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Abstract: We prove the existence of the monotone traveling wave for the isothermal fluid equations
with viscous and capillary terms by the planar dynamical system method. We obtain that the
monotone traveling wave is asymptotically stable under the suitable perturbation. In the process
of establishing the uniform a priori estimate, we dispose the capillary term reasonably according to
the feature of the equations, and find the appropriate weighted function to overcome the difficulty
caused by the non-convex pressure function.
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1. Introduction

We consider the nonlinear stability of the monotone traveling wave for the following
isothermal fluid equations with the viscous and capillary terms [1] in the Lagrangian
coordinates {

vt − ux = 0,
ut + p(v)x − εuxx + δvxxx = 0.

(1)

In (1), t > 0 is the time, and x ∈ R is the coordinate. u and v represent the velocity
and specific volume, respectively. εuxx is the viscous term, and δvxxx is the capillary term,
where the coefficients ε and δ are constants, satisfying ε > 0 and δ > 0. The capillarity
was first proposed by Korteweg [2], so the system with the capillary term is also called a
Korteweg type [3–7]. The van del Waals pressure p(v) is in the form of

p(v) =
a

v− b
− c

v2 . (2)

(1) with (2) could be treated as a simple model to describe the liquid–gas phase
transition [8–10]. M. Affouf and R.E. Caflisch [1] used its simplified form

p(v) = v− (v− 2)3 (3)

to analyze the stability for rarefaction waves, shock waves, and phase jump of Equation (1)
by a numerical method.

The energy estimate method [11,12] is usually used to theoretically analyze the asymp-
totic stability of the traveling wave. Applying this method, the stability of the rarefaction
wave and shock wave for a one-dimensional compressible model with viscous gas{

vt − ux = 0,
ut + p(v)x = µ( ux

v )x,
(4)
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has been studied in [13–15]. Z. Chen et al. [6,7] studied the large time behavior of the
rarefaction wave and traveling wave for the following fluid equations{

vt − ux = 0,
ut + p(v)x = µ( ux

v )x + κ 1
v (

1
v (

1
v (

1
v )x)x)x,

(5)

where κ 1
v (

1
v (

1
v (

1
v )x)x)x is the capillary term. W. Zhang et al. [16] studied the existence and

asymptotic stability of the monotone traveling waves of Equations (1) with (3). In the above
studies, the pressure p(v) is supposed to satisfy

p′(v) < 0, (6)

p′′(v) > 0. (7)

This paper mainly focuses on the case of Equations (1) with (2), in which the pressure
p(v) is more complex. We assume that its first-order derivative p′(v) satisfies (6), while the
second-order derivative p′′(v) will change the signal on (v−, v+), where the constants v±
are the asymptotic values of the traveling wave throughout, i.e.,

p′′(v)
{

> 0, when v < v∗,
< 0, when v > v∗ v∗ ∈ (v−, v+). (8)

This means the pressure p(v) is not strictly convex. The case with a non-convex
pressure function has been investigated by some researchers [17–22], but the models they
studied had no capillarity. In light of [6,7,17–22], we studied the nonlinear stability of the
monotone traveling wave, when the system has a capillary effect and the pressure p(v),
chosen as (2), satisfies (6) and (8).

In Section 2, we qualitatively analyze the existence of monotone traveling waves by
the planar dynamical system method. In Section 3, in order to settle the difficulty caused
by the non-convex pressure p(v), we find the appropriate weight function to establish the
uniformly prior estimate. In this process, we dispose the capillary term reasonably by the
structure of Equation (1) itself. The uniformly prior estimate can be used to explain the
asymptotic behavior under the suitable perturbation.

In this paper, we use Young’s inequality and the differential mean value theorem. To
enhance readability, we list them as follows:

Young’s Inequality Suppose u, v, η > 0, p, q > 1 with 1
p + 1

q = 1. Then

uv ≤ η

p
up +

η−q/p

q
vq.

Differential Mean Value Theorem If function f (x) meets the following conditions:
(1) f (x) is continuous on close interval [a, b];
(2) f (x) is derivable on open interval (a, b).
Then, at least there is one point ξ ∈ (a, b) that can make the equation f (b)− f (a) =

f ′(ξ)(b− a) true.
Notations. L2(R) denotes the space of measurable functions on R which are square

integrable, with the norm || f ||2L2 = || f ||2 =
∫

R f 2(x)dx. Hl(l ≥ 0) denoting the Sobolev

space, with the norm || f ||2Hl = || f ||2l =
l

∑
j=0
||∂j

x f ||2.
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2. Traveling Wave and Main Results

Suppose that Equations (1) with (2) have the traveling wave (V, U)(ξ) = (V, U)(x−
ct) =(v, u)(t, x), where c is the wave speed satisfying{

−cVξ −Uξ = 0,
−cUξ + p(V)ξ = εUξξ − δVξξξ .

(9)

Integrating the above formula on (−∞, ξ) and (ξ,+∞), respectively, yields{
−cV −U = a1,
−cU + p(V) = εUξ − δVξξ + a2,

(10)

where a1 = −cv± − u±, a2 = −p(v±)− cu±. Then c satisfies{
−c(v+ − v−) = u+ − u−,
−c(u+ − u−) = p(v+)− p(v−),

(11)

which is the Rankine–Hugoniot condition.
When the viscous coefficient ε = 0 and capillary coefficient δ = 0, the system (1) has

two eigenvalues λ1,2 = ±
√
−p′(υ). The wave speed c satisfies the Lax shock condition

λ+
i < c < λ−i , i = 1, 2. (12)

In this paper, we only discuss the case of c > 0, i.e.,√
−p′(υ+) < c <

√
−p′(υ−). (13)

The case of c < 0 can be discussed similarly.

Theorem 1 (Existence of the traveling wave). When p′(v) < 0, there exists a monotone
traveling wave (V, U)(ξ) in Equations (1) and (2), with Vξ > 0 and Uξ < 0, satisfying the
Rankine–Hugoniot condition (11) and the Lax shock condition (13).

Proof. We prove Theorem 1 with the planar dynamical system method [23].
From (9), the traveling wave V(ξ) satisfies

δVξξξ + εcVξξ + (c2V + p(V))ξ = 0. (14)

Integrating above on (ξ,+∞), we have

δVξξ + εcVξ + (c2V + p(V)− g) = 0, (15)

where g is an integral constant.
Letting x = V(ξ) and y = Vξ(ξ), then (15) is equivalent to the planar dynamical system

dx
dξ

= y,

dy
dξ

= − cε

δ
y− c2x + p(x)− g

δ
.

(16)

We want to find the monotone traveling wave (V, U)(ξ) of Equation (1), satisfying
Vξ > 0 and Uξ < 0, with the asymptotic value (v±, u±), as long as we find the bounded
orbit connecting v±, where v± are the real roots of c2x + p(x)− g = 0 satisfying v− < v+.
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On the phase plane (x, y), we denote the singular points to be P1(v−, 0) and P2(v+, 0),
at which the Jocabi matrix is

J(v±, 0) =

 0 1

−1
δ
(c2 + p′(v±)) − cε

δ

. (17)

The characteristic polynomial of J(v±, 0) is ε2 + cε
δ ε + 1

δ (c
2 + p′(v±)). From the Lax

shock condition (13), we have {
c2 + p′(v+) > 0,
c2 + p′(v−) < 0.

(18)

From the planar dynamical system theory, we know that P1(v−, 0) is a saddle point,
since J(v−, 0) has two real eigenvalues with opposite signs; P2(v+, 0) is a stable node point,
since J(v+, 0) has two real negative eigenvalues.

In the next step, we give the tendency of the separatrix at the right side of the saddle
point P1. For this purpose, we establish a triangle region, surrounded by the straight lines
P1 A : x = v−, P1P2 : y = 0, and P2 A : y = k(x− v+), where k < 0 will be determined
later. The triangle region is generalized non-tangential. Since the tangent slope of the orbits
of system (16) at P1 A, P1P2 and P2 A are

dy
dx
|(x,y)∈P1 A = − cε

δ
< 0,

dy
dx
|(x,y)∈P1P2

= ∞,

dy
dx
|(x,y)∈P2 A = − cε

δ
− c2

δk
c2v + p(v)− g

v− v+
≤ k.

(19)

The third formula of (19) holds as long as k satisfies

− cε

2δ
− 1

2

√
c2ε2

δ2 −
4(c2v + p(v)− g)

δ(v− v+)
≤ k ≤ − cε

2δ
+

1
2

√
c2ε2

δ2 −
4(c2v + p(v)− g)

δ(v− v+)
. (20)

See details in Figure 1.

Figure 1. The tangent slopes of the orbit at P1 A, P1P2 and P2 A.

From the direction of the vector field described in Figure 1, we know that the separatrix
line of the saddle point P1 will not pass through the triangle region4P1P2 A. Note that P2
is a stable node point, so the separatrix coming from the saddle point P1 must trend to P2.
Hence, there must be a bounded orbit connecting the points P1 and P2, which corresponds
to the monotone increasing traveling wave since y = Vξ > 0.



Mathematics 2023, 11, 1734 5 of 11

Theorem 2 (Property of the traveling wave). There exists a constant C, independent of t, such
that the monotone traveling wave (V, U)(ξ) of Equations (1) and (2) obtained in Theorem 1 satisfies

|Vξ | ≤ C|v+ − v−|. (21)

(21) is very important in the energy estimate, which can be obtained from (9) by direct
calculations, so we omit the proof. See details in [16].

We discuss the traveling wave solution of Equations (1) and (2) with the initial condition

(v, u)(0, x) = (v0, u0)(x), (22)

where v0, u0 are measurable functions, satisfying v0 → υ± and u0 → u± as x → ±∞. υ±
and u± are constants.

Let (υ, u)(t, x) = (V, U)(ξ) + (Φξ , Ψξ)(t, ξ), i.e.,

Φ(t, ξ) =
∫ ξ

−∞
(v0 −V)(x)dx, Ψ(t.ξ) =

∫ ξ

−∞
(u0 −U)(x)dx, (23)

and then (Φ, Ψ) satisfy{
Φξ t − cΦξξ −Ψξξ = 0
Ψξ t − cΨξξ + (p(V + Φξ)− p(V))ξ = εΨξξξ − δΦξξξξ .

(24)

We consider the system (24) with the initial condition

(Φξ , Ψξ)(0, ξ) , (Φ0ξ , Ψ0ξ)(ξ) = (v0 −V, u0 −U)(ξ), (25)

where
Φ(0, ξ) , Φ0(ξ) =

∫ ξ
−∞(v0 −V)(x)dx,

Ψ(0, ξ) , Ψ0(x) =
∫ ξ
−∞(u0 −U)(x)dx,

∀ξ ∈ R (26)

Suppose that ∫ +∞

−∞
(v0 −V)(x)dx = 0,

∫ +∞

−∞
(u0 −U)(x)dx = 0. (27)

Theorem 3 (Nonlinear stability). (V, U)(ξ) is the monotone traveling wave obtained in Theorem 1.
Then there exist constant λ� 1 and η � 1, such that Equation (1) has a unique global solution
(v, u)(t, x) with the initial value (v0, u0), satisfying{

v−V ∈ L∞(0, ∞; H2) ∩ L2(0, ∞; H2)
u−U ∈ L∞(0, ∞; H1) ∩ L2(0, ∞; H2),

(28)

if
|v+ − v−| ≤ η, (29)

and {
N0 = ||Φ0||1 + ||Ψ0|| ≤ λ,
||Φ0ξξ ||1 + ||Ψ0ξ ||1 < ∞.

(30)

Furthermore, the asymptotic behaviors of the global solution are shown in the form of

lim
t→+∞

{||(v−V)(t)||W2,+∞(R) + ||(u−U)(t)||W1,+∞(R)} = 0. (31)
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3. Proof to Theorem 3 on Nonlinear Stability

Integrate (24), and make the integration constant to be zero. Then we get{
Φt − cΦξ −Ψξ = 0
Ψt − cΨξ + (p(V + Φξ)− p(V)) = εΨξξ − δΦξξξ .

(32)

Linearizing (32) yields{
Φt − cΦξ −Ψξ = 0
Ψt − cΨξ + p′(V)Φξ = εΨξξ − δΦξξξ + F(V, Φξ),

(33)

among which F(V, Φξ) = −p(V + Φξ) + p(V) + p′(V)Φξ .
We consider the initial value problem (33) with

(Φ, Ψ)(0, ξ) = (Φ0, Ψ0)(ξ) (34)

under the solution space

M(0, T) = {(Φ, Ψ) ∈ L∞(0, T; H3 × H2), Φξ ∈ L2(0, T; H2), Ψξ ∈ L2(0, T; H2)}.

Theorem 4. Assume (Φ0, Ψ0) ∈ H3 × H2 and the condition in Theorem 3 holds. There exists
a positive constant C, independent of t, s.t. (33) and (34) has a unique global solution (Φ, Ψ) in
M(0, ∞) under the condition (29) and (30). Furthermore, ∀t ∈ [0, ∞),

||Φ(t)||21 + ||Ψ(t)||2 +
∫ t

0 (||
√

Vξ Φ||2 + ||Φξ ||21 + ||
√

Vξ Ψ||2 + ||Ψξ ||2)dτ ≤ C(||Φ0||21 + ||Ψ0||2). (35)

||Φξ(t)||22 + ||Ψξ(t)||21 +
∫ t

0
||Φξ ||22 + ||Ψξ ||22dτ ≤ C(||Φ0||23 + ||Ψ0||22). (36)

Theorem 3 could be proved by Theorem 4 directly. Actually, from the uniqueness of
the global solution, its existence can be obtained by the global solution (Φ, Ψ) of the initial
problem (33) and (34). Meanwhile, from (35) and (36), we know that∫ +∞

0
{||Φξ(t)||22 + ||Ψξ(t)||22 +

d
dt
(||Φξ(t)||22 + ||Ψξ(t)||21)}dt < ∞ (37)

Furthermore, from the Sobolev inequality, then (31) in Theorem 3 holds.
Theorem 4 can be proved by two parts: the local existence and the a priori estimate.

The first part can be arrived at in the standard way, so we omit it. We only give the
proof for the a priori estimate. Combining the two parts, we can give the global existence
by continuations.

Proposition 1 (Local existence). Suppose ||Φ0||3 + ||Ψ0||2 ≤ λ0. There is a positive constant
T0 only depending on λ0, such that the problem (33) and (34) has a unique small solution (Φ, Ψ) ∈
M(0, T0).

Proposition 2 (A priori estimate). (Φ, Ψ) ∈ M(0, T) is the solution of the initial problem (33)
and (34). Denote

N(t) = sup
0≤τ≤t

{‖(Φ, Ψ)(τ)‖H1×L2}, t ∈ [0, T]. (38)

Then there exists a positive constant λ′(≤ 2λ0), independent of t, when N(t) ≤ λ′ << 1,
s.t. (35) and (36) hold.

Proof. We first give the weight energy estimate of (Φ, Ψ) on L∞(H1 × L2).
We multiply a(V)Φ and w(V)Ψ with the first formula and second formula in (33),

respectively, where a(V) = −w(V)p′(V). Summing the results, then we have
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( a(V)
2 Φ2 + w(V)

2 Ψ2)t + (− a(V)
2 Φ2 − w(V)

2 Ψ2 − a(V)ΦΨ)ξ +
ca(V)ξ

2 Φ2 +
cw(V)ξ

2 Ψ2 + εw(V)Ψ2
ξ

= −a(V)ξ ΦΨ− δw(V)Φξξξ Ψ− εw(V)ξΨξΨ + w(V)FΨ
(39)

To simplify the term −δw(V)ΦξξξΨ in (39), we differentiate the first formula in (33)
with respect to ξ, and multiply δw(V)Φξ . Summing (39), then we get

( a(V)
2 Φ2 + w(V)

2 Ψ2 + δw(V)
2 Φ2

ξ)t +
ca(V)ξ

2 Φ2 +
cδw(V)ξ

2 Φ2
ξ +

cw(V)ξ

2 Ψ2 + εw(V)Ψ2
ξ

+(− a(V)
2 Φ2 − w(V)

2 Ψ2 − a(V)ΦΨ− cδw(V)
2 Φ2

ξ + δw(V)Φξξ Ψ− δw(V)Φξ Ψξ)ξ

= −a(V)ξ ΦΨ− εw(V)ξ ΨξΨ + δw(V)ξ Φξ Ψξ − δw(V)ξΦξξΨξ + w(V)FΨ

(40)

Note that (− a(V)
2 Φ2 − w(V)

2 Ψ2 − a(V)ΦΨ− cδw(V)
2 Φ2

ξ + δw(V)Φξξ Ψ− δw(V)ΦξΨξ)ξ

will disappear after integrating, so we write it as {. . .}ξ for short in the following.
In order to find the appropriate weight function w(V), we rewrite (40) as

( a(V)
2 Φ2 + w(V)

2 Ψ2 + δw(V)
2 Φ2

ξ)t + {. . .}ξ +
a(V)ξ

2c (cΦ + Ψ)2 + εw(V)
4 (Ψξ +

w(V)ξ

w(V)
Ψ)2

+
cδw(V)ξ

2 Φ2
ξ +

εw(V)
2 Ψ2

ξ + (
cw(V)ξ

2 − a(V)ξ

2c −
εw(V)

2 (
w(V)ξ

w(v) )
2)Ψ2

= δw(V)ξ Φξ Ψξ − δw(V)ξΦξξΨξ + w(V)FΨ

(41)

To obtain the lower order a priori estimate, the weight function w(V) should be chosen
to make

cw(V)ξ

2
− 1

2c
a(V)ξ −

εw(V)

2
(

w(V)ξ

w(V)
)2 > 0

hold. Further,

cw(V)ξ

2 − 1
2c a(V)ξ − εw(V)

2 (
w(V)ξ

w(V)
)2

= w(V)
2c [−cε(

w(V)ξ

w(V)
)2 + c2 w(V)ξ

w(V)
− a(V)ξ

w(V)
]

= w(V)
2c Vξ [−cεVξ(

w′(V)
w(V)

)2 + (c2 + p′(V))w′(V)
w(v) + p′′(V)] > 0.

(42)

We could choose

w(V) =

 1, p′′(V) > 0
1

(c2 + p′(V))2 , p′′(V) < 0 (43)

Note that, under the selection of (43), the coefficient of all terms at the left of (41)
is positive.

On the other hand, from the Schwartz inequality, the first term at the right of (41)
satisfies

δw(V)ξ ΦξΨξ ≤
cδθ

2
w(V)ξ Φ2

ξ +
δ

2cθ
w(V)ξΨ2

ξ , θ < 1. (44)

Integrating (41) on (0, t)× R and applying (43) and (44), we obtain

||Φ(t)||21 + ||Ψ(t)||2 +
∫ t

0 (||
√

Vξ Φ||21 + ||
√

Vξ Ψ||2 + ||Ψξ ||2)dτ

≤ C(||Φ0||21 + ||Ψ0||2 +
∫ t

0 ||
√

Vξ Ψξ ||2dτ +
∫ t

0

∫
R(|w(V)ξ Φξξ Ψξ |+ |FΨ|)dξdτ).

(45)

From Theorem 2, Vξ ≤ c|v+ − v−|, if |v+ − v−| ≤ η << 1, and then we obtain

||Φ(t)||21 + ||Ψ(t)||2 +
∫ t

0 (||
√

Vξ Φ||21 + ||
√

VξΨ||2 + ||Ψξ ||2)dτ

≤ C(||Φ0||21 + ||Ψ0||2 +
∫ t

0

∫
R(|w(V)ξ Φξξ Ψξ |+ |FΨ|)dξdτ).

(46)
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To control
∫ t

0

∫
R |w(V)ξ ΦξξΨξ |dξdτ in (46), we give the estimate Φξξ on L2. Multiply

Φξ with (33)2, and then we get

(
ε

2
Φ2

ξ)t − p′(V)Φ2
ξ + δΦ2

ξξ + {. . .}ξ = (ΨΦξ)t + Ψ2
ξ + FΦξ . (47)

Integrating (47) on (0, t)× R, and combining (46), we have

||Φξ(t)||2 +
∫ t

0 (||Φξ ||2 + ||Φξξ ||2)dτ ≤ C(||Φ0||21 + ||Ψ0||2 +
∫ t

0

∫
R |FΦξ |dξdτ). (48)

Moreover,

||Φ(t)||21 + ||Ψ(t)||2 +
∫ t

0 (||
√

Vξ Φ||2 + ||Φξ ||21 + ||
√

Vξ Ψ||2 + ||Ψξ ||2)dτ

≤ C(||Φ0||21 + ||Ψ0||2 +
∫ t

0

∫
R(|w(V)ξ ΦξξΨξ |+ |FΨ|+ |FΦξ |)dξdτ).

(49)

By Young’s inequality,∫ t
0

∫
R |w(V)ξ ΦξξΨξ |dξdτ) ≤ µ

∫ t
0

∫
R Ψ2

ξ dξdτ + C(µ)
∫ t

0

∫
R(
√

Vξ Φξξ)
2dξdτ, (50)

where 0 < µ << 1.
From the Taylor expansion,

F(V, Φξ) = −p(V + Φξ) + p(V) + p′(V)Φξ ∼ O(Φ2
ξ), |Φξ | → 0,

which means |Φξ |2 is the dominant term, since it is much bigger that |Φξ |3, |Φξ |4, . . . , as
|Φξ | → 0. Since N(t) = sup

0≤τ≤t
{‖(Φ, Ψ)(τ)‖H1×L2}, t ∈ [0, T] in (38), then

∫ t

0

∫
R
(|FΨ|+ |FΦξ |)dξdτ ≤ CN(t)

∫ t

0
||Φξ ||2dτ (51)

From the smallness of µ, Vξ and N(t), we obtain the lower-order weight energy
estimate (35).

Next, we give the weight energy estimate of (Φξ , Ψξ) on L∞(H1 × L2).
Differentiating the two formulas in (33) with respect to ξ,{

Φξt − cΦξξ −Ψξξ = 0,
Ψξt − cΨξξ + p′(V)Φξξ + p′(V)ξΦξ = εΨξξξ − δΦξξξξ + Fξ(V, Φξ),

(52)

and multiplying a(V)Φξ and w(V)Ψξ with the first formula and second formula in (52),
respectively. Summing the results and noting ΦξξξΨξξ = Φξξξ(Φξt − cΦξξ), we can obtain

( a(V)
2 Φ2

ξ +
w(V)

2 Ψ2
ξ +

δw(V)
2 Φ2

ξξ)t +
ca(V)ξ

2 Φ2
ξ +

cw(V)ξ

2 Ψ2
ξ + εw(V)Ψ2

ξξ +
cδw(V)ξ

2 Φ2
ξξ + {. . .}ξ

= −a(V)ξ ΦξΨξ − εw(V)ξΨξξΨξ − δw(V)ξ ΦξξΨξξ − w(V)p′(V)ξ Φξ Ψξ

+δw(V)ξ ΦξξξΨξξ + w(V)Fξ Ψ
(53)

Simplify (53), similarly with (41), and w(V) is also chosen as (43). Integrating (53) on
(0, t)× R, and the terms −a(V)ξ ΦξΨξ and −εw(V)ξ Ψξξ Ψξ can be controlled by the left.
We could have

||Φξ(t)||21 + ||Ψξ(t)||2 +
∫ t

0 (||
√

Vξ Φξ ||21 + ||
√

VξΨξ ||2 + ||Ψξξ ||2)dτ

≤ C(||Φ0ξ ||21 + ||Ψ0ξ ||2 +
∫ t

0

∫
R(|p

′(v)ξ Φξ Ψξ |+ |w(V)ξ ΦξξξΨξξ |+ |FξΨ|)dξdτ.
(54)

To obtain the estimate of Φξξξ on L2, we multiply Φξξ on the second formula in (52).
Then we have

(
ε

2
Φ2

ξξ)t − p′(V)Φ2
ξξ + δΦ2

ξξξ + {. . .}ξ = (Ψξ Φξξ)t + Ψ2
ξξ + p′(V)ξΦξξΦξ + Fξ Φξξ . (55)
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Integrating (55) on (0, t)× R, and combining the lower-order estimate (35), we have

||Φξξ(t)||2 +
∫ t

0 (||Φξ ||2 + ||Φξξ ||2)dτ

≤ C(||Φ0ξ ||21 + ||Ψ0ξ ||2 +
∫ t

0

∫
R(|p

′(V)ξΦξξΦξ |+ |Fξ Φξξ |)dξdτ.
(56)

Similarly, by Young’s inequality and the smallness of Vξ , then we have

||Φξ(t)||21 + ||Ψξ(t)||2 +
∫ t

0 (||
√

VξΦξ ||2 + ||Φξξ ||21 + ||
√

Vξ Ψξ ||2 + ||Ψξξ ||2)dτ

≤ C(||Φ0ξ ||21 + ||Ψ0ξ ||2 +
∫ t

0

∫
R(|Fξ Ψ|+ |Fξ Φξξ |)dξdτ).

(57)

To give the estimate of (Φξξξ , Ψξξ) on L∞(L2 × L2), we multiply −Ψξξξ on the second
formula in (52), and note that Φξξ Ψξξξ = Φξξ(Φξξt − cΦξξξ). Then we obtain

(
1
2

Ψ2
ξξ −

p′(V)

2
Φ2

ξξ +
δ

2
Φ2

ξξξ)t + εΨ2
ξξξ −

cp′(V)ξ

2
Φ2

ξξ + {. . .}ξ = p′(V)ξ Φξ Ψξξξ − Fξ Ψξξξ . (58)

Integrating (58) on (0, t)× R, then combining (57) and Young’s inequality, the small-
ness of Vξ , we have

||Φξ(t)||22 + ||Ψξ(t)||21 +
∫ t

0 (||
√

Vξ Φξ ||2 + ||Φξξ ||21 + ||
√

VξΨξ ||2 + ||Ψξξ ||2 + ||Ψξξξ ||2)dτ

≤ C(||Φ0ξ ||22 + ||Ψ0ξ ||21 +
∫ t

0

∫
R |FξΨξξξ |)dξdτ).

(59)

From (35), (57) and (59), we can obtain

||Φ(t)||23 + ||Ψ(t)||22 +
∫ t

0 ||
√

Vξ Φ||2 + ||
√

Vξ Ψ||2 + ||Φξ ||22 + ||Ψξ ||22dτ

≤ C(||Φ0||23 + ||Ψ0||22 +
∫ t

0

∫
R(|Fξ Ψ|+ |FξΦξξ |+ |Fξ Ψξξξ |)dξdτ).

(60)

Applying the differential mean value theorem,

|Fξ | = |θ1 p′′′(V + θ3Φξ)Vξ Φ2
ξ + p′′(V + θ2Φξ)Φξ Φξξ | ≤ C(VξΦ2

ξ + |ΦξΦξξ |),

where 0 < θ1, θ2, θ3 < 1, by Young’s inequality,∫ t
0

∫
R |Fξ Ψ|dξdτ ≤ C

∫ t
0

∫
R(Vξ Φ2

ξ |Ψ|+ |Φξ Φξξ ||Ψ|)dξdτ

≤ CN(t)
∫ t

0 ||
√

VξΦξ(τ)||2dτ + CN(t)
∫ t

0

∫
R(|Φξ Φξξ |)dξdτ

≤ CN(t)
∫ t

0 ||
√

VξΦξ(τ)||2dτ + Cµ
∫ t

0 ||Φξ ||2dτ + C(µ)N(t)
∫ t

0 ||Φξξ ||2dτ,

(61)

∫ t
0

∫
R |FξΦξξ |dξdτ ≤ Cµ

∫ t
0 ||
√

VξΦξ ||2dτ + C(µ)N(t)
∫ t

0 ||Φξξ ||2dτ + CN(t)
∫ t

0 ||Φξξ ||2dτ (62)

∫ t
0

∫
R |Fξ Ψξξξ |dξdτ ≤ Cµ

∫ t
0 ||
√

Vξ Φξ ||2dτ + C(µ)N(t)
∫ t

0 ||Ψξξξ ||2dτ + µ
∫ t

0 ||Φξξ ||2dτ (63)

From the smallness of µ and N(t), (36) holds naturally.

4. Discussion

In this paper, we investigated the nonlinear stability of the monotone traveling wave
for the isothermal fluid equations with viscous and capillary terms under the suitable
perturbation. It should be pointed out that, in the proof of Proposition 2, we only use
the smallness of sup

0≤τ≤t
{‖(Φ, Ψ)(τ)‖H1×L2}, which can be controlled by ||(Φ0, Ψ0)||H1×L2

from (35). So in the condition of Theorem 3, we assume ||(Φ0, Ψ0)||H1×L2 < λ << 1.
However, for the higher-order derivative of the perturbation ||(Φ0ξξ , Ψ0ξ)||H1×H1 , we only
need to assume it to be bounded. See details in (61)–(63). This is enough to ensure the prior
estimate holds.

The condition in Theorem 3 is only a sufficient condition. In future research, we want
to find the optimal condition which the initial perturbation satisfies to make the traveling



Mathematics 2023, 11, 1734 10 of 11

wave stable, and will search some counter-examples by numerical simulation. We are also
interested in the linear stability [24–26], the blowup phenomenon [27], and the problem of
control for nonlinear systems [28–30] in the future.
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