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Abstract: By laminating piezoelectric and flexible materials, we can increase their performance.
Therefore, the electrical and mechanical properties of layered piezoelectric materials subjected to
electromechanical loads and heat sources must be analyzed theoretically and mechanically. Since the
problem of infinite wave propagation cannot be addressed using classical thermoelasticity, extended
thermoelasticity models have been derived. The thermo-mechanical response of a piezoelectric
functionally graded (FG) rod due to a moveable axial heat source is considered in this paper, utilizing
the dual-phase-lag (DPL) heat transfer model. It was supposed that the physical characteristics of
the FG rod varied exponentially along the axis of the body. Both ends hold the rod, and there is
no voltage across them. The Laplace transform and decoupling techniques were used to obtain the
physical fields that have been analyzed. A range of heterogeneity, rotation, and heat source velocity
measures were used to compare the results presented here and those in the previous literature.

Keywords: piezoelectric rod; DPL thermoelasticity; gradient index; heat sources; electric potential
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1. Introduction

Lord and Shulman [1] discussed expanding Fourier’s heat transfer law by includ-
ing a flux-rate term and developing a general form consisting of a hyperbolic-type heat
conduction equation with a limited thermal pulse speed. This would make for a better
thermoelasticity framework. Green and Lindsay [2] used relaxation time aspects that do
not go against the standard Fourier law of heat transfer to build a thermoelastic framework
that predicts a heat transfer speed limit based on the temperature change rate. Further
developments of thermoelasticity were made by Green and Naghdi [3–5], who introduced
the so-called first, second, and third (I, II, and III) models of extended thermoelasticity of
homogeneous elastic materials. The mathematical formulation of the first model (GN-I) can
be reduced to the classical Fourier concept of heat transfer. In contrast, both the second and
third models (GN-II and GN-III) allow heat waves to move at restricted speeds. Tzou [6]
modified the microstructural evidence to propose a new model for extended thermoelastic-
ity called the dual-phase-lag model (DPL). The vector of heat transfer and the temperature
gradient both experienced two-stage delays as a result. Roy Choudhuri [7] established the
three-phase-lag version (TPL) of the heat transfer equation, which takes into account the
phase delays in the thermal displacement gradient, the temperature gradient, and the heat
flow vector. The DPL theory is not just useful for silicon microstructure research, but also
for the study of other materials such as polymers. As a result, it is reasonable to assume
that the wave-type heat conduction theories developed in this study may be applied to
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other materials, including microstretch thermoelastic media, because of the nature of the
heat conduction process.

Several recent articles attest to the growing interest in the domain of electro-elasticity,
also known as the linked mechanical and electric areas in piezoelectric materials. There are a
variety of smart materials and systems, some of which include sensors, actuators, electrical
and mechanical transducers, microgenerators, and ultrasonic biomechanical optoelectronic
elements that make use of piezoelectric composite materials due to their high sensitivity and
low mechanical losses. It is widely accepted that piezoelectric composites, which are created
by incorporating piezoelectric ceramic fibers into a matrix, are ideally suited for ultrasonics.
PZT fibers embedded in an epoxy matrix work wonderfully as active fiber composites for
aerospace vehicle construction. Fibers in piezoelectric composites could benefit greatly
from coating technology, enhancing their electromechanical characteristics. Because devices
made of piezoelectric composite materials are often subjected to dynamic loads, it is very
interesting to study how waves move through these materials and how covered fiber-
reinforced composites made of different piezoelectric materials cause waves to spread
out [8]. Electro-mechanical loads, including electrical fields, strains, stresses, and thermal
loads, are applied to smart materials and devices constructed with piezoelectric materials.

Piezoelectric materials find extensive use in fields as diverse as the medical field and
aerospace applications, as well as in intelligent structure systems, MEMS, accelerometers,
acoustic and pressure sensing, precision controller design, sensors for monitoring, ultra-
sonic transducers, piezoelectric composite systems, sound systems, and headphones [9].
Since the nineteenth century, researchers have attempted to comprehend the phenomenon
of coupling between a material’s thermomechanical response and its electric and magnetic
responses. Piezoelectric materials were initially used in hydrophones in the middle of
the twentieth century. The idea of composite materials that combine electrical and mag-
netic properties has emerged in the last two decades. These composites may display field
coupling not seen in the individual components. The application of so-called composite
and smart materials could be helpful for a wide range of developing vehicles, including
optical and ultrasound sensors, gyroscopes, electric motors, and transducers, among many
others. There are many uses for magneto-electro-elastic materials. These materials have
found utility in cutting-edge fields such as lasers, supersonic gadgets, microwaves, and
infrared purposes due to their ability to transform energy types [10]. In addition, ferroelec-
tric composites are inherently anisotropic and exhibit correlated behaviors between the
interaction of mechanical, electrical, and electromagnetic interactions. Several researchers
have taken advantage of the generalized theories of thermoelasticity to investigate some
issues related to the motion of waves through magneto-thermoelastic and thermoelastic
materials [11–19].

Microscopically heterogeneous functionally graded materials (FGMs) are composite
materials whose overall characteristics continually vary in one (or more) directions to
mitigate the effects of singular stresses, reduce residual stresses, and improve bonding
strength. Consequently, industries as varied as aerospace, automotive, marine, and biology
use FGMs due to their valuable properties [20]. Nonetheless, the design of FGMs is heavily
dependent on the resulting effective characteristics and, more significantly, on how these
qualities relate to microstructure to achieve the desired performance. Therefore, it is
essential to predict the mechanical, thermal, and other properties of FGMs based on their
microstructure and how they are spread out in space [21].

The idea of FGM materials was first presented in 1984 in Japan as part of the space-
plane project as a thermal barrier material. In the past few years, there has been more
interest in studying solid mechanics problems where the flexible parameters are not con-
stants but rather depend on where they are. The variation of elasticity coefficients due to
inhomogeneity is a far more realistic scenario and, thus, the inspiration for this study. The
surface of the Earth has its own irregularities, and this is because it is not uniform. The elas-
ticity of the soil varies widely depending on where you are. The qualities of an FGM vary
with its volume because its composition and structure change with time. Instead of using
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traditional homogeneous materials, FGMs often prove to be superior in a variety of settings.
Components of aircraft engineering, turbines, and spacecraft are vulnerable to catastrophic
failure when subjected to thermal shocks and very high temperatures, generating severe
thermoelastic strains [22].

The effectiveness of FGMs depends not only on the qualities and relative proportions
of their material elements, but also on the designer’s skill in making the best possible use
of those materials. One of the most critical steps in designing FG systems is to accurately
simulate how they will respond to complex thermomechanical loads. The thermomechan-
ical response to FGM material has been the focus of many analytical studies in recent
years and has typically included reasonably simplified geometries, material properties, and
boundary conditions. To determine the temperature of the functionally graded friction
sections during single braking, Yevtushenko et al. [23] developed a model of the frictional
heat treatment process that considered the thermal responsiveness of materials. The system
depends on how well the one-dimensional thermodynamic friction problem under steady
slowing down is solved. The study in [24] uses the finite element technique to investigate
the nonlinear transient thermal stress in a cylinder of thick-walled FGM whose character-
istics change with temperature. Using the Hermitian transfinite modeling technique, the
researchers in the study in [25] looked at the effects of temperature fluctuations on ther-
mally induced stress and heat transmission in a cylinder with a thermosensitive functional
grade. Peng et al. [26] investigated the nonlocal extended thermal flexibility of an FGM
microbial package and its thermally induced transient behavior. A ramp-style heating
load heated the material at the left end of the microbeam. With the help of mathematics,
Yevtushenko et al. [27] predicted how a friction system composed of FGMs would generate
heat. To account for frictional heating, the boundary-value problem of heat transfer between
two semi-spaces that uniformly slide against each other was solved. Sharma et al. [28]
employed the finite element approach to illustrate the displacements, stresses, and strains
for a spinning FGM disk of varying thicknesses (FEM). As one moves outward from the
center of an FGM disk, the thickness and thermo-elastic material characteristics constantly
change as an exponential and power law function. There is no assumed change to Poisson’s
ratio. To assess thermoelastic phenomena, including temperature distribution, tension, and
thermal stress, Go [29] considered FG rotating circular disks. In order to calculate the ther-
moelastic properties of circular disks, a second-order differential equation was generated
using the two-dimensional thermal flexible concept, and the finite element technique was
employed to obtain an approximate solution. Dhakate et al. [30] employed the ellipsoidal
co-ordinates to investigate the axisymmetric thermo-elastic issue, whereby the functionally
graded transversely isotropic cylindrical hole was subjected to the nonlinear thermal trans-
fer equation, deformation functions, and stress distribution. With the help of a fractional
order concept, Abouelregal and Mohamed [31] looked into the thermo-mechanical elastic
waves of functionally graded nanobeams (FGN) subjected to periodic flow rates. Because
of the structural transition from ceramic at the bottom to metal at the top, FGN can be
considered a non-homogenous structural system. Utilizing the more comprehensive theory
of thermoelasticity, Abouelregal et al. [32,33] investigated the thermoelastic waves of a
functionally graded thermo-piezoelectric fixed rod. The thermo-piezoelectric rod was
grounded at both sides and heated by a variable axial element. Generalized thermoelastic
functionals with gradations were studied by Abo-Dahab et al. [34] using a non-Gaussian
laser beam shaped like a narrow strip. Abouelregal and Dargail [35] brought attention to
the fact that a novel mathematical formulation for functionally graded thermally induced
nanobeams (FGNB) with a customizable kernel function and delay period has been in-
troduced. Hamilton’s principle, the Euler–Bernoulli hypothesis, Eringen’s concept, and
three-phase-lag memory-dependent heat transfer form the basis of the governing equations
for the suggested framework.

Because of their prevalence in so many engineering contexts, heat conduction (HC)
sources that are in motion are of considerable significance. Procedures are as diverse as
welding, metal cutting, milling, laser annealing/forming, metal plating, cannon firing,
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burning of some solid fuels, and dental work, all of which present unique challenges. Even
though the basic idea of heat transfer for mobile heat transport problem analyses has been
known for a long time, not many analytical solutions that can be solved with computers
have been devised yet.

Intelligent structures are frequently exposed to both intermittent and constant heat
sources during fabrication and reaction process procedures. Therefore, intelligent structural
design methods must understand the effect, thermal response, and piezoelectric response
of functionally scaled structures. For this reason, in this work, a new model incorporating
the general equations describing the extended piezoelectric thermoelectric energy based
on a double-phase delay will be presented. This presented model is an improvement
over the traditional coupled thermoelasticity theory, which may fail to describe such
problems physically. By adding two phase lags to the Fourier law of conduction of heat,
the proposed dual phase lag (DPL) heat transfer model has been established to account for
micro-structural influences that emerge in high-rate heat transmission. This model has a
different advantage over other models in that it can be used to represent the ultra-fast heat
transfer process on a small scale. The mathematical model was used to investigate how
piezoelectric heat waves travel through a functionally graded (heterogeneous) rotating rod
composed of an inner and an outer piezoelectric layer connected by linear elastic materials.
Additionally, the piezoelectric rod is subjected to variable, moving, and dissipating heat
sources. The results have the potential to generate a great deal of interest in the field of
thermoplastics, in addition to the smart materials sector.

Using the successive separation method and the Laplace transform, the system of
equations that describe the problem has been solved. The analytical formulas for the
relevant physical quantities, such as deformations, thermoelectric stress, temperature
change, and electric potential, have been assigned within the transduced field. Using an
appropriate approximation algorithm, the numerical values of the different domains in the
space-time domain were calculated. The results obtained were compared with those already
published in the scientific literature. The effect of heterogeneity indices on the behavior
of thermoelastic and functionally graded materials was demonstrated. By neglecting the
heterogeneity parameter, the results for the homogeneity condition can be simply obtained.

After the discussion section, the remainder of the paper is organized as follows: Section 2
presents the basic equations for piezoelectricity and thermoelasticity. Section 3 presents a
detailed description of the proposed problem for a rotating piezoelectric thermoelastic flexible
rod. Section 4 presents the method of solving using Laplace transforms, while Section 5
presents a numerical algorithm for inverse Laplace calculations. In Section 6, the results and
discussion are presented. Finally, Section 7 presents the most important conclusions.

List of Symbols

In the governing equations, Tij represents the stress tensor, Sij denotes the strain
tensors, ui displays the displacement components, η symbolizes the entropy, hi represents
the heat flow, Cijkl indicates elastic coefficients, eijk are the piezoelectric parameters, βij are
the thermal moduli, ρ is the density of the material, CE specifies the specific heat, and pi
represents the pyroelectric quantities. Additionally, Di characterizes the electric displace-
ment, τ0 means the constant single delay time, Kij symbolizes the thermal conductivity
tensor, θ = T − T0 designates the temperature increment, T0 is the primary temperature,
Ei denotes the electric field, and ∈ij are dielectric parameters. Subscript commas indicate
partial derivatives concerning the next variable, while overdots represent time derivatives.

2. Governing System of Equations

It is possible to formulate equations that govern thermopiezoelectricity theory for
piezoelectric materials under a thermal field by the following system equations [36,37]:

The constitutive equations:

Tij = CijklSkl − eijkEk − βijθ, (1)
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where
2Sij = ui,j + uj,i. (2)

The entropy equation

ρη =
ρCE
T0

θ + βijSij + piEi. (3)

The energy equation

ρT0
∂η

∂t
− ρQ + hi,i = 0. (4)

The electric displacement relationships are provided by:

Di = eijkSkl+ ∈ij Ej + piθ. (5)

It is assumed that the following conditions hold for the constants of matter: T0 > 0,
ρ > 0, CE > 0, and βij > 0.

Often, we may classify the lag durations as either τq or τT , which we refer to as
material qualities. To begin, τq is a simplified version of an energy equation that arises from
processes such as phonon–electron interactions and phonon scattering. It was designed to
investigate the flow of energy during rapid heating, which is significant since it is related
to non-equilibrium thermodynamic conversion and microstructural changes that accelerate
reaction rates. Therefore, τT may be seen as a mitigation time, which clarifies the rapid
transitory effect of thermal inertia.

Tzou [6,38] described the dual-phase-lagging framework by developing Fourier’s law
as follows:

hi + τq
∂hi
∂t

= −Kij

(
θ,j + τT

∂θ,j

∂t

)
, τq > 0 , τT > 0, i, j, k = 1, 2, 3. (6)

where τq > 0 and τT > 0 are positive delay times. Additionally, the system is stable if
τT > τq/2 and unstable if τT < τq/2 (see Ref. [39]).

For piezo-thermoelastic solids, we can establish a generalized heat transport equation
with a single-phase delay by using Equations (3)–(5) as:(

1 + τT
∂

∂t

)(
Kijθ,j

)
,i =

(
1 + τq

∂

∂t

)(
ρCE

∂θ

∂t
+ βij T0

∂um,m

∂t
− T0 pk

.
Ek

)
. (7)

The DPL thermal transport model has advantages in several contexts, including
describing the effects of material defects and thermomechanical coupling due to ultrafast
heating. Not only that, but it can also be used to describe how pulses move through liquid
helium, study how delays vary in porous media, and figure out how sensitive thermal
delays are in amorphous materials that are heated by an ultrafast pulse laser.

The thermo-piezoelectricity problem without body force and volume charges is gov-
erned by three supplementary equations given by:

Di,i = 0, (8)

Ei = −ϕ,i, (9)

σji,j = ρ
..
ui. (10)

The equations of motion (10) are written as follows by repeatedly substituting Equation (1)
into Equation (10) [36,37]:

Cijkluk,li + ekij ϕ,ki − βijθ,i = ρ
..
ui. (11)
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Differentiating Equation (5) with respect to position and using Equations (8) and (9),
we find:

ekijui,jk− ∈ij ϕ,ij + piθ,i = 0 (12)

Assuming that piezoelectric influences are zero (eijk, ∈ij pi → 0), the fundamental
system field equations simplify to the modified thermoelasticity with a single relaxation
time. Additionally, the equations of the coupled thermo-piezoelectricity framework are
obtained by ignoring both lagging times (τq and τT). Moreover, the Lord and Shulman
model can be obtained by setting τT = 0. It is also possible to obtain the conventional
Fourier heat transport if the parameters of piezoelectric and relaxation time are all zero
( eijk,∈ij, pi, βij → 0 and τ0 → 0).

3. Problem Formulation

Here, we focus on the case of a finite rod of thermoelastic material with a functional
gradation occupying the region 0 ≤ z ≤ L. We consider that the origin of the coordinates
at the left edge of the piezoelectric elastic rod, as displayed in Figure 1, was the alignment
of the rod along the z-axis. In addition to being permanently attached, there is insulation
on both ends to prevent heat loss. At the end, z = 0, we assume a flat distribution of a heat
source Q(z, t) moving at a constant velocity towards the right. We will suppose that the
rod was initially motionless and at a temperature of T0. It is assumed that the physical
characteristics of the rod vary exponentially across its axial length.
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Only due to the nature of the problem are the spatial variable z and the time variable t
necessary to describe the state of the rod during movement and rotation. It will be taken

into account that the material rotates at a constant angular velocity
→
Ω = Ω

→
n, where

→
n

represents the unit vector along the axis of rotation. The equation of motion has been
expanded to incorporate two new terms as a consequence of the rotation process. The first

term accounts for the gravitational acceleration (
→
Ω× (

→
Ω×→u)) caused by time-varying

motion alone, while the second term represents the Coriolis acceleration of 2
→
Ω×

→.
u, where

→
u denotes the displacement vector. The distortion is also assumed to be significantly small.

In order to simplify our analysis of the one-dimensional problem, we will suppose
that the electric field Ez, displacement w, strain Szz, thermal stress Tzz, heat flow Q, and
electric displacement D are functions of z and t only. Because of this, we may write the
governing equations as:

Szz(z, t) =
∂w(z, t)

∂z
, Ez(z, t) = −∂ϕ(z, t)

∂z
, (13)

Tzz(z, t) = C
∂w
∂z

+ e
∂ϕ

∂z
− βθ, (14)

∂Tzz

∂z
= ρ

[
∂2

∂t2 −Ω2 − 2Ω
∂

∂t

]
w, (15)

Dz = e
∂w
∂z
− ∈ ∂ϕ

∂z
+ pθ , (16)
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(
1 + τT

∂

∂t

)
∂

∂z

(
K

∂θ

∂z

)
=

(
1 + τq

∂

∂t

)(
ρCE

∂θ

∂t
+ β T0

∂2w
∂t∂z

+ T0 p
∂2 ϕ

∂t∂z
− ρQ

)
. (17)

Equation (8) gives ∂D
∂z = 0, which implies that the electrical displacement is assumed

to be
D = D(t). (18)

We will take into account that D = D0 = const along the piezoelectric rod.
Substitution into Equation (16) results in:

∂ϕ

∂z
=

e
∈

∂w
∂z
− D0

∈ +
p
∈ θ. (19)

As a result of plugging Equation (19) into Equations (14) and (17), we obtain:

Tzz =

(
C +

e2

∈

)
∂w
∂z
− eD0

∈ +
( ep
∈ − β

)
θ, (20)

(
1 + τq

∂
∂t

)(
(ρCE + T0 p2

∈ ) ∂θ
∂t + T0(β + p2

∈ )
∂2w
∂t∂z − ρQ

)
.

=
(

1 + τT
∂
∂t

)(
K ∂2θ

∂z2 +
∂K
∂z

∂θ
∂z

)
.

(21)

FGMs are a type of material whose characteristics change continually with a location.
Many publications discussing the mechanical properties of FGM have been published
in recent years. Studies often focus on particle composites, where the dispersed phase’s
volume fraction fluctuates continuously with thickness. The following formula describes
how matter’s physical properties evolve exponentially in the z-axis direction [10]:

Ψ(z) = Ψ0eξz. (22)

where Ψ(z) represents the change of physical properties, Ψ0 is assumed to be fixed, which
reflects the property that a substance has when z is equal to zero (homogeneous material),
and ξ is an indicator of heterogeneity.

When we plug the relationship (22) into the governing Equations (19)–(21), we find:

∂ϕ

∂z
=

e0

∈0

∂w
∂z

+
p0

∈0
θ − D0

∈0
e−ξz, (23)

Tzz = eξz

[(
C0 +

e2
0
∈0

)
∂w
∂z

+

(
e0 p0

∈0
− β0

)
θ

]
− e0D0

∈0
, (24)

(
1 + τq

∂
∂t

)(
(ρ0CE +

T0 p2
0

∈0
) ∂θ

∂t + T0(β0 +
p2

0
∈0
) ∂w

∂t∂z − ρ0Q
)

.

= K0

(
1 + τT

∂
∂t

)(
∂2θ
∂z2 + ξ ∂θ

∂z

)
.

(25)

When the body is examined for the phenomenon of heat transfer, moving heat sources
are those physical situations in which thermal excitation regularly changes its location and
intensity. Suppose we have a stationary heat source of strength intensity Q0 that is on at
time t = 0 and moves continuously along z-axis with a constant υ [39]:

Q(z, t) = Q0δ(z− υt), (26)

where the function δ(.) denotes the Dirac delta.
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For simplicity, the following dimensionless variable quantities have been provided:

(z′, w′) = ωη(z, w), (t′, τ′q, τ′T) = ω2η(t, τq, τT), θ′ = θ
T0

, T′zz =
Tzz
C0

,

D′z =
Dz
C0

, ϕ′ = ωη∈0
e0

ϕ, Q′ = Q
ω2η2K0T0

, Ω′ = Ω
ω2η

, ω2 = C0
ρ0

, η = ρ0CE
K0

, l = Lvη.
(27)

By removing the primes, we can reformulate Equations (23)–(25) as

∂ϕ

∂z
=

∂w
∂z

+ H12θ − Hh13e−Nz, (28)

Tzz = eNz
[

H21
∂w
∂z
− H22θ

]
− H23, (29)

(
1 + τT

∂

∂t

)(
∂2θ

∂z2 + N
∂θ

∂z

)
=

(
1 + τq

∂

∂t

)(
H31

∂θ

∂t
+ H32

∂w
∂t∂z

−Q
)

. (30)

where
H12 = T0 p0

e0
, H13 = C0D0

e0
, N = ξ

ωη , H21 =
C0∈0+e2

0
C0∈0

, H23 = e0D0
∈0

,

H22 = T0(∈0β0−e0 p0)
C0∈0

, H31 =
K0η∈0+T0 p2

0
K0η∈0

, H32 = β0
K0η +

p2
0

K0η∈0
.

(31)

When Equation (29) is substituted into Equation (15), the piezo-thermoelasticity mo-
tion equation is obtained as:

H21

(
∂2w
∂z2 + N

∂w
∂z

)
− H22

(
∂θ

∂z
+ Nθ

)
= ρ0ω3η

[
∂2

∂t2 −Ω2 − 2Ω
∂

∂t

]
w. (32)

4. Solution Technique

It is assumed that the beginning conditions of FGM are given by:

w(z, 0) = 0 =
.

w(z, 0), θ(z, 0) = 0 =
.
θ(z, 0). (33)

If the Laplace transform defined by L[g(x, t)] = g(x, s) =
∫ ∞

0 g(x, t)e−stdt is applied
to any function g(x, t) where s is the parameter of the Laplace transform, then the basic
equations in the transformed Laplace domain under the above initial conditions (33) take
the following forms:

d
−
ϕ

dz
=

d
−
w

dz
+ H12

−
θ − H13e−Nz

s
, (34)

−
σzz = eNz

H21
d
−
w

dz
− H22

−
θ

− H23/s, (35)

(1 + τTs)

d2
−
θ

dz2 + N
d
−
θ

dz

 = s
(
1 + τqs

) (
H31

−
θ + H32

dw
dz
− Q0

υs2 e−(s/υ)z
)

, (36)

H21

d2−w
dz2 + N

d
−
w

dz

− H22

d
−
θ

dz
+ N

−
θ

 = ρ0ω3η
(

s2 −Ω2 − 2Ωs
)−

w. (37)

It is possible to rewrite Equations (36) and (37) as:(
d2

dz2 + N
d
dz
− H41

) −
θ = H42

dw
dz
− H43e−(s/υ)z, (38)
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H22

(
d
dz

+ N
) −

θ = H21

(
d2

dz2 + N
d
dz
− H44

)
−
w, (39)

where
H41 = ΨH31, H42 = ΨH32, Ψ = s

(
1 + τqs

)
/(1 + τTs),

H43 = ΨQ0/(υs), H44 =
ρ0ω3η(s2−Ω2−2Ωs)

H21
.

(40)

The first- and second-order derivatives of Equation (38) are substituted into Equation (39)
to produce the following displacement ODE:(

d4

dz4 + ψ3
d3

dz3 − ψ2
d2

dz2 − ψ1
d
dz

+ ψ0

)
−
w = m0e−(s/υ)z, (41)

where

ψ3 = 2N, ψ2 = H41 + N2 + H44 +
H42 H22

H21
, ψ0 = H44H41,

ψ1 = NH41 + NH44 + NH42H22/H21, m0 = H43H22(s/v− N)/H21 .
(42)

We can write the characteristic equation of ODE Equation (40) as

k4 + ψ3k3 − ψ2k2 − ψ1k + ψ0 = 0, (43)

where the roots ki, i = 1, 2, 3, 4 can be found as follows:

k1 = −ψ3
4 −

y6
2 −

y8
2 , k2 = −ψ3

4 −
y6
2 + y8

2 ,

k3 = −ψ3
4 + y6

2 −
y8
2 , k4 = −ψ3

4 + y6
2 + y8

2 ,
(44)

with

y0 = 12ψ0 + ψ2
2 + 3ψ1ψ3, y1 = 27ψ2

1 + 72ψ0ψ2 − 2ψ3
2 − 9ψ1ψ2ψ3 + 27ψ0ψ2

3,

y2 = 2ψ2
3 +

ψ2
3

4 , y3 = 8ψ1 − 4ψ2ψ3 − ψ3
3, y4 = 3

√
y1 +

√
−4y3

0 + y2
1/3 3
√

2,

y8 =
√

y7/4
√

y6, y5 =
(

3
√

2y0/3
)

/ 3

√
y1 +

√
−4y3

0 + y2
1,

y7 = y2 − y5 − y4 − y3, y6 =
√

y2 + y5 + y4.

(45)

The general solution to Equation (41), describing an inhomogeneous system, can be
stated as:

−
w = ∑4

i=1 Aiekiz + A5e−(s/υ)z. (46)

The parameters Ai, i = 1, 2, 3, 4 denote the integral coefficients. In addition to that, the
coefficient A5 takes the following form:

A5 =
υ4m0

s4 − a3υs3 − a2υ2s2 + υ3sa1 + υ4a0
, (47)

Similarly, removing
−
w from Equations (38) and (39), we obtain:(

d4

dz4 + ψ3
d3

dz3 − ψ2
d2

dz2 − ψ1
d
dz

+ ψ0

) −
θ = −m1e−(s/υ)z, (48)

where
m1 = H43((s/υ)2 − sN/υ− H44). (49)
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In this case, we can express the temperature solution as:

−
θ = ∑4

i=1 Biekiz + B5e−(s/υ)z. (50)

Using Equations (46) and (50) as replacements in Equation (39), we can obtain
the following:

Bi =
H21(k2

i +Nki−H44)
H22(ki+N)

Ai = ωi Ai, i = 1, 2, 3, 4

B5 =
H21(s2/υ2−Ns/υ−H44)

H22(−s/υ+N)
A5 = ω5 A5.

(51)

Consequently, the final solution for
−
θ may be expressed as:

−
θ = ∑4

i=1 ωi Aiekiz + ω5 A5e−(s/υ)z. (52)

Substituting (46) and (50) into Equation (34), we then find:

d
−
ϕ

dz
= ∑4

i=1 Fi Aiekiz + F5 e−(s/υ)z − (H13/s)e−Nz, (53)

where
Fi = ki + H12ωi, i = 1, 2, 3, 4, F5 = (−s/υ + H12ω5)A5. (54)

As a result, the Laplace transform domain solution for electric potential can be found as

−
ϕ = ∑4

i=1 Fi Ai ekiz/ki − (υF5/s) e−(s/υ)z + (H13 /Ns)e−Nz + A0. (55)

The solutions for electric displacement
−
Ez and normalized stress

−
Tzz can be presented as:

−
Tzz = eNz

[
∑4

i=1 (H21ki − H22ωi)Aiekiz − (H21s/υ + H22ω5)A5e−(s/υ)z
]
− H23/s, (56)

−
Ez = −∑4

i=1 Fi Aiekiz − F5e−(
s
υ )z + (H13/s)e−Nz. (57)

We will assume that the rod is thermally insulated at the ends (z = 0, L) and fixed
at zero voltage at z = 0. Therefore, the following criteria at the border will be taken
into account:

ϕ(0, t) = 0,

w(0, t) = 0 = w(L, t)

∂θ(0,t)
∂z = 0 = ∂θ(L,t)

∂z .

, (58)

After incorporating the Laplace transform into the boundary conditions (58), we obtain
the system of equations in the uncertain coefficients Ai where i = 0, 1, 2, 3, 4 as:

A1 + A2 + A3 + A4 = −A5, (59)

A1ek1L + A2ek2L + A3ek3L + A4ek4L = −A5e−(
s
υ )L, (60)

A1ω1 + A2ω2 + A3ω3 + A4ω4 = −B5, (61)

A1ω1ek1L + A2ω2ek2L + A3ω3ek3L + A4ω4ek4L = −B5e−(s/υ)L, (62)
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F1

k1
A1 +

F2

k2
A2 +

F3

k3
A3 +

F4

k4
A4 −

(
υF5

s
− H13

Ns

)
+ A0 = 0. (63)

By solving the above system equations, it is possible to set the values of the unknown
coefficients of integration (Ai, i = 1, 2, 3, 4).

5. Computational Inversion of the Transformed Functions

The methods for calculating inverse Laplace transforms numerically are presented in
this section. Over the past half-century, numerous strategies based on various perspectives
have been offered. Numerical implementations of inverse Laplace transforms are not trivial
to produce. We call this an “ill-conditioned” or “ill-posed” situation. Due to the lack of
a universally applicable solution, we advocate employing a combination of approaches to
any given inversion issue. You can have more faith in the numerically computed inverse
Laplace transform if two or more approaches produce roughly the same result. Each of the
several numerical inversion approaches shares the property that their performance improves
in proportion to the smoothness of the original g(t). We shall employ a numerically precise
technique by expanding a Fourier series among these approaches [40]. Using this method, we

may return to the time domain any
−
g(s) function transformed using the following relation:

f (z, t) =
eζt

t1

[
1
2

Re
{−

f (z, ζ)

}
+ Re

{
∑N0

n=0 e
inπt

t1
−
f
(

z, ζ +
inπ

t1

)}]
, (64)

where N0 is a finite integer and the parameter ζ has a value such that 5 ≤ ζt ≤ 10 [41]. For

the purpose of inverting the transform denoted by
−
f (z, s), the parameter values represented

by [42,43] were implemented, namely, ζ = 0.421, N = 19 and t1 = 7.5.
The Laplace inversion formula is used for Equations (46), (52) and (55)–(57), yielding

space–time domain solutions for the investigated field variables.

6. Numerical Example and Results

Using the technique outlined in the earlier section, the transmission of mechanical,
thermal, and electrical vibrations in an FG piezoelectric rod will be studied. To prove the
aforementioned analytical approach and verify the validity of the presented theoretical
research results, a numerical state of a physical substance was considered. For the numerical
calculations, an FG rod with cadmium selenide on the left end was considered. In our
analyses, we have taken into account the following physical characteristics of the materials
we are using [44]:

C0 = 74.1× 109 N/m2, β0 = 621× 103 N/Km2, e0 = 0.347 C/m2, T0 = 293 K,

p0 = −2.94× 10−6 C/Km2, ρ0 = 7600 kg m−3, Q0 = 10/ρ0, K0 = 12.9 W/mK,

CE = 420 J/kgK, ∈0= 90.3× 10−12C2/Nm, L = 1.

Some numerical findings are offered to analyze the theoretical outcomes achieved
in the preceding sections. All of the data have been analyzed in terms of dimensionless
studied field variables, and figures have been made as a function of axial distance. For
various values of some parameters, such as the speed of the applied heat supply υ, non-
homogeneous parameter N, and the angular velocity of rotation Ω, we examined the
variations of the temperature change θ, electric potential ϕ, normal thermal stress σzz, and
displacement distribution w.

Functional Graded Materials (FGM) are one type of heterogeneous material that is
specifically designed for use in high-temperature applications. This section highlights the
importance of analytical studies focusing on the difficulties of transient thermoelasticity
in such heterogeneous materials. In this particular instance, five distinct values of the
non-homogeneous index N were taken into consideration to discuss its impact on the field
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variables being researched. For the FG material, we used the values N = 0.1, 0.2, and 0.3,
whereas the value N = 0 represented the homogenous scenario with constant material
attributes. The obtained results are displayed graphically in graphs 2–5 for the parameters
υ = 2, Ω = 3, t = 0.12, τq = 0.020, and τT = 0.015, which were kept constant. These figures
make it abundantly evident that the gradient indicator N had a significant impact on every
one of the fields that were investigated.

Figure 2 illustrates how the material inhomogeneity (N) influences the displacement
w. Since the two ends of the FG rod were fixed, the expansion deformation that occurred
between the two ends was confined between them. This deformation results in compressive
thermal stress in the rod. It can be seen in Figure 2 that the displacement at both ends of the
FG rod satisfies the imposed boundary conditions where the displacement values are w = 0
at z = 0 and z = L. Figure 2 shows that when the inhomogeneity parameter N increases,
displacement decreases. Figure 2 shows that as time passes, the temperature rises in the
area of disturbance, which grows more extensively in the initial section of the piezoelectric
rod. An increasing amount of displacement may be seen as time passes because the rod
has been deformed by thermal expansion as a result of the external source of heat. In
comparison with the results that were presented in [45,46], it was found that there was
agreement in behavior despite the different circumstances of both problems. The effect of
rod rotation was considered in this problem, but was not considered in similar cases. These
results are helpful in guiding the engineering design and optimization of electro-elastic
graded materials in MEMS and NEMS devices because the change in the graded factor
affects the deformation of the FG rod.

Figure 3 shows the non-dimensional changes in temperature θ that occur in a piezoelec-
tric rod for various options for the inhomogeneity coefficient N. We can see from Figure 3
that the temperature θ decreases as both the amount of time elapsed and the distance
traveled increase. It is also noted that the temperature θ takes its maximum values at the
first end, where the heat source is located, before it moves towards the other end of the rod.
We also see that the amplitude of temperature θ is most significant in the homogeneous
area, where N equals zero, and decreases when the parameter N is increased. In addition,
piezoelectric materials exhibit mechanical, electrical, and thermal coupling properties. No
matter how long you are exposed to the heat source, it will always produce the same
amount of heat. As the source velocity increases, the intensity of energy released per unit
rod length diminishes. As a result, the amount of energy reaching any given spot in the
thermally turbulent region decreases proportionally as the source velocity increases. As a
result, the temperature gradient inside the rod decreases locally. In comparison to what Pal
et al. found in their study [47], the behavior was found to be similar, although the rotation
effect was not present in their case. There are many uses for elastic piezoelectric materials.
These materials are used in high-tech fields, including lasers, supersonic devices, infrared
applications, and microwave ovens, due to their ability to transfer energy from one type to
another (between mechanical, piezoelectric, and thermal energies).

With varied values of the inhomogeneity coefficient N, the electric potential ϕ vs. the
distance z can take on a wide range of shapes, as seen in Figure 4. One can see that the
electric potential quantities rise with increasing z from the graph in Figure 4. The highest
value of the electric displacement is shown when the grading indicator declines. In the
illustration, each curve starts with a value of zero, and they all satisfy the limit condition
that ϕ must be zero for z to be zero. The differences in electrical potentials increase as
the gradient index of the rod increases. It is clear that the inhomogeneity factors do not
have much of an effect on the axial component of the electric field. This means that the
axial component of the electric field is mostly independent of the inhomogeneity factor. By
comparing our results to those published in [48,49], we were able to confirm that they are
in line with what other research in this field has found. Based on the value of the gradient
index, it was shown that the external voltage (electric potential ϕ) may be able to improve
the device’s resistance to bending and performance.
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In Figure 5, the change in thermal stress, σzz, was plotted against the distance z to see
how the non-homogeneous parameter affects thermal stress σzz. Undoubtedly, compressive
stress is the nature of normal stress σzz. When the space variable z increases, the amplitude
of the pressure σzz in each case is seen to increase near the limit before decreasing. It
is essential to take into account that these stresses express themselves as a result of a
temperature change as well as the constraint posed by both ends of the z-axis extension.
The highest points on the thermal stress distribution curve moved away from the tip
where the heat source was applied. Because the rod is clamped at both ends, thermal
expansion displacement is prevented from developing along the length of the rod. As a
result, piezoelectric stress develops in the piezoelectric FG rod. As seen in this figure, when
the non-homogeneous indicator N is modified, we can also detect a significant variation in
the levels of thermal stress σzz. Such behaviors, which are discussed in the sources [50,51],
are similar to the results and responses obtained in this article. Not only this, but different
aspects of thermal stress behavior can be found in micromedia, as indicated in [52–56], due
to the presence of the scale effect.
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7. Conclusions

The goal of this work was to show that the DPL heat conduction model can be used to
describe how the temperature changes in functionally graded piezoelectric thermal media.
This model makes it easier to predict how these materials will react to heat and how they
will behave when they are in two phases. This model has a different advantage over other
models, in that it can be used to represent the ultra-fast heat transfer process on a small
scale. Based on this model, we consider how displacements, stresses, and temperatures
interact with each other in a functionally graded (FG) piezoelectric finite elastic rod. This
FG rod is due to the effect of a moving heat source of uniform intensity while rotating at a
uniform angular velocity. The issue at hand has been solved analytically in the field of the
Laplace transform.

The study’s results showed that the heterogeneity index is a good way to control
how fast heat moves through piezoelectric elastic materials and how much thermal stress
they can handle. Therefore, when making devices such as these smart materials used in
technical challenges where a high heat flux appears for a short time, heterogeneity must
be considered. The results demonstrated that during the uniform rotation of the piezo-
electric rod, the thermal stress behavior of the medium and the deformation propagation
were significantly affected by the inhomogeneous parameter change. As the value of the
inhomogeneity index decreases, the solution became closer and closer to being the same
as for the homogeneous problem. As a result, when the material was homogenous, the
findings of the current article were reduced to the identical findings seen elsewhere in the
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literature. In the future, the existing methodology can be considered in light of advances in
the production procedures of functionally scaled piezoelectric materials in order to enhance
the dependability of small-scale piezoelectric structures.
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