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Abstract: Despite recent advances in the mathematical modeling of biological processes and real-
world situations raised in the day-to-day life phase, some phenomena such as immune cell pop-
ulations remain poorly understood. The mathematical modeling of complex phenomena such as
immune cell populations using nonlinear differential equations seems to be a quite promising and
appropriate tool to model such complex and nonlinear phenomena. Fractional differential equations
have recently gained a significant deal of attention and demonstrated their relevance in modeling
real phenomena rather than their counterpart, classical (integer) derivative differential equations.
We report in this paper a mathematical approach susceptible to answering some relevant questions
regarding the side effects of ionizing radiation (IR) on DNA with a particular focus on double-strand
breaks (DSBs), leading to the destruction of the cell population. A theoretical elucidation of the popu-
lation memory was carried out within the framework of fractional differential equations (FODEs).
Using FODEs, the mathematical approach presented herein ensures connections between fractional
calculus and the nonlocal feature of the fractional order of immune cell populations by taking into
account the memory trace and genetic qualities that are capable of integrating all previous actions
and considering the system’s long-term history. An illustration of both fractional modeling, which
provides an excellent framework for the description of memory and hereditary properties of immune
cell populations, is elucidated. The mathematics presented in this research hold promise for modeling
real-life phenomena and paves the way for obtaining accurate model parameters resulting from the
mathematical modeling. Finally, the numerical simulations are conducted for the analytical approach
presented herein to elucidate the effect of various parameters that govern the influence of ionizing
irradiation on DNA in immune cell populations as well as the evolution of cell population dynamics,
and the results are presented using plots and contrasted with previous theoretical findings.

Keywords: ionizing radiation effects; immune cells; fractional derivatives; double-strand breaks

MSC: 26A33

1. Introduction

Nowadays, it is well established that ionizing radiation damage may cause side effects
including the changing of the chemistry of the nucleotides and the breaking of the sugar-
phosphate backbone, as well as the hydrogen bonds breaking between bases [1–5]. Most of
the in vitro investigations and the studies dealing with anecdotal evidence have shown that
the ionizing radiation may generate DNA damage, susceptible to the development of cancer
if the DNA structure is not properly repaired. Moreover, numerous clinical studies have
addressed the effects of ionizing radiation on immune cell populations, thereby enabling
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the scientific community to a comprehensive elucidation of the instantaneous and overdue
aspects of ionizing radiation on the immune system [6,7].

One of the basic functionalities of the immune system is its aptitude to preserve the
memory of previous infections, hence allowing this sophisticated system the ability to
distinguish and identify this antigen if an anterior infection arises and then support a
sturdier attack on this particular antigen [8,9].

It is crucial to note that the development of theoretical tools must appropriately convey
the rising interest in understanding the operation of the immune system. By means of
such theoretical tools, mathematicians and biologists will be capable of gathering both
experimental findings and theoretical results in a feasible way to perceive more suitable
schemes for studying cancer growth and treatment. Most of the recent studies constitute a
fragment of such a methodology and it becomes crucial nowadays to simulate this strategy,
especially in the study of the immune system by developing appropriate mathematical
models. Over the last decade, numerous mathematical approaches have been developed
within the framework of conventional integer-order differential equations to initiate the
functioning of the immune system. However, most of the obtained results do not reproduce
the experimental findings because they are unfit to take into consideration the memory in-
fluences in immune systems [9–13]. It has been elucidated that the approaches established
with fractional-order differential equations (FODEs) provide more advantages and are
considered more harmonious with reality when matched with integer-order mathematical
approaches due to the fact that most biological processes endure to function employing
hereditary properties, after-affects, and memory. The advantages of the FODEs consist
mainly in taking into account the hereditary traits and memory trace that are adept at
assimilating all past events and considering the long-term history of the biological process.
Within such circumstances, it can be elucidated that the dynamics of the memory trace are
decidedly time-dependent processes. Once decreased from the unit, the fractional-order
α trains an augmentation of the memory trace nonlinearly from zero. Consequently, the
dynamics of a fractional-order system will be quite different from the dynamics elucidated
by integer-order approaches, thereby suggesting that FODEs provide more accurate results
that can mimic reality better than those obtained by its counterpart, integer-order differ-
ential equations [9]. For instance, Mukhopadhyay and Bhattacharyya [10] provided an
investigation on tumor and macrophage cells using an integer-order differential equations
model. Their results show that the conversion rate of malignant cells to normal cells is quite
different to those provided by the experimental data. In other interesting work, Khajanchi
et al. [11] have treated the tumor–immune competitive system by extending the model
developed by Sarkar and Banerjee [12] and by using an integer-order differential equations
model. Khajanchi et al. [11] concluded that the conversion of hunting cells to resting cells,
and the degradation caused by hunting cells on the resting cells, are both not the same
and provide different results compared to the experimental data. In another work, Hu and
Jang [13] proposed a mathematical approach dealing with the effect of CD4+T on tumor
dynamics by focusing particularly on the tumor–immune cell interconnection using integer-
order mathematical models. Hu and Jang’s approach was extended by Özköse et al. [9] by
taking into account the fractionality and better compatibility with the experimental results.

Within this methodology, the used integer differentiation is a local operator, and hence
it appears not to be suitable for describing the immunological memory mechanism [14].
Thus, most of the recent mathematical models have used fractional-order approaches,
which are more satisfactory to describe the hereditary and memory properties of real
phenomena than classical integer-order models [15,16]. Moreover, it should be underlined
that even though fractional derivatives do not possess physical and geometric interpretation,
fractional differential equations are, however, well established to provide a satisfactory
mathematical modeling of biological processes and real-world situations raised in the
day-to-day life phase [17]. This is mainly because these equations are generally nonlocal
operators, suggesting thereby that the determination at a given point of the fractional
temporal derivative necessitates the knowledge of all preceding points [18]. Memory
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processes are found to be present in numerous biological organisms, especially in the
immune system [19–21]. Moreover, the advantage of fractional models is that they can help
us to reduce the errors arising from the parameters of modeling real-life phenomena by
their multi-skilling nature and better fitting to the data, as well as they can provide better
descriptions of the evolution of organisms over time taking in consideration their history
or memory [22].

The most important property of FODEs is their nonlocal property, which is not an in-
trinsic property of integer differential equations (IDEs) [23,24]. Nonlocal property signifies
that the next state of a model does not rely only on its current state but also depends on all of
its historical states [25]. FODEs actually constitute the most powerful tool for incorporating
memory effects as well as the hereditary properties in molecular biological problems in con-
trast with the integer-based models where such effects are neglected to be incorporated [26].
FODEs are commonly utilized in various biological systems such as the immune system,
spread of HIV in the human body, glioblastoma multiforme, cancer tumor, oncolytic virus
cancer, blood cancer, and several other types of cancer, because their capability to be related
in a natural way to systems with memory [27–31]. Moreover, when fitting data, the model
described by FODEs seems to be more appropriate than that of its counterpart described by
IDEs because of its multi-degree-of-freedom character [23–25]. Nevertheless, the numerical
calculation of fractional derivatives necessitates a large number of computations because
of their nonlocal character [23,26]. Predominantly, the numerical effort and the storage
requirements explode in situations dealing with multi-degree-of-freedom phenomena such
as immunological memories, which lead to a search for alternative appropriate mathemati-
cal modeling to surmount such difficulties encountered with such biological phenomena.
For this purpose, new approaches dealing with the numerical evaluation of fractional
derivatives should considerably decrease the numerical effort of multi-degree-of-freedom
systems [23–26].

FODEs based on the Caputo operator will be employed in this study in order to
elucidate the memory effects mechanism. This omnipresent mechanism effect is evident
in immune cell populations and can be studied using fractional derivatives susceptive
to be interpreted physically when describing the memory effect, for which the order of
fractional derivatives is considered as an index of memory [15,16]. This property enables
the estimation of the model parameters more accurately. A fractional derivative provides
the memory effect by the integration of FODE based on the Caputo operator from 0 to t. The
Caputo operator has different properties, making it more convenient for real phenomena
by implementing a model of FODE using the well-known Caputo operator [24]. Using
the Caputo operator to solve fractional differential equations leads to zero for the constant
function derivation. Furthermore, we will be using, in the present study, the Linear
Quadratic (LQ) Model to elucidate the effect of ionizing radiations [32,33]. The cell survival
curve and its connection to dosage may be represented using the LQ formula in logarithm
form. Cell survival curves such as single target model and multi-target model have been
widely used to evaluate and predict in vitro and in vivo reactions to ionizing irradiation.
In this context, the LQ model, which takes into consideration the total dose and the dose
per fraction, is the most commonly used. The LQ model presumes the implementation of
two components related to cell killing: the first component is proportional to the radiation
dose, whereas the second one is proportional to the square of the dose [32,33]. Cell survival
curve in the LQ model is depicted by an exponential function, given by:

S(D) = e−αD−βD2
(1)

where D represents the radiation dose, S represents the fraction of surviving cells for the
corresponding dose D, and α and β are, respectively, the linear and quadratic components
of cell killing. This formula offers a direct link between the survival of cells and a given
dosage [32].

The ultimate motivation of the present work is to derive a fractional-order IR effect
model from an integer-order IR effects model developed by Siam et al. [34]. The model can
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describe a realistic mechanistic model of the effects of ionizing irradiation on immune cell
populations and interpret new complex behaviors via numerical simulations explanation.
The aim of the present study is to develop a realistic model that describes the dynamic
process of the effects of ionizing radiation on immune cell populations. This model will
be formulated using a fractional differential equations (FODEs) system. According to [23],
fractional derivatives exhibit five basic properties, which include the fractional derivative
of an analytic function is analytic; if the order of the fractional derivative is a positive
integer, then it is called an ordinary derivative; while for a negative integer, it is called an
integral (backward compatibility).

A new fractional-order model describing the dynamics of the IR effects elucidated
using the Caputo operator and Mittag-Leffler function for solving fractional derivatives
will be developed. The work is based on the pioneering work performed by Siam et al. [34].
The mathematical modeling framework of the present work will introduce the complex
behavior of ionizing irradiation effects on immune cells. Particularly, the study presented
herein aims to provide valuable information that will help to better understand the complex
behavior of the ionizing irradiation effect on immune cell populations. The significant
contribution of the present study resides in introducing a new fractional-order IR model
within the spirit of the pioneering mathematical model developed by Siam et al. [34]. The
study reveals the principal mathematical parameter having major control impacts on the
survival of immune cells by elucidating the appropriate fraction cell sensitivity rate, repair,
and death rate. The main impact of the present work resides in providing a new parameter,
namely, the fractional-order parameter susceptive to add a remarkable impact that helps the
capture of the neglected memory effect in the proposed model of Siam et al. [34]. Numerical
simulations will be carried out to serve as an efficient platform for reducing the death of
cells affected effectively, and by providing a better understanding of the behavior dynamics
of ionizing irradiation effects on immune cell populations. A MATLAB algorithm is used
for the mathematical computation and graph plotting to elucidate the ability of the model
to explain the effect of IR on immune cell populations by evaluating the sensitivity rate of
fraction cells as well as repair, and death rates.

The paper is organized as follows: Section 2 contains an overview of the research
background, the problem statement, and the objectives as well as the scopes of the present
study. In Section 3, an illustration of the relevant literature dealing with biological and
mathematical approaches in connection with the present study is provided. In Section 4,
we present and discuss the methodology of the proposed research. In Section 5, a detailed
theoretical elucidation of the population memory within the framework of fractional
differential equations (FODEs) is presented. A physical discussion of the obtained results is
illustrated in Section 6, and concluding remarks are made in Section 7.

2. Mathematical Modeling of Immune System

The ultimate objective of the present study is to investigate the influence of ionizing
irradiation on immune cell populations. Herein, we should emphasize that the mathemat-
ical approaches dealing with the most harmful health effects caused by exposure to the
ionizing irradiation process on immune cell populations are disentangled into two main
general models, namely, the deterministic and stochastic models [35–40].

The application of fractional differential equations within the context of a stochastic
model necessitates cautious attention because of the memory effects and the rise in calcu-
lation time as compared to the required computation time for classic random differential
equations. In this sense, the mathematical models of IR effects introduced within the frame-
work of integer-order differential equations (IDEs) [41–44], classified as a deterministic
mathematical model, seem to be non-appropriate since the model does not take into consid-
eration the effects of memory that exist in real-life diseases [45]. Despite this inconvenience,
these models have shown their aptitude to be easy to use and susceptible to be applied
in modeling, especially with cancer growth, readily available numerical methods, and
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well-developed dynamical systems theory. The utilization of fractional-order differential
equations in molecular biological problems may fill this gap [45].

Recently, Siam et al. [34] proposed a mathematical approach involving structured cell
populations for modeling DSBs and misrepair cells succeeding in ionizing irradiation. The
model is described by the IDE system. This model illustrates the dynamics process of cell
populations succeeding in ionizing irradiation, and the probability that the cell is correctly
repaired, including repair rate, and death rate. Nevertheless, this approach only takes into
account the primary electrons of ionizing irradiation as the main origin of DSB formation,
which induces DNA damage. Siam et al. [46] proposed a mathematical model using IDEs
that describes the role of radio-sensitizers such as gold nanoparticles in radiotherapy to
increase the number of cancer cell deaths. Mathematically, the approach was built within
the framework of IDEs. The authors managed to explain that gold nanoparticles increase
secondary electron production after exposure to primary irradiation that causes DNA
damage. Therefore, a radio-sensitizer such as gold nanoparticles may be a promising and
important factor in radiotherapy. This study aims to investigate the influence of radio-
sensitizers on radiotherapy to clarify their role in reducing the damage to neighboring
healthy cells. This study was conducted by incorporating the dose function deposited by
gold nanoparticles into the model used for the effects of ionizing irradiation.

2.1. Merits of Modeling Biological Processes with Fractional Derivatives

Fractional derivatives have been used in many scientific areas, including biology,
physics, chemistry, biochemistry, hydrology, medicine, and finance [47–49]. Biological
processes are also very reliant on the ultimate state of the dependent variable, and all
preceding stages throughout time. This is regarded as a memory effect of the dependent
variable in time. There are several examples of biological systems with memory effects
that have used nonlocal fractional-order differential equations to study their dynamics, for
example: modeling immune systems based on Atangana–Baleanu fractional derivatives,
fractional-order mathematical modeling of cancer cell–cancer stem cell–immune system
interaction with chemotherapy, and dynamical behavior of HIV immunology model with
non-integer time fractional derivatives [50–52]. In the aforementioned examples, the
memory of the systems is governed by the immunized cells and their corresponding
dynamics have thereby been studied with nonlocal fractional differential equations. The
concept of fractional calculus is embedded into a larger theory of nonlocal operators,
leading to a successful generalization of the fractional derivative operator that results in a
promising concept of memory effects. The influence of memory effects on a distinguished
set of biological processes is usually elucidated with nonlocal models.

2.2. Fractional Integrals and Fractional Derivatives

Even though fractional calculus is almost as old as conventional calculus, it has long
been used and sporadically discussed by only a few scientists. Multiple definitions for
fractional derivatives exist in the literature. There are various definitions for fractional
derivatives; the most popular ones are the Riemann–Liouville and the Caputo fractional
derivatives [53,54]. However, the Riemann–Liouville fractional derivative of a constant is
not zero, but that of the Caputo fractional derivative is zero. Hence, the Caputo fractional
derivative is more commonly used for mathematical modeling than the Riemann–Liouville
fractional derivative [55]. Moreover, Riemann’s definition requires the knowledge of
the initial conditions for the integration of the function, whereas the Caputo fractional
derivative needs the initial conditions of the function and its normal derivatives. Caputo
fractional derivative requirements are closer to reality, and they can be dealt with more
easily [56–58].

Special calculus functions have become important as solutions to FODEs and refined
mathematical models for various natural problems. In an innovative study, Mainardi [59]
tried to answer a central question by implementing the relationship between the Mittag-
Leffler function and fractional calculus. Several authors have investigated the solutions
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of linear and nonlinear fractional differential equations by the Mittag-Leffler function in
recent years [60,61].

3. Mathematical Formulation

The primary goal of this work is to explain the effects of ionizing radiation on a
memory cell population using a system of fractional differential equations based on the
IDE model proposed by Siam et al. [34], in which the population of cells is structured
by the number of DNA double-strand breaks (DSBs) due to ionizing irradiation. More
precisely, the cell population is structured into different cohorts, which contain k DSBs and
m misrepaired of DSBs. The death rate function in the model proposed by [34] depends
on the number of k DSBs and misrepairs, m. The authors considered two primary events
in the population, which are cell death β(k, m), and the repair process for DSBs γ(k, m)
with the probability of a successful repair cell, ρ(k + 1)γ(k + 1)Nk,m and an unsuccessful
repair cell defined as (1− ρ(k + 1))γ(k + 1)Nk+1,m−1. The Michaelis–Menten equation is
implemented to describe the repair rate of DNA damage. The model has M FODEs, where
M depends on a maximum number of DSBs, kmax. The number of cells with k DSBs is
produced immediately after ionizing radiation following Poisson distribution with mean λ.
Refer to [34] for further details.

Working in the same spirit and motivation as the recent work conducted by Siam
et al. [34], the current model is estimated to provide an improvement in the description
of the cell population under the effects of ionizing irradiation. However, it should be
underlined that the mathematical model developed herein is based on fractional-order
differential equations (FODEs), whereas the model of Siam et al. [34] used a system of linear
differential equations susceptible to describe the evolution of the irradiated population of
cells over time. The model of FODEs is given as follows:

Dt
αNk,m = −β(k, m)− γ(k, m)Nk,m + ρ(k + 1)γ(k, 1)Nk+1,m + (1− ρ(k + 1))γ(k + 1)N(k+1,m−1) (2)

For k = 0, 1, 2 . . . , kmax and m = 0, 1, 2, . . . , kmax with k + m ≤ kmax. From the last
inequality kmax represents the maximum number of DSBs arising in a population of cells
from ionizing irradiation. The operator Dα

t represents the Caputo derivative with respect
to time and 0 < α < 1. The α means the memory index of the cell. Its value is maintained
until it is changed, thereby leading to changing the solution by the system. The integration
from α to x corresponds with the history of the memory effect of the cell, which ranges
from 0 to t. It is interesting to note herein that the integer derivation equation considers
only the instantaneous dynamic evaluated at the instant time t. The parameters γ, β, and ρ
correspond, respectively, to the repair rate, death rate, and probability of effective repair.
The death rate, β(k, m) of cells is illustrated owing to the interaction between two DSBs.
Furthermore, death rate, β(k, m) is elucidated herein with aid from the lethal chromosomal
aberration, k2 and the misrepair of DSBs. Consequently, the cell death rate, arising from
ionizing irradiation, is presented as:

β(k, m) = α1m + α2k2 (3)

where α1 is a lethal misrepair rate constant, whereas α2 corresponds to the lethal damage
rate constant. The function is inspired by the Siam et al. [34] approach by taking into
consideration that the DSB damage that occurs in DNA arises in cells. It is widely accepted
that DSBs are among the most deleterious forms of DNA lesions. The occurrence of a large
number of DSBs induces an important probability of obtaining unrepaired or misrepaired
DSBs, as well as a considerable probability of obtaining lethal chromosomal aberrations,
thereby leading to a high probability of cell death. The repair rate, γ, is an ensemble of
cells having k DSBs, whereas the repair procedure of DSBs can be expressed by Michaelis–
Menten saturating function [62]:

γ(k, m) =
Vmax k
km + k

, (4)
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where k = 0, 1, 2, . . . represents the DSBs number, km is the Michaelis–Menten constant and
Vmax is the maximum repair rate. The Michaelis–Menten constant shows that the number
corresponding to the repair rate has reached half of the maximum number.

We consider an initial population of N(0)(N0 = N(0)) on cells being exposed to a
dose of irradiation D, and resulting in N(k, 0)(0) cells with k DSBs. Thus, the initial N(0)
and the total cell population N(t) satisfies:

N(0) =
kmax

∑
(k=0)

Nk,0(0). (5)

Distribution of Initial Number of DSBs

Let us suppose that new DSBs are formed directly after being subject of ionizing
radiation [63]. Following the work conducted by [64], which gave strong support that the
γ− H2AX phosphorylation–dephosphorylation radiation-induced foci are considered to
be a direct biomarker of DSBs, we presume that the probability of a cell obtaining k DSBs
can be expressed by the Poisson distribution, as follows:

P(n0·DBS = k) =
λke−λ

k!
, (6)

with the mean λ is given by:
λ = δD. (7)

D is the radiation dose, and δ is a measure of the radiosensitivity of cells.
Fractional calculus theories have undergone significant and even intense progress,

being predominantly developed by pure mathematicians. In the last decade, engineers
and researchers have managed to demonstrate that differential equations modeled with
the aid of fractional derivatives can efficiently provide a mathematical modeling of real
problems, such as signal processing, viscoelastic systems, control processing, diffusion
processes, radiology in biology, and ecology [64–66].

Different types of definitions for fractional derivatives are available in the literature,
which are typically not equivalent to each other. Different from integer-order (or classical)
derivatives, some relevant fractional derivative definitions are introduced herein. The
choice of these definitions, among others, is their aptitude to be used for modeling immune
cell populations. The Grunwald–Letnikov derivative is simply an expansion of the general
definition of an ordinary derivative that permits the derivation of a non-integer number
of times. This extension establishes a more general equation of the fractional derivative
with the interesting feature of nonlocality generally employed for the explanation of
the memory feature of real-life cases. The Grunwald–Letnikov definition is considered
a reference definition, into which the memory feature is typically integrated with all
definitions of fractional derivatives. The Caputo fractional derivative is commonly used in
expressing the enhanced model of radiotherapy cancer treatments, which mainly possess a
feature memory.

Definition 1. The definition of a derivative, as well as the establishment of the fractional derivative
based on the Grunwald–Letnikov definition, is provided by the following equations:

D f (t) = lim→ 0
( f (t)− f (t− h))

h
, (8)

where D = d
dt

f (t + h) = f (t) + h
d
dt

+
h2

2!
d2

dt2 f (t) +
h3

3!
d3

dt3 f (t) + . . . , (9)
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f (t + h) = f (t) + hD f (t) +
h3

3!
D3 f (t) + . . . πr2, (10)

exphD = 1 + 1 + hD/1! + (hD)2/2! + (hD)2/3! + . . . . (11)

It implies that Equation (4) can be represented as:

f (t + h) = ehD f (t), (12)

f (t− h) = e(−hD) f (t), (13)

by replacing Equation (12) with Equation (8), we obtain:

D f (t) = lim
h→0

(
f (t)− e−hD f (t)

)
h

. (14)

Consequently, any m power derivative, where m ∈ R, can be provided by:

dm

dtm f (t) = Dm f (t) = lim
h→0

(1− e−hD)
m f (t)

hm , (15)

dm

dtm f (t) = lim
h→0

(1−me−hD + m(m−1)
2! e−2hD − m(m−1)(m−2)

3! e−3hD + . . . + e−3hD

hm , (16)

dm

dtm f (t) = lim
h→0

(
f (t)−m f (t− h) + m(m−1)

2! f (t−2h) − . . . + f (t−mh)
)

hm . (17)

For an interval (t− a) with step size h, then Equation (11) becomes:

Dm
t f (t) = lim

h→0

1
hm ∑((t−a)/h)

(j=0) (−1) f
(

m
j

)
f (t− jh), (18)

where j ∈ Î–+ and
(

m
j

)
= m!

j!(m−j)!

The definition of the fractional derivative illustrated by Grunwald–Letnikov is pro-
vided by Equation (16). As can be depicted from Equations (8)–(18), the derivative becomes
local and the expansion terminates in case the parameter (m) is considered as integer (q)
(i.e., m = q), giving rise to an ordinary derivative of order (q). Nevertheless, in case the
integer (q) is taken to be negative, the expansion fails to terminate and continues during
the whole interval (t− a). In this particular case, Equations (17) and (18) become integral
and the derivative obtains a nonlocal character. Moreover, in cases where m is considered
a fractional number, the expansion also continues along with the entire interval (t− a),
enabling Equations (17) and (18) to possess a fractional derivative character. Due to this
nonlocality, both the fractional and integral derivatives treat the totality of the points within
the interval, and, as a result, the integral and fractional derivatives expose the so-called
memory effect [41,46].

4. Fractional Differential Equations Model Formulation

The mathematical model considered herein is used to reproduce the effects of ionizing
irradiation on immune cell populations. For this purpose, we extend the pioneering mathe-
matical model proposed by Siam et al. [34], by taking into account fractional differential
modeling to better describe and understand immune cell population phenomena rather
than its counterpart, classical (integer) derivative differential equations. In addition, the
fractional differential equations introduced herein are very promising tools since they
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are very efficient methods for reducing errors arising from the parameters of modeling
real-world phenomena. Moreover, the choice of using fractional modeling in our model
is mainly due to the fractality nature of the problem, which ensures links between fractal
structures and fractional calculus, such as those encountered in immune cell populations.
The mathematical model proposed by Siam et al. [34] is adapted herein by substituting the
exponential decay component with the generalized Mittag-Leffler function, which leads to
a mathematical approach with nonlocal characteristics. To solve the system, we used an
approach that involves the conversion of the model to an integral equation with fractional
differential equations. Accordingly, the derived solution takes the following expression:

Dα
t Nk,m = −β(k, m)Nk,m − γ(k, m)Nk,m + ρ(k + 1)γ(k, 1)Nk+1,m + (1− ρ(k + 1))γ(k + 1)Nk+1,m−1., (19)

For k = 0, 1, 2, . . . , kmax and m = 0, 1, 2, . . . , kmax with k + m ≤ kmax and kmax is the
maximum number of DSBs created following IR in the population of immune cells. Dα

t
represents the Caputo derivative with respect to time. The parameter α figuring in the
Caputo derivative (Dα

t ), which refers to the memory index of the cell, designs the fractional-
order derivative that satisfies the condition 0 < α < 1. The α means the memory index of
the cell. Its value is maintained until it is changed, thereby leading to changing the solution
by the system. The integration from α to x corresponds to the history of the memory
effect of the cell, which ranges from 0 to t. It is interesting to note herein that the integer
derivation equation considers only the instantaneous dynamic evaluated at the instant time
t. Equation (19) contains some rate functions:

β(k, m) = α1m + α2k2. (20)

β(k, m) is the death rate of cells, which is considered in two ways, and is due to
misrepair of DSBs; m is also due to the interaction of two DSBs located in spatial proximity
formed a lethal chromosomal aberration, k2.

γ(k, m) =
Vmaxk
km + k

, (21)

where γ(k, m) is the repair rate of immune cells, and ρ(k + 1) in Equation (21) is the
probability of successful repair. Note that kmax is not fixed, but random, based on a Poison
distribution. The value of parameters: δ = 2 Gy−1cells−1, α1 = 1.5 h−1, α2 = 0.001 h−1,
ρ = 0.95, Vmax = 1 h−1, and kM = 3 µM are chosen randomly only as an example. As an
example, we consider Equation (19) for three different cases, which depend on kmax.

Case 1. When kmax, k, and m are taken to be equal to 1, the population can be structured
into three groups of immune cells, which are N0,0 , N1,0 , N0,1. Then, Equation (19) is
reduced to a system of FODEs, which is given as follows:

Dα
t N0,0 = −β(0, 0)N0,0 − γ(0)N0,0 + ρ(1)γ(1)N0,0 + (1− ρ(1))γ(1)N1,−1

Dα
t N1,0 = −β(1, 0)N1,0 − γ(1)N1,0 + ρ(2)γ(2)N2,0 + (1− ρ(2))γ(2)N2,−1

Dα
t N0,1 = −β(0, 1)N0,1 − γ(0)N0,1 + ρ(1)γ(1)N1,1 + (1− ρ(1))γ(1)N1,0

Using the parameter values, the above equations become:

Dα
t N0,0 = 0.2375 N0,0

Dα
t N1,0 = −0.131 N1,0

Dα
t N0,1 = 0.0125 N1,0 − 1.2625 N0,1
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To make biological sense, the population Nk,m is eliminated when m = −1. The system
of FODEs can be rewritten into a matrix form:

Dα
t N0,0

Dα
t N1,0

Dα
t N0,1

=


0.2375 0 0
0 −0.131 0
0 0.0125 −1.2625




N0,0
N1,0
N0,1


Case 2. When kmax = 2, then the possible k and m are taken as k = 0, 1, 2 and m = 0, 1, 2.

The population is structured into groups of immune cells, N0,0, N1,0 , N0,1 , N1,1 , N2,0 , N0,2.
Then, Equation (21) is reduced to a system of FODEs, which is given as follows:

Dα
t N0,0 = −β(0, 0)N0,0 − γ(0)N0,0 + ρ(1)γ(1)N0,0 + (1− ρ(1))γ(1)N1,−1

Dα
t N1,0 = −β(1, 0)N1,0 − γ(1)N1,0 + ρ(2)γ(2)N2,0 + (1− ρ(2))γ(2)N2,−1

Dα
t N0,1 = −β(0, 1)N0,1 − γ(0)N0,1 + ρ(1)γ(1)N1,1 + (1− ρ(1))γ(1)N1,0

Dα
t N1,1 = −β(1, 1)N0,0 − γ(1)N0,0 + ρ(1)γ(2)N1,0 + (1− ρ(2))γ(2)N2,0

Dα
t N2,0 = −β(2, 0)N1,0 − γ(2)N1,0 + ρ(3)γ(3)N2,0 + (1− ρ(3))γ(3)N2,−1

Dα
t N0,2 = −β(0, 2)N0,1 − γ(0)N0,2 + ρ(1)γ(1)N0,2 + (1− ρ(2))γ(1)N1,1

Using the parameter values and eliminating the value of misrepair immune cells,
m = −1, the equations become

Dα
t N0,0 = 0.2375 N0,0

Dα
t N1,0 = −0.131 N1,0

Dα
t N0,1 = 0.0125 N1,0 − 1.2625 N0,1

Dα
t N1,1 = −1.371 N1,1 + 0.02 N2,0

Dα
t N2,0 = −1.496 N2,0

Dα
t N0,2 = 0.0125 N1,1 − 2.7625 N0,2

with m = −1 does not make sense. The system can be rewritten into a matrix form:

Dα
t N0,0

Dα
t N1,0

Dα
t N0,1

Dα
t N1,1

Dα
t N2,0

Dα
t N0,2

=


0.2375 0 0 0 0 0
0 −0.131 0 0 0 0
0 0.0125 −1.2625 0 0 0
0 0 0 −1.371 0.02 0
0 0 0 0 −1.496 0
0 0 0 0.0125 0 −2.7625





N0,0
N1,0
N0,1
N1,1
N2,0
N0,2


Case 3. When kmax = 3 and k and m are taken as k = 0, 1, 2, 3 and m = 0, 1, 2, 3, then the

population is structured into groups of immune cells, which are N0,0, N1,0, N0,1, N1,1, N2,0, N0,2,
N2,1, N1,2, N3,0, N0,3. In this case, Equation (21) is reduced to a system of FODEs, which is
given as follows:

Dα
t N0,0 = −β(0, 0)N0,0 − γ(0)N0,0 + ρ(1)γ(1)N0,0 + (1− ρ(1))γ(1)N1,−1
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Dα
t N1,0 = −β(1, 0)N1,0 − γ(1)N1,0 + ρ(2)γ(2)N2,0 + (1− ρ(2))γ(2)N2,−1

Dα
t N0,1 = −β(0, 1)N0,1 − γ(0)N0,1 + ρ(1)γ(1)N1,1 + (1− ρ(1))γ(1)N1,0

Dα
t N1,1 = −β(1, 1)N0,0 − γ(1)N0,0 + ρ(1)γ(2)N1,0 + (1− ρ(2))γ(2)N2,0

Dα
t N2,0 = −β(2, 0)N1,0 − γ(2)N1,0 + ρ(3)γ(3)N2,0 + (1− ρ(3))γ(3)N2,−1

Dα
t N0,2 = −β(0, 2)N0,1 − γ(0)N0,2 + ρ(1)γ(1)N0,2 + (1− ρ(1))γ(1)N1,1

Dα
t N2,1 = −β(2, 1)N2,1 − γ(2)N2,1 + ρ(3)γ(3)N2,1 + (1− ρ(3))γ(3)N3,0

Dα
t N1,2 = −β(1, 2)N1,2 − γ(1)N1,2 + ρ(2)γ(2)N1,2 + (1− ρ(2))γ(2)N2,1

Dα
t N3,0 = −β(3, 0)N3,0 − γ(3)N3,0 + ρ(4)γ(4)N3,0

Dα
t N0,2 = −β(0, 2)N0,1 − γ(0)N0,2 + ρ(1)γ(1)N0,2 + (1− ρ(1))γ(1)N1,1

Using the parameter values and eliminating the value of misrepair immune cells, the
equations become:

Dα
t N0,0 = 0.2375 N0,0

Dα
t N1,0 = −0.131 N1,0

Dα
t N0,1 = 0.0125 N1,0 − 1.2625 N0,1

Dα
t N1,1 = −1.371 N1,1 + 0.02 N2,0

Dα
t N2,0 = −1.496 N2,0

Dα
t N0,2 = 0.0125 N1,1 − 2.7625 N0,2

Dα
t N2,1 = −1.2625 N2,1 + 0.1 N3,0

Dα
t N1,2 = 0.02 N1,2 − 1.371 N1,2

Dα
t N3,0 = −1.4661 N3,0

Dα
t N0,3 = 0.0125 N1,2 − 4.2625 N0,3

The system can be rewritten into a matrix form:

Dα
t N0,0

Dα
t N1,0

Dα
t N0,1

Dα
t N1,1

Dα
t N2,0

Dα
t N0,2

Dα
t N2,1

Dα
t N1,2

Dα
t N3,0

Dα
t N0,3



=



0.2375 0 0 0 0 0 0 0 0 0

0 −0.131 0 0 0 0 0 0 0 0

0 0.0125 −1.2625 0 0 0 0 0 0 0

0 0 0 −1.371 0.02 0 0 0 0 0

0 0 0 0 −1.496 0 0 0 0 0

0 0 0 0.0125 0 −2.7625 0 0 0 0

0 0 0 0 0 0 −1.269 0 0 0

0 0 0 0 0 0 0.02 −1.371 0 0

0 0 0 0 0 0 0 0 −1.4661 0

0 0 0 0 0 0 0 0.0125 0 −4.2625





N0,0

N1,0

N0,1

N1,1

N2,0

N0,2

N2,1

N1,2

N3,0

N0,3
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The value of kmax is randomly generated by the Poisson distribution function in
MATLAB (see Equation (7)). It can be concluded that the general form of the FODE system
with a maximum number of DSBs (kmax) in a population of cells can be rewritten into a
matrix form:

dαN
dtα

= AN, (22)

where N is a matrix that represents groups of immune cells having k DSBs and m misrepair
DSBs and A is a square matrix.

The matrix N and the size of matrix A are derived based on the value of kmax, which is
the maximum number of DSBs in a population of cells. The number of FODEs that exists in
the system is M with the dimension of matrix N is M×M matrix given by:

M =
(kmax + 1)(kmax + 2)

2
. (23)

4.1. Solution of the FODE Model

The solution for Equation (22) with the initial population, N0 is as follows:

N(t) = N(0)Eα(At). (24)

The initial condition, N0, is explained in Section 3. It should be emphasized, herein,
that the rational approximation, which has proven its capability to provide an excellent
estimation of the Mittag-Leffler function, constitutes an appropriate solution [67,68]. Fur-
thermore, within the frame of this approximation, the problem requires only solving linear
systems rather than matrix inversions [68]. This is an efficient method even for small
matrix arguments, and direct approaches can be involved in solving the resulting linear
systems. In this case, we consider a large matrix argument and several alternatives can be
applied and, herein, the iterative method will be used. Indeed, in controlling large matrices,
iterative procedures are the most suitable compared to direct schemes, as they are less
vulnerable to numerical errors and robust [69]. A scheme using iterative procedures is
implemented in MATLAB and, hence, this routine will be performed for the numerical
evaluation of the Mittag-Leffler function. The initial distribution of the random Poisson
distribution only generates the number of DSBs k in immune cells. Therefore, m = 0 for
all values of k because there is no cell with misrepair DSBs in the initial condition, as the
repair process has not started yet.

For the example of how the initial condition (N(0)) is computed here, suppose that
there is a population of immune cells and the number of DSBs (k) produced by Poisson
distribution on each cell is (1, 2, 0, 0, 1, 1, 2, 0, 2). Observe the number of maximum DSBs,
kmax = 2 to 6 groups of immune cells. Therefore, the initial condition, N(0) is as follows:

N0,0(0)
N1,0(0)
N2,0(0)
N0,1(0)
N1,1(0)
N2,1(0)


=



3
3
3
0
0
0


The survival fraction of immune cells for the solution N(t) is given as:

S =
∑k,m Nk,m(t)
∑k,m Nk,m(0)

. (25)
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4.2. Model Simulation Algorithm

In the model simulation, we generate 31 simulation data points for the fixed value of
model parameters. MATLAB R2021a is used to perform the simulation of the model. The
algorithm to compute the survival fraction (S) with respect to dose (D) is as follows:

1. Generate random initial conditions, N(0). The dose D is incorporated into the system
via initial conditions. This is achieved by fixing dose D, to compute the mean λ to
obtain the initial conditions.

2. Solve the system up to time t = T for T = 24 h. We chose the number to ensure that
the repair process is completed [70].

3. Compute the fraction of surviving immune cells S =
∑k,m Nk,m(T)
∑k,m Nk,m(0) .

4. Plot lnS versus the dose D. Due to the randomness of the initial conditions, we repeat
steps (1)–(3) for twenty runs in order to obtain the averaged value of the surviving
fraction in logarithmic scale, lnS. This step shows the completion of the loop for a
single dose D, corresponding to a single data point. To obtain many data points on
the survival curve, steps (1)–(3) and the averaged value of surviving fraction in a
logarithmic scale, lnS need to be repeated for each dose D.

5. Fit the obtained data to the LQ (see Equation (1)) relation using fmin-search in MAT-
LAB. This method employs the search method of Lagarias et al. [71], which determines
the minimum of our unconstrained multivariable function using derivative-free. A
flowchart of the model simulation algorithm is provided in Figure 1.
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4.3. Simulation of the Model

We generate 31 simulation data points for the value of model parameters, δ = 2 Gy−1cells−1,
α1 = 1.5 h−1, α2 = 0.001 h−1, ρ = 0.95, Vmax = 1 h−1, and KM = 3 µM. These values and
the total number of data are chosen only as an example. For the model simulation, the proposed
boundaries’ value ranges are listed in Table 1.

Table 1. The parameter space is restricted to the range of values.

Parameters Lower Boundary Upper Boundary Reference

δ 2 Gy−1cells−1 40 Gy−1cells−1 [34]
α1 0.0277 h−1 20.97 h−1 [34]
α2 0 h−1 0.005 h−1 [34]
ρ 0 1 [34]

Vmax 0.1 h−1 3 h−1 [34]
KM 0 µM 5 µM [34]

An illustration of the obtained results relative to the model simulation with the varia-
tion in the memory index values α is plotted in Figure 2.
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5. Comparison between Current Model and Previous Model Proposed by Siam et al. [34]

Various forms of fractional derivatives have been employed to pattern many problems
in biological science [63,64]. In this research, the Caputo fractional-order derivative will
be employed. Caputo fractional-order derivatives are another suitable alternative for
calculating fractional derivatives, featured by the fact that the searching solution of the
differential equations does not require the definition of the fractional-order initial conditions.
Furthermore, in cases where real-world diseases are considered, the Caputo fractional
differential allows the utilization of the initial and boundary conditions [29]. Here, we
present a generalization of Siam’s model in [34], in which we transform from the integer
derivative (IDE) model to the fractional derivative (FODE) model (see Table 2).
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Table 2. Modification of current model from previous model.

Item Previous Model IDE Current Model FDE

System dN
dt = AN dαN

dtα = AN

The solution N(t) = N(0)exp(At) N(t) = N(0)Eα(At)

In the following, we show the differences between previous and current models. The
system of fractional differential equations (FODEs) is given by:

dαN
dtα

= AN, (26)

where N is the cell population following ionizing radiation. M×M matrix A is defined by
Equation (2), and then the solution for this system (19) above is given by:

N(t) = N(0)Eα(At) (27)

N(0) is the initial population of cells being subjected to a dose of ionizing radiation
following a Poisson distribution. Eα(At) is Mittag-Leffler function with α > 0.

6. Results Discussion and Summary

Despite the recent advances in mathematical modeling of biological processes and
real-world situations raised in the day-to-day life phase, some phenomena such as immune
response phenomena remain poorly understood. The mathematical modeling of complex
systems for these phenomena using nonlinear differential equations seems to be quite
promising with appropriate tools to model such complex and nonlinear complex systems.
Fractional differential equations recently have gained a significant deal of attention and
demonstrated their relevance in modeling real-world problems. Several publications men-
tion the involvement of fractional modeling to better describe and understand real-world
problems rather than their counterpart, classical (integer) derivative differential equations.
In addition, fractional differential equations are very promising tools since they are very
efficient methods for reducing errors arising from the parameters of modeling real-world
phenomena. Moreover, the literature brings another reason to choose fractional modeling in
our model aiming to describe the biological aspects of immune cell populations and blood
tumor treatment and growth: fractality, which ensures links between fractal structures
and fractional calculus, revealing patterns in nature, such as immune cell populations and
blood tumor growth or treatment.

The systematic investigation of the immune cell populations provided herein uses a
mathematical model that deals with the effects of ionizing radiation and involves, in its
structure, nonlinear differential equations. Interestingly, a comprehensive investigation
using fractional differential equations to describe the biological aspects of immune cell pop-
ulations and blood tumor treatment and growth is provided. Fractality, which ensures the
link between fractal structures and fractional calculus, also reveals patterns in nature, such
as those involving memory effects, which constitute the foundation of the mathematical
formulation used in conducting this work. We report herein a realistic mechanistic model
of the influence of ionizing irradiation on DNA in immune cell populations using fractional
order of derivatives. In order to elucidate the evolution of cell population dynamics follow-
ing ionizing radiation, the present mechanistic model is developed within the framework
of fractional differential equations by taking into account the Mittag-Leffler function as
well as the Caputo derivative. The choice of using some definitions among others is their
aptitude to be used for modeling such biological processes. The common definition of a
derivative is proposed by Grünwald–Letnikov, which is simply an expansion of the general
definition of an ordinary derivative that permits the derivation of a non-integer number
of times. This extension establishes a more general equation of the fractional derivative
with the interesting feature of nonlocality generally employed for the explanation of the
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memory features such as those observed in immune cell populations. This is typically what
happens in some real-life processes, particularly dealing with biological processes. For
instance, the treatment of immune cell populations depends on all the points in the interval
because this biological process exhibits a memory effect [65,66]. Hence, the employment of
fractional derivatives for modeling biological processes will provide more realistic results
than its counterpart, ordinary derivatives. Because cancer cure is a purely natural process,
it is therefore more appropriate and precise to employ fractional derivatives. The Caputo
fractional derivative constitutes the most useful scheme for defining a fractional derivative.
The Caputo fractional derivative treats the differentiation in the entire interval, thereby
allowing the derivative to be nonlocal. The differentiation consequence considers all the
interval points, hence providing a great advantage compared to classical derivatives that
consider only the initial and final points or a finite number of points, having a limited
local character.

We now present the results of our realistic mechanistic model on the influence of
ionizing irradiation on DNA in an immune cell population using fractional order of deriva-
tives. Our results are compared and contrasted with those provided by Siam et al. [34].
The parameter estimation approach used herein qualifies the death rate coefficient of the
model species, giving rise to a value of parameters that best fits the model simulation to
the experimental data collected for this purpose. Global optimization algorithms are used
to obtain the minimum value of the sum of squares error (SSE). The simulation results are
performed using the system of fractional-order derivatives derived herein for a memory
index ranging from 0 to 1 (0 < α < 1). The FODE model is implemented to explain the
dynamics process of the irradiation effects on immune cell populations.

In Figure 2, we plot the steady-state surviving fraction obtained using various values
of the memory index α. It is interesting to disentangle herein that the fractional order refers
also to the memory index α. The convergence criteria considered herein is to proceed with
an absolute difference between two consecutive terms less than 10−9, i.e., |an−an−1| < 10−9.
Moreover, in order to describe the evolution of cell population dynamics following ionizing
radiation, the mechanistic model presented herein is developed within the framework of
the fractional differential equations by taking into account the Mittag-Leffler Function as
well as the Caputo derivative. The parameter estimation approach used herein qualifies
the death rate coefficient of the model species, giving rise to a value of parameters that best
fits the model simulation to the previous theoretical model [34] as well as the experimental
data that will be collected for this purpose. Global optimization algorithms are used to
obtain the minimum value of the sum of squares error (SSE), derived within the least square
method, which supposes that the appropriate fit line of the experimental data is the one
having the minimum value of the least square error.

As can be depicted from the figure, for a memory index, α is equal to the unit (α = 1),
and the obtained survival curve is perfectly superimposed with its corresponding curve
obtained within the framework of the IDE model developed in the pioneering work pro-
posed by Siam et al. [34]. Interestingly, when the memory index α = 1, the FODE model
exhibits the expected identical results compared to the IDE model. When the fractional
order is reduced between 0 and 1, the immune cell surviving fraction is increased due to
the manifestation of the nonlocality and memory effect, thereby suggesting that when the
previous history of the immune cells is considered, more cells will survive the irradiation
effects. These observations indicate that fractional-order effects are important in the surviv-
ing fraction dynamics across a complex wide range of memory effects and hereditary traits.
Furthermore, it is shown in this context that the memory trace dynamics are strongly reliant
on time [72]. When the fractional order is reduced to between 0 and 1, the immune cells’
survival rises owing to the memory trace that provides strong support for the immune cells
having the ability to repair the DNA damage effectively [72,73]. Hence, fractional-order
system dynamics yields more sophisticated results, giving rise to a significant divergence
from those obtained from integer-order dynamics. Moreover, in cases where α is con-
sidered as a fractional number between 0 and 1, the Caputo derivative also continues to
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possess a fractional derivative character. Due to this nonlocality, both the fractional and
integral derivatives treat the totality of the points within the interval, and, as a result, the
integral and fractional derivatives expose the so-called memory effect. This is typically
what happens in some real-life processes, particularly dealing with biological processes.
For instance, the treatment of immune cell populations depends on all the points in the
interval because this biological process exhibits a memory effect. Hence, the employment
of fractional derivatives for modeling biological processes with a memory index satisfying
0 < α < 1 will provide more realistic results than its counterpart ordinary derivatives.

It should be noted that the effects of ionizing radiation on cell populations while
accounting for memory effect/hereditary traits are typically scarcely studied and to our
knowledge, no such study in the literature has addressed the effects of ionizing radiation
by taking into account the memory effects and hereditary traits. Moreover, we should em-
phasize that the results obtained herein are in line with the experimental facts elucidated in
nonlocal memory effect phenomena, which affirm that the cells of the immune system have
the ability to remember (or adapt) a previous response to irradiation damage. Particularly,
the immune cells can respond more effectively to the irradiation damage [74,75]. This is
illustrated once the immune cells are exposed to environmental hazards such as ionizing
radiation and, consequently, activation of the cells’ immune response will be triggered.

7. Conclusions

The mathematical approach adopted in this study has been applied for the first time
to develop a fractional-order mathematical model of DNA damage response to ionizing
radiation. The model is based on the use of fractional-order differential equations in-
herently connected to systems with memory, which are predominantly present in cancer
cell–immune system interactions. Within the context of this model, the nonlocality char-
acter of such disease dynamics is employed, thereby leading to the development of a
mathematical approach dealing with fractional-order differential equations. Mathematical
models based on ordinary differential equations of integer order have proven useful in
understanding disease dynamics. However, when compared to fractional-order deriva-
tives, they are several restrictions. The immediate biological events are solely described by
integer-order derivatives. The nonlocal feature of fractional order asserts that the next step
of a model depends not only on its present state but also on all of its prior stages. Using
this model, we have explained the effects of ionizing radiation on a cell population using a
system of fractional differential equations based on the IDE pioneering model proposed
by the Siam et al. [34], in which the population of cells is structured by the number of
DNA double-strand breaks due to ionizing irradiation. More precisely, the cell population
is structured into different cohorts, which contain k DSBs and (m) misrepaired of DSBs.
We have taken into consideration that the death rate function depends on the number of
k DSBs and misrepairs, (m). We also considered two primary events in the population,
which are cell death β(k, m) and the repair process for DSBs, γ(k, m), with the probability of
successfully repairing a cell, ρ(k + 1)γ(k + 1)Nk,m and an unsuccessful repair cell defined
as (1− ρ(k + 1))γ(k + 1)Nk+1,m−1, and finally, we implemented the Michaelis–Menten
equation for the elucidation of the repair rate of DNA damage. Our model presents a set of
FODEs, which are mainly dependent on the maximum number of DSBs. The number of
cells with the elucidated number of DSBs is produced immediately after ionizing radiation
using Poisson distribution. The theoretical results illustrated in this investigation, dealing
with the fractional-order mathematical model of DNA damage response to ionizing radia-
tion developed with the aid of the above theoretical considerations, permit the following
important conclusions and observations:

(i) For a memory index, α is equal to the unit (α = 1), the obtained survival curve is
excellently superimposed with the results obtained within the framework of the IDE model
proposed by Siam et.al. [34].

(ii) When the fractional order is reduced to between 0 and 1, the immune cells surviving
fraction is increased due to the manifestation of the nonlocality and memory effect. Hence,
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more cells will survive the irradiation effects, and a significant deviation from the results
obtained by the model of Siam et al. [34] is elucidated.

(ii) Mathematical models based on ordinary differential equations of integer order
have proven useful in understanding disease dynamics. However, when compared to
fractional-order derivatives, they have several restrictions.

(iv) The nonlocal characteristic of the mathematical models dealing with fractional-
order differential equations is crucial, as it does not exist in integer-order differential
operators. Fractionality is inherently connected to systems with memory, and is present in
cancer cell–immune system interactions.

(v) Mathematical models with fractional-order differential equations outperform
integer-order mathematical models. Both fractional modeling and the estimated value of
model parameters have been evaluated in this investigation,

(vi) Fractional-order modeling is also very susceptible to taking into account memory
trace and genetic qualities, which are capable of integrating all previous actions, taking into
account the system’s long-term history.

Finally, it is important to emphasize that the inclusion of fractional-order differential
equations is intended to better mimic the real world when dealing with real-life phenomena
with memory such as those involved in biological applications. We are persuaded that the
extension of theoretical mathematical approaches must appropriately convey their rising
importance in cancer growth and treatment. By using such mathematical models, biologists
and academics will be capable of linking both experimental findings and theoretical results
in a sustainable way to consider more appropriate methodology for a comprehensive
understanding of such diseases by elucidating the memory trace and genetic qualities
that are capable of integrating all previous actions, taking into account the system’s long-
term history. The mathematical model presented herein institutes a fragment of such
an approach.
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