
\end{equation*}
$$

Furthermore, $G(\varsigma) \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu-1, m, 2}(\alpha)$ and by using Theorem 1, with $k=2$, we have $G(\zeta) \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, 2}(\alpha)$. Therefore, we can write

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} g(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} g(\varsigma)}=\mathcal{R}_{0}(\varsigma)=(p-\alpha) q(\varsigma)+\alpha \quad\left(q \in \mathcal{P}_{k}\right) \tag{26}
\end{equation*}
$$

where $q(\varsigma)=1+c_{1} \varsigma+c_{2} \varsigma^{2}+\ldots$ is analytic and $q(0)=1$ in Δ. By differentiating (24) with respect to ς, we have

$$
\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m}\left(\varsigma \mathcal{F}^{\prime}(\varsigma)\right)\right)^{\prime}=\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} g(\varsigma)\right)^{\prime} \mathcal{R}(\varsigma)+\varsigma \mathcal{R}^{\prime}(\varsigma) \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} g(\varsigma)
$$

then

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m}\left(\varsigma f^{\prime}(\varsigma)\right)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \lambda, \delta}^{\mu, m} g(\varsigma)}=\varsigma \mathcal{R}^{\prime}(\varsigma)+\mathcal{R}_{0}(\varsigma) \mathcal{R}(\varsigma) \tag{27}
\end{equation*}
$$

From (25) and (27), we obtain

$$
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} g(\varsigma)}=\frac{\varsigma \mathcal{R}^{\prime}(\varsigma)+\mathcal{R}_{0}(\varsigma) \mathcal{R}(\varsigma)+(\mu-p) \mathcal{R}(\varsigma)}{\mathcal{R}_{0}(\varsigma)+(\mu-p)}
$$

so that

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} f(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} g(\varsigma)}=\mathcal{R}(\varsigma)+\frac{\varsigma \mathcal{R}^{\prime}(\varsigma)}{\mathcal{R}_{0}(\varsigma)+(\mu-p)} \tag{28}
\end{equation*}
$$

Let

$$
\mathcal{R}(\varsigma)=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\beta) h_{1}(\varsigma)+\beta\right\}-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\beta) h_{2}(\varsigma)+\beta\right\}
$$

and

$$
\mathcal{R}_{0}(\varsigma)+(\mu-p)=(p-\alpha) q(\varsigma)+(\alpha+\mu-p)
$$

We intend to show that $\mathcal{R} \in \mathcal{P}_{p, k}(\beta)$ or $h_{i} \in \mathcal{P}$ for $i=1,2$. Then, we can say that $\Re\left\{\mathcal{R}_{0}(\varsigma)+(\mu-p)\right\}>0$. From (24) and (28), we have

$$
\begin{aligned}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} \mathcal{F}(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu-1, m} g(\varsigma)}-\beta & =\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\beta) h_{1}(\varsigma)+\frac{(p-\beta) \varsigma h_{1}^{\prime}(\varsigma)}{(p-\alpha) q(\varsigma)+(\alpha+\mu-p)}\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\beta) h_{2}(\varsigma)+\frac{(p-\beta) \varsigma h_{2}^{\prime}(\varsigma)}{(p-\alpha) q(\varsigma)+(\alpha+\mu-p)}\right\}
\end{aligned}
$$

and this implies that

$$
\Re\left\{(p-\beta) h_{i}(\varsigma)+\frac{(p-\beta) \varsigma h_{i}^{\prime}(\varsigma)}{(p-\alpha) q(\varsigma)+(\alpha+\mu-p)}\right\}>0(\varsigma \in \Delta, i=1,2)
$$

We form the function $\Phi(r, s)$ by choosing $r=h_{i}(\varsigma)$ and $s=\varsigma h_{i}^{\prime}(\varsigma)$. Thus,

$$
\begin{equation*}
\Phi(r, s)=(p-\beta) r+\frac{(p-\beta) s}{(p-\alpha) q(s)+(\alpha+\mu-p)} \tag{29}
\end{equation*}
$$

Then
(i) $\Phi(r, s)$ is continuous in $D=\mathbb{C} \times \mathbb{C}$;
(ii) $(1,0) \in D$ and $\Re\{\Phi(1,0)\}=p-\beta>0$;
(iii)

$$
\begin{aligned}
\Re\left\{\Phi\left(i r_{2}, s_{1}\right)\right\} & =\Re\left\{(p-\beta) i u_{2}+\frac{(p-\beta) v_{1}}{(p-\alpha)\left(q_{1}+i q_{2}\right)+(\alpha+\mu-p)}\right\} \\
& =\frac{(p-\beta)\left[(p-\alpha) q_{1}+\alpha+\mu-p\right] s_{1}}{\left[(p-\alpha) q_{1}+\alpha+\mu-p\right]^{2}+(p-\alpha)^{2} q_{2}^{2}} \\
& \leq-\frac{(p-\beta)\left[(p-\alpha) q_{1}+\alpha+\mu-p\right]\left(1+r_{2}^{2}\right)}{2\left\{\left[(p-\alpha) q_{1}+\alpha+\mu-p\right]^{2}+(p-\alpha)^{2} q_{2}^{2}\right\}}<0
\end{aligned}
$$

for all $\left(i r_{2}, s_{1}\right) \in D$ such that $s_{1} \leq-\frac{1}{2}\left(1+r_{2}^{2}\right)$.
By applying Lemma 1 , we have $\Re\left\{h_{i}(\varsigma)\right\}>0$ for $(i=1,2)$ and consequently $\mathcal{R}(\varsigma) \in \mathcal{P}_{p, k}(\beta)$ for $\varsigma \in \Delta$. This completes the proof of Theorem 3 .

4. Inclusion Properties Involving the Integral Operator $\mathcal{J}_{\mathcal{\delta}, p}$

The generalized Bernardi operator is defined by (see [23])

$$
\begin{equation*}
\mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma)=\frac{\delta+p}{\varsigma^{\delta}} \int_{0}^{\varsigma} t^{\delta-1} \mathcal{F}(t) d t(\delta>-p) \tag{30}
\end{equation*}
$$

which satisfies the following relationship:

$$
\begin{equation*}
\varsigma\left(\mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma)\right)^{\prime}=(\delta+p) \mathcal{F}(\varsigma)-\delta \mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma) \tag{31}
\end{equation*}
$$

Theorem 4. If $0 \leq \alpha<p, k \geq 2$ and $\mathcal{F} \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha)$, then $\mathcal{J}_{\delta, p}(\mathcal{F}) \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha)(\delta \geq 0)$.

Proof. Let

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma)}=\mathcal{R}(\varsigma)=(p-\alpha) h(\varsigma)+\alpha \tag{32}
\end{equation*}
$$

where $h(\varsigma)$, given by (20). Using (31), we have

$$
\begin{equation*}
\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma)\right)^{\prime}=(\delta+p) \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)-\delta \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma) \tag{33}
\end{equation*}
$$

From (32) and (33), we have

$$
\begin{equation*}
(\delta+p) \frac{\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma)}=(p-\alpha) h(\varsigma)+\alpha+\delta \tag{34}
\end{equation*}
$$

By computing the logarithmical derivative of (34) with respect to ς and multiplying by ς, we have

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)}-\alpha=(p-\alpha) h(\varsigma)+\frac{(p-\alpha) \varsigma h^{\prime}(\varsigma)}{(p-\alpha) h(\varsigma)+\alpha+\delta} . \tag{35}
\end{equation*}
$$

Now, we show that $\mathcal{R}(\varsigma) \in \mathcal{P}_{p, k}(\alpha)$ or $h_{i} \in \mathcal{P}$ for $i=1$,2. From (20) and (35), we have

$$
\begin{aligned}
& \frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)\right)^{\prime}}{\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}(\varsigma)}-\alpha=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\alpha) h_{1}(\varsigma)+\frac{(p-\alpha) \varsigma h_{1}^{\prime}(\varsigma)}{(p-\alpha) h_{1}(\varsigma)+\alpha+\delta}\right\} \\
&-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\alpha) h_{2}(\varsigma)+\frac{(p-\alpha) \varsigma h_{2}^{\prime}(\varsigma)}{(p-\alpha) h_{2}(\varsigma)+\alpha+\delta}\right\}
\end{aligned}
$$

and this implies that

$$
\Re\left\{(p-\alpha) h_{i}(\varsigma)+\frac{(p-\alpha) \varsigma h_{i}^{\prime}(\varsigma)}{(p-\alpha) h_{i}(\varsigma)+\alpha+\delta}\right\}>0(\varsigma \in \Delta ; i=1,2)
$$

We form the function $\Phi(r, s)$ by choosing $r=h_{i}(\varsigma)$ and $s=\varsigma h_{i}^{\prime}(\varsigma)$. Thus

$$
\begin{equation*}
\Phi(r, s)=(p-\alpha) r+\frac{(p-\alpha) s}{(p-\alpha) r+\alpha+\delta} \tag{36}
\end{equation*}
$$

Clearly, conditions (i), (ii) and (iii) of Lemma 1 are satisfied. By applying Lemma 1, we have $\Re\left\{h_{i}(\varsigma)\right\}>0$ for $(i=1,2)$ and consequently $\mathcal{J}_{\delta, p}(\mathcal{F}) \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha)$ for $\varsigma \in \Delta$. This completes the proof of Theorem 1.

Theorem 5. If $0 \leq \alpha<p, k \geq 2$ and $\mathcal{F} \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha)$, then $\mathcal{J}_{\delta, p}(\mathcal{F}) \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha)(\delta \geq 0)$.
Proof. Let

$$
\mathcal{F} \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha) \Leftrightarrow \frac{\varsigma \mathcal{F}^{\prime}(\varsigma)}{p} \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha) .
$$

By applying Theorem 4, we have

$$
\mathcal{J}_{\delta, p}\left(\frac{\varsigma \mathcal{F}^{\prime}(\varsigma)}{p}\right) \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha) \Leftrightarrow \frac{\varsigma\left(\mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma)\right)^{\prime}}{p} \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha) \Leftrightarrow \mathcal{J}_{\delta, p}(\mathcal{F})(\varsigma) \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, k}(\alpha),
$$

which evidently proves Theorem 5.

5. Inclusion Properties by Convolution

Theorem 6. Let Φ be a convex function and $\mathcal{F} \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)$, then $G \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)$, where $G=\mathcal{F} * \Phi$ and $0 \leq \gamma<1$.

Proof. To show that $G=\mathcal{F} * \Phi \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)(0 \leq \gamma<1)$, it sufficient to show that $\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} G\right)^{\prime}}{p \mathcal{G}_{p, q, \lambda, \delta}^{m, \lambda} G}$ contained in the convex hull of $Y(\Delta)$. Now

$$
\begin{equation*}
\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} G\right)^{\prime}}{p \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} G}=\frac{\Phi * Y \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}}{\Phi * \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}}, \tag{37}
\end{equation*}
$$

where $\mathrm{Y}=\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} \mathcal{F}\right)^{\prime}}{p \mathcal{G}_{p, q, \gamma, \delta}, \mathcal{F}}$ is analytic in Δ and $\mathrm{Y}(0)=1$. From Lemma 2, we can see that $\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} G\right)^{\prime}}{p \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} G}$ is contained in the convex hull of $Y(\Delta)$, since $\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} G\right)^{\prime}}{p \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} G}$ is analytic in Δ and

$$
\begin{equation*}
\mathrm{Y}(\Delta) \subseteq \Omega=\left\{w: \frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} w(\varsigma)\right)^{\prime}}{p \mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} w(\varsigma)} \in \mathcal{P}(\gamma)\right\} \tag{38}
\end{equation*}
$$

then $\frac{\varsigma\left(\mathcal{G}_{p, q, \lambda, \delta}^{\mu, m} G\right)^{\prime}}{p \mathcal{G}_{p, q, \lambda, \delta}^{\mu, \phi} G}$ lies in Ω, this implies that $G=\mathcal{F} * \Phi \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)$.
Theorem 7. Let Φ be a convex function and $\mathcal{F} \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)$, then $G \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)$, where $G=\mathcal{F} * \Phi$ and $0 \leq \gamma<1$.

Proof. Let $\mathcal{F} \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)$, then, by using (13), we have

$$
\frac{\varsigma \mathcal{F}^{\prime}(\varsigma)}{p} \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)
$$

and hence by using Theorem 6, we get

$$
\begin{aligned}
\frac{\varsigma \mathcal{F}^{\prime}(\varsigma)}{p} * \Phi(\varsigma) & \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma) \\
& \Rightarrow \frac{\varsigma(\mathcal{F} * \Phi)^{\prime}(\varsigma)}{p} \in \mathcal{S}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)
\end{aligned}
$$

Now applying (13) again, we obtain $G=\mathcal{F} * \Phi \in \mathcal{C}_{p, q, \lambda, \delta}^{\mu, m, 2}(p \gamma)$, which evidently proves Theorem 7.

Remark 3. Particularizing the parameters q and m in the results of this paper, we derive various results for different operators.

6. Conclusions

In the present survey, we propose new subclasses of p-valent functions by making use of the linear q-differential Borel operator. The applications of this interesting operator are discussed. Inclusion properties and certain integral preserving relations were aimed to be our main concern.

Author Contributions: Conceptualization, A.C. and S.M.E.-D.; methodology, S.M.E.-D.; validation, A.C., E.-R.B. and S.M.E.-D.; formal analysis, E.-R.B.; investigation, A.C., E.-R.B. and S.M.E.-D.; writing-original draft, S.M.E.-D.; writing-review \& editing, A.C. and S.M.E.-D.; visualization, E.-R.B.; supervision, S.M.E.-D.; project administration, S.M.E.-D. All authors have read and agreed to the published version of the manuscript.
Funding: The research was funded by the University of Oradea, Romania.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: No data were used to support this study.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aouf, M.K. A generalization of functions with real part bounded in the mean on the unit disc. Math. Japon. 1988, 33, 175-182.
2. Padmanabhan, K.S.; Parvatham, R. Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 1975, 31, 311-323. [CrossRef]
3. Pinchuk, B. Functions with bounded boundary rotation. Isr. Math. 1971, 10, 7-16. [CrossRef]
4. Robertson, M.S. Variational formulas for several classes of analytic functions. Math. Z. 1976, 118, 311-319. [CrossRef]
5. Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71-82. [CrossRef]
6. El-Deeb, S.M.; Murugusundaramoorthy, G.; Alburaikan, A. Bi-Bazilevic functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials. J. Math. Comput. Sci. 2022, 24, 173-183. [CrossRef]
7. Murugusundaramoorthy, G.; El-Deeb, S.M. Second Hankel determinant for a class of analytic functions of the Mittag-Leffler-type Borel distribution related with Legendre polynomials. Twms J. Appl. Eng. Math. 2022, 12, 1247-1258.
8. Srivastava, H.M. Operators of basic (or $q-$) calculus and fractional q-calculus and their applications in Geometric Function theory of Complex Analysis. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 327-344. [CrossRef]
9. Gasper, G.; Rahman, M. Basic hypergeometric series (with a Foreword by Richard Askey). In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 35.
10. Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193-203.
11. Al-Shbeil, I.; Shaba, T.G.; Cătaş, A. Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator. Fractal Fract. 2022, 6, 186. [CrossRef]
12. Abu Risha, M.H.; Annaby, M.H.; Ismail, M.E.H.; Mansour, Z.S. Linear q-difference equations. Z. Anal. Anwend. 2007, 26, 481-494. [CrossRef]
13. Cătaş, A. On the Fekete-Szegö problem for certain classes of meromorphic functions using p,q-derivative operator and a p,q-wright type hypergeometric function. Symmetry 2021, 13, 2143. [CrossRef]
14. El-Deeb, S.M.; El-Matary, B.M. Coefficient boundeds of p-valent function connected with q-analogue of Salagean operator. Appl. Math. Inf. Sci. 2020, 14, 1057-1065.
15. Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253-281. [CrossRef]
16. El-Deeb S. M.; Murugusundaramoorthy, G. Applications on a subclass of β-uniformly starlike functions connected with q-Borel distribution. Asian-Eur. J. Math. 2022, 15, 1-20. [CrossRef]
17. Patil, D.A.; Thakare, N.K. On convex hulls and extreme points of p-valent starlike and convex classes with applications. Bull. Math. Soc. Sci. Math. R. S. Roum. 1983, 27, 145-160.
18. Owa, S. On certain classes of p-valent functions with negative coefficient. Simon Stevin 1985, 59, 385-402.
19. Aouf, M.K. On a class of p-valent close-to-convex functions, Internat. J. Math. Math. Sci. 1988, 11, 259-266. [CrossRef]
20. Miller, S.S. Differential inequalities and Caratheodory function. Bull. Amer. Math. Soc. 1975, 8, 79-81. [CrossRef]
21. Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289-305. [CrossRef]
22. Ruscheweyh, S.; Shiel-Small, T. Hadmard product of schlicht functions and Polya-Schoenberg conjecture. Comment. Math. Helv. 1973, 48, 119-135. [CrossRef]
23. Choi, J.H.; Saigo M.; Srivastava, H.M. Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 2002, 276, 432-445. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

