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Abstract: Autonomous mobile robots (AMRs) are gaining popularity in various applications such as
logistics, manufacturing, and healthcare. One of the key challenges in deploying AMR is estimating
their travel time accurately, which is crucial for efficient operation and planning. In this article, we
propose a novel approach for estimating travel time for AMR using Long Short-Term Memory (LSTM)
networks. Our approach involves training the network using synthetic data generated in a simulation
environment using a digital twin of the AMR, which is a virtual representation of the physical robot.
The results show that the proposed solution improves the travel time estimation when compared to a
baseline, traditional mathematical model. While the baseline method has an error of 6.12%, the LSTM
approach has only 2.13%.
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1. Introduction

Autonomous mobile robots (AMRs) have become increasingly prevalent in various
industries due to their ability to automate tasks and improve efficiency. AMRs are used in
applications such as manufacturing, logistics, healthcare, and even in households. AMRs
are more intelligent when compared to Automated Guided Vehicles (AGVs), as they
are using simultaneous localization and mapping (SLAM) to navigate freely around the
environment. Usually equipped with Lidar sensors and stereo cameras, they perceive the
environment, planning paths and trajectories in near real-time. Their powerful onboard
processing power allows them to be able to avoid stationary or mobile obstacles, have
precise movement, and take decisions independent of a human operator. The ability to
estimate travel time accurately is a critical factor in the performance of AMRs. Accurate
travel time estimation can help AMRs to plan their paths and schedules, avoid collisions,
and improve their overall performance. Estimation of travel time is also closely related
to estimating the energy consumption, as based on the estimated mission time and travel
speed, the robot must decide if it can complete the mission and still have enough energy
and time respectively to be able to return to a charging station when necessary. Strategies
employed in dynamic power management and energy consumption models include having
different control schemes by disabling optional sensors [1], reducing the frequency of sensor
reading, or offloading heavy processing tasks on a remote workstation. Such actions can
determine suboptimal path planning, localization problems, reduced moving speed, and
increased reaction time of the robot as it must wait for frequent data transfers.

The traditional approach to travel time estimation for AMRs involves using math-
ematical models, which are based on the physical characteristics of the robot and the
environment. However, these models are often limited by the assumptions made during
their development, and they may not be able to capture the complexities of the real-world
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scenarios. Additionally, the performance of these models may degrade over time due to
changes in the environment or the robot’s condition.

The original contribution of this work is to analyze the performance of Long Short-
Term Memory (LSTM), a type of recurrent neural network (RNN) that is specifically
designed to process sequential data, for travel time estimation of autonomous mobile robots
in a known environment, such as a factory work floor or other industrial environments.
However, one of the challenges of using machine learning approaches such as LSTM for
travel time estimation is the availability of data. Collecting large amounts of real-world data
can be time-consuming and expensive. Another contribution is the creation of a synthetic
dataset using simulation for travel time estimation. To increase the fidelity of the problem
when compared to a real-world use case, we create stationary, randomly placed obstacles
on the robot’s path that can represent human workers, other mobile robots, or temporary
placed objects.

The rest of the paper is organized as follows. Section 2 reviews the latest developments
in travel time estimation and synthesizes some techniques that can be employed in this
context, together with applications of LSTM networks. Section 3 describes the problem
and presents the proposed LSTM-based travel time estimation solution while Section 4
evaluates the model and discusses the results. Finally, Section 5 concludes the paper and
provides further work directions.

2. Related Work

Travel time estimation is mostly used in traffic management systems and traveler
information systems with smart city and smart mobility applications. In this case, the
data is acquired from several types of sensors such as loop detectors, magnetic sensors,
cameras, radar, Global Positioning System (GPS), or passenger Global System for Mobile
communication (GSM) signals. The developed solutions are applied to a specific area
such as a city, certain highways, or specific routes and vehicles. Another important aspect
of traffic data in real-world settings is that it is highly influenced by people’s needs and
behaviors, making it highly seasonal in respect to the day of the week or hour of the day,
and other environmental parameters such as weather and temperature [2]. Authors of [3]
conducted a review of data fusion methods for real-time traffic flow analysis which also
include the travel time of the vehicles among other variables such as vehicle speed, distance,
velocity, pedestrians, occupancy, weather, vehicle count, cellphone data, acceleration, lane
behavior, temperature, density, wind speed, outgoing flow, trajectory, congestion, and
incidents. Most of the methods from the articles analyzed in [3] were evaluated on datasets
gathered using probe vehicles, GPS, or loop detectors from taxis, buses, freeways, and
highways. As frequently used algorithms, the authors of [3] identified k-Nearest Neighbors
(KNN), Bayesian, Gaussian Mixture Model (GMM), and other data fusion techniques. Next,
we will detail some travel time estimation methods used in real-world applications.

A travel time estimation method based on vehicle trajectories is proposed in [4]. Their
method consists of two steps: the first one estimates the travel time for each road segment
in different time slots that were not traversed using context-aware tensor decomposition,
and the second one optimally concatenates trajectories to estimate the travel time.

Another travel time estimation method based on generative adversarial networks
(GAN) trained on trajectory data is presented in [5]. After the trajectory map matching step,
pairs of road links and mini-trips are dynamically clustered by different traffic states using
the Wasserstein distance algorithm. Finally, for each cluster, the resulting sub-dataset is
used to train the proposed network, a Trip Information Maximizing GAN (T-InfoGAN).

An approach that uses just endpoint information data (timestamps and coordinates
of origins and destination points) and distance and duration of the trip is presented in [6].
Their preprocessing step includes generating k-shortest paths for each origin–destination
pair using map data, searching for the one that is closest to that specific pair trip distance.
Using the processed dataset, a method called least-squares estimation with constraints is
introduced that uses a probabilistic model for trip travel times.



Mathematics 2023, 11, 1723 3 of 19

Probability-based methods, artificial intelligence, and evidence theory-based methods
are proposed in [7] to be used in wireless sensor networks when estimating travel time for
traffic control in intelligent transportation systems.

In a traditional industrial environment, the manufacturing lines are fixed and inflexible.
AGVs or AMRs are not used, and the transportation devices are operated by human drivers.
With recent technological advances, shifting towards flexible manufacturing systems, the
usage of AGVs have become widespread on factory shop floors. Still, the AGVs have limited
path choices, being routed on predefined paths. Compared to traffic management systems
that have real-world applications with characteristics such as seasonality, weather, or
pedestrians present, manufacturing environments are controlled environments, optimizing
to run at full capacity for as long as possible.

Authors of [8] introduced a novel multi-state scheduling algorithm that is applied in a
flexible manufacturing environment. To improve the accuracy of their method, they used neural
network-based travel time prediction. The network used is fully connected with one hidden
layer, while the inputs considered for predictions are travel distance, number of turns, load
status, and length of path that is in conflict both in the same and in the opposite direction.

In [9], a time estimation model is proposed for a rack-moving mobile robot system.
The proposed quadratic mathematical model was used to find the optimum arrangement
that would minimize the travel time while considering parameters such as the number of
aisles, the number of layers, and layer depth.

Using a virtual space as a training environment is a common approach used in many
areas. Advantages include reduced cost, higher speed as simulations can run faster than
real-time, and improved safety for the human operators or the robot itself. Moreover,
the information about the virtual environment that is used as input data by the network
can be accessed in a much easier way compared to the real-world data. In [10], the
authors used virtual space to train a deep reinforcement learning network to navigate in an
environment without a map using low-dimensional range findings. Synthetic simulated
data were also used for improving the efficiency of robot arm grasping action [11], fusing
real and simulated data for vision-based autonomous flight [12], and even to process fault
diagnosis [13].

LSTM is a network architecture that was developed to solve the vanishing/exploding
gradient problem of RNN. Even though the architecture was proposed over 25 years
ago in 1997 by Hochreiter and Schmidhuber [14] and then improved by adding a forget
gate [15], LSTM networks are still popular and used in many applications to this day.
LSTM networks have been applied in many fields, including financial sector [16,17], smart
home [18], and energy consumption estimation [19,20]. On text data, LSTM was used for
natural language processing tasks such as sign language to text translation [21], sentiment
analysis [22], or text summarization [23]. In computer vision tasks, LSTM is usually paired
with convolutional neural networks, so both spatial and temporal features are used for tasks
such as action recognition [24], mode frequency detection [25], or video captioning [26].
On audio signals, LSTM was used for low-bitrate audio restoration [27], speech emotion
recognition [28], or even to identify if a honeybee hive has a queen present or not [29].

In traffic analysis, LSTM is used for traffic flow prediction [30], pedestrian trajectory
prediction [31], traffic congestion prediction [32], and traffic speed prediction [33]. LSTM
is also used for path planning, risk assessment and mitigation in local path planning [34],
path planning in unknown environments [35], and path planning for swarms of aerial
unmanned vehicles [36].

In [37], authors studied the origin–destination passenger flow prediction in rail transit.
They used an augmented LSTM neural network, called a Spatio–Temporal LSTM Network,
that has a modified hidden layer structure to fuse the space and time dependencies. The
model evaluation was performed on data of the Beijing subway network, acquired from
multiple sources: origin–destination pairs, smart card data records, and mobile phone data.

Authors of [38] used a deep convolutional LSTM to predict city-wide taxi origin–
destination flow. The input data is modeled as two matrices for travel time and travel
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frequency that are both fed to the network at the same time. The model is evaluated on
Xi’an City taxi trajectory data.

In [39], authors investigated the use of LSTM networks to model the assembly process
of a configurable modular product. As the results show, the LSTM network was able to
model all possible assembly scenarios compared to the previous implementations, which
were not able to predict in the context of unseen scenarios.

Looking at the state of the art, we see that most travel time estimation articles are applied
on smart city use cases: estimating the travel time for taxies, buses or cars on the freeways
and highways. The environment for these use cases is rich with predictable and periodical
events that can be used as network features: distance, velocity, pedestrians, weather, cellphone
data, acceleration, lane behavior, temperature, density, wind speed, trajectory, congestion,
and incidents. We see a few articles that study the estimation of travel time in an industrial
environment. Since the usual industrial environments are strict and supervised, the paths that
mobile robots can take are also fixed. Furthermore, almost all the features used in smart city
applications are not present in an industrial environment. Because of this, the models used in
industrial environments are left with a few selected features to work with. As such, one of the
challenges when estimating travel time in industrial applications is to find the right features
that the models can use to make accurate estimations.

Compared to previous articles applied to industrial environments [8,9], where AGVs
with predefined paths are used, our use case estimates travel time for AMRs that are
allowed to move freely in the environment. If we consider the methods used, approaches
such as mathematical formulas, or fully connected neural networks are used, while our
approach is different and evaluates an LSTM network.

3. Materials and Methods
3.1. Problem Description and Proposed Solution

The mobile robot travel time estimation is required in our case for accurate task
planning, improved task allocation and reduced wait times. The task of the robot is to
move prefabricated parts from one workstation to another as part of a reconfigurable
manufacturing system detailed in [40]. The mobile robot that we are working with—
Figure 1—has a detachable customizable platform on top for carrying the payload, four-
wheel independent steering for increased mobility, and a Lidar sensor placed underneath for
mapping and localization. The robot control is achieved using the Robot Operating System
(ROS) [41], an open-source framework made specifically for creating robot applications.
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Considering a mathematical approach, we can naively estimate the travel time based
on the expected travel distance multiplied by the speed of the robot, as in Equation (1),
where ∆x represents the distance and v is the speed. This is quite inaccurate since the
speed is not constant: the robot has acceleration and deceleration time, in the real world
the environment can contain zones with speed limits below the robot’s cruise speed, and
the robot’s linear speed is different from the robot’s angular speed. Additionally, when first
computing the path plan, there is no information about possible dynamic obstacles on the
way that can result in taking a different path at some point due to an obstacle, resulting in a
different travel distance than the one that was used to calculate the travel time as follows:

t =
∆x
v

(1)

In this paper, we propose to use an LSTM network to estimate the travel time of the robot.
This approach will be implemented as part of the robot fleet digital twin [42] that is currently
under development. In this case, the digital twin is represented by the virtual replica of the
robots deployed in the real world and is created by integrating various data sources, such as
robot models and different sensors, that are used to monitor the performance, behavior, and
the environment of the physical robots. Having that information, the digital twin can be used
to analyze and optimize the performance of the robot fleet. Apart from the data integration
and aggregation, the digital twin can also have features such as environment simulation to
be able to test different scenarios and environment conditions, predictive analytics that use
machine learning algorithms to analyze the current and historical real-world data to make
predictions, remote control to test scenarios in the real world, and monitoring and analysis
capabilities to view data in real time.

As such, we will make use of the environment simulation and predictive analytics
features of the digital twin to simulate real-world scenarios for the robot and gather
information about the travel time. The recorded simulation data will be used to train an
LSTM network module that will predict the travel time. In the end, the same network
can be used to predict using real-world data. One of the greatest advantages of using
simulation data is that it allows for more control over the variables that affect the robots’
travel time. This can lead to more accurate predictions and better performance when the
algorithm is deployed in the real world.

When choosing the LSTM for our travel time estimation model, we also considered the
computational complexity of the solution. For example, in a case where there are multiple
types of AMR, a different model for each AMR type or even for each physical AMR should
be trained. In this situation, the computational complexity increases linearly at most. A
possible way to reduce the workload pressure on a single workstation is to distribute each
model to its corresponding AMR if the hardware configuration allows it.

We used the previously mentioned mathematical approach as comparison for our
proposed LSTM method, which is called naive in our graphs and tables. Since in our
environment we do not have speed restrictions, in an ideal scenario, the robot will move at
the max cruising speed of 0.22 m/s for the entire trip.

LSTM is a type of RNN that has become popular in recent years due to its ability to
learn long-term dependencies and remember complex patterns. It can capture long-term
dependencies in data, such as in a sequence of words, or even a time series of events. It
can remember patterns in data over a long period of time, making them ideal for tasks that
require long-term memory. For example, when predicting the next word in a sentence, an
LSTM can remember words from earlier in the sentence and use this information to better
predict the next word. Similarly, when predicting a time series of events, an LSTM can
remember past events and use this information to better predict future events. LSTMs are
used for many tasks such as natural language processing, language translation, speech
recognition, and image classification.

LSTM cells are composed of several components, depicted in Figure 2. Each com-
ponent is responsible for a specific function, such as memory, forget, input, and output.
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The memory component (ct−1) is responsible for remembering past information, the forget
component is responsible for forgetting irrelevant information, the input component is
responsible for taking in new information, the output component is responsible for pro-
viding an output based on the input and memory, and the input of the cell is composed of
previously outputted data (ht−1) and the current observation (xt). All these components
work together to learn long-term dependencies and remember complex patterns in data.
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3.2. Data Collection and Analysis

The current experiment aims to measure the time it takes for an autonomous mobile
robot to get from point A to point B in a known environment, with dynamically spawned
objects in the robot’s way. We used a simulated environment to generate the training data,
since running on a real robot inside a real-world environment would have taken a lot more
time and human effort. As the real mobile robot is controlled using the ROS framework, we
used Gazebo [43], an open-source simulator used for robot research that is well integrated
with ROS.

3.2.1. Dataset Generation

The first step is to create a simulated environment. For replicability, we used the exist-
ing turtlebot3 house environment. Depicted in Figure 3, the environment is represented by
a house of approximately 15 m × 10 m with several rooms and furniture. The environment
is rather complex, as it has similar rooms, different door sizes, a hallway that can be a
possible choke or deadlock zone, and tables that have a small footprint of four legs at the
robot height level. The real robot is also modeled in Gazebo, and a few small changes
are made to the existing robot control software packages to accommodate the new virtual
sensors. The next step is to record the map of the environment using the default SLAM
algorithm provided by ROS.
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Having all the preparations ready, we developed an automated script that would start
and record simulations of the robot traveling from one point to another. Each simulated
sequence, as described in Figure 4, does the following actions: starts and initializes the
required packages, sets the simulated environment to the default state, selects the current
origin and destination points, moves the robot to the origin points, generates obstacles
along the way, sets the robot’s navigation goal to the destination point, and then waits for
the robot to arrive at its destination. Next, we will detail these actions.
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The automated simulation script starts by launching the Gazebo simulator and loading
the world environment. The robot model is loaded and the following required packages
for robot navigation are started: sensor acquisition packages, map_server which provides
the map of the environment that has been scanned beforehand, the amcl (Adaptive Monte
Carlo Localization) package used for localization in a known map, the move_base package
which provides an easy interface for the entire navigation stack packages (global_planner,
local_planner, global_costmap, local_costmap, recovery_behaviors), and a base_controller package
that translate generic movement commands to commands specific to the locomotion model
of the robot. The next important step is to reset the simulation to the initial state if needed
by removing any previously added obstacles and clearing the local and global cost maps.
After this, the current origin and destination points are selected, and the robot is placed to
the origin point coordinates. After this step, we can spawn an obstacle in the environment
using the following steps: a temporary path plan is created between the current origin–
destination points; a random point is selected from the list of points contained in the
temporary path planned; using a normal distribution, displacements for both X and Y axis
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are generated; the obstacle position is given by adding the coordinates of the randomly
selected point in the path to the generated displacements. Of course, additional checks
are made to be sure that the obstacle will not occupy the origin or destination point area,
as objects can have various sizes and shapes. For simplicity, the obstacles are based on
the 3D primitives available in Gazebo: box, sphere, and cylinder. We chose to spawn
obstacles along the initial navigation planned path because spawning the objects randomly
on the entire map would generate a lot of cases where the object would not influence the
robot’s travel time at all. Having spawned an obstacle object successfully, we can set the
navigation goal of the robot to the destination point and wait for the simulation to finish.
For every simulated sequence, we save the origin point and destination point pair, total
travel time, and obstacle position. Furthermore, while the robot travels between the origin
and destination points, the following information is saved periodically: current timestamp,
robot position, global path, local path, and readings from the Lidar sensor, increasing the
total number of examples in the dataset. Having 10 points chosen to cover the simulation
environment, we had 90 possible scenarios that were simulated 100 times, each time with
objects spawned in different places.

3.2.2. Dataset Analysis

Figure 5 shows the mapped environment with fixed obstacles (walls, furniture, table
legs, and trash bins) detected in the mapping phase, drawn in black. The heat map in
blue-red gradient represents the cost map associated with the environment map that is
used by the path planning algorithm. A higher cost is assigned to areas close to obstacles,
to ensure that the robot will most likely not collide with obstacles due to potential errors
in navigation or localization. This will create paths that have minimum cost according to
the cost map and not necessarily the shortest distance. The start and destination points
that are used to generate the travel time estimation dataset are marked with red circles and
have the following coordinates: {[−6, −3], [−6, 4], [−3, 3.2], [1, 2], [5, 4], [6, −5], [−1, 4],
[−6, 0], [6, 1], [3, 4]}.The origin of the coordinate system is marked with a yellow circle.
The green lines represent the initial paths planned for the robot considering only the initial
map, without any additional obstacles present.
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The position of generated obstacles—Figure 6—is based on the initial path planned
for that specific scenario. As such, we see obstacle hotspots in places where initial paths
overlap the most.
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Figure 7 shows the map of the environment together with a heatmap of the mobile
robot paths during the entire simulation using a logarithmic scale. It can be seen that
the real trajectories that are updated taking into consideration the detected obstacles
in the environment are broader and cover a larger area, when compared to the initial
planned paths.
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3.3. Hardware and Software Configurations

The computer used for simulation, network training, and evaluation is equipped
with an Intel i7 9700KF CPU, 32 GB of DDR4 RAM, and an Nvidia RTX 2060 Ti GPU. The
workstation runs Ubuntu 20.04. The simulation was performed using Gazebo 11.0 and ROS
Noetic. All the software—simulation automation script, AMR software, dataset processing,
and model training and evaluation scripts—were developed using Python together with
the TensorFlow library.

4. Results
4.1. Experimental Methodology

Before effectively using the dataset for training, we had to preprocess it by applying
multiple steps. The first step was to remove the simulations where the robot did not
arrive at the destination regardless of the reason—usually these situations are caused by
the robot getting stuck. At this step, we also removed the outliers on each subset of the
origin–destination points by using the three-sigma rule. This operation reduced the number
of simulations from 9000 to 8384, with histogram shown in Figure 8. This also ensured that
the dataset did not contain abnormal or missing travel time data. We will note the dataset
that contains only the initial travel time as the initial_values dataset. When taking into
account the intermediate points of each origin–destination pair, there are approximately
568,000 entries, with histogram detailed in Figure 9, which will be noted as the all_values
dataset. The final step is to enhance each dataset entry with the following computed
variables: distance traveled from origin to current point, distance planned to travel from
current point to destination based on the path planning, and the Euclidean distance to
destination. The resulting dataset was split randomly into three subsets: 60% simulations
for training, 20% simulations for validation, and 20% simulations for testing. The split
percentages are chosen based on the result from Table 1.
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Table 1. Dataset split percentage.

60-20-20 70-15-15 80-10-10 90-5-5

MAE 1.28 1.40 1.44 1.51
RMSE 2.65 3.67 3.51 3.26

The architecture of our model is presented in Figure 10. For the input layer, we used
the following information from the dataset:

- Position {X, Y} and Target position {X, Y}.
- Distance left to target, computed based on Euclidean distance between current position

and target position.
- Distance relative to origin, computed from AGV’s {X, Y} position and map’s origin

point {0, 0}.
- Distance already traveled, computed based on previous position sequence: can contain

condensed information about previously cleared obstacles.
- Distance planned to travel, computed based on the coordinates sequence present in

the path planning: can contain condensed information about obstacles (if they are
visible).
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All this information is fed to the LSTM network, which will make a decision based on
the input data. The output data is a single cell, which will be the estimated time left for
travel from the current position to the target position.

One feature that we took into consideration but did not include into the selected
list of features was the Lidar scan data. As the Lidar sensor has 360◦ coverage, we have
360 readings, one for each degree. We tried to include no readings, and readings at every
1, 18, 24, 36, and 72 degrees. The results (Spreadsheet S5) show that the best choice is to
not include any Lidar readings. One argument for this is that by adding another feature
with up to 360 data elements, the network would require a wider and deeper configuration.
Moreover, the Lidar information is already used when planning the current path from
which we compute the planned distance input parameter.

The hyperparameters of the network structure that can be configured are the learning
rate, dropout rate, the optimizer algorithm, number of LSTM layers, and number of
LSTM units per layer. To find the optimal values, we performed hyperparameter tuning
using the validation dataset. Based on the results from the Spreadsheets S1–S4 added as
Supplementary Materials, the network training was done on the all_values training dataset
using the Adamax optimizer on the Mean Absolute Error (MAE) loss function. The rest of
the tuned hyperparameters have the following values: 0.01 learning rate, 0 dropout rate,
and 1 LSTM layer with 8 units.

Model evaluation is done using the Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Median Symmetric Accuracy (MSA) metrics. While the MAE value
is directly proportional to the absolute error values, RMSE is more influenced by large
error values. Compared to the popular Mean Absolute Percentage Error (MAPE) metric,
MSA is symmetric to underprediction or overprediction, resistant to outliers, and can be
interpreted as a percentage error [44]. In the formulas below, Ŷi represents the predicted
value, while Yi is the actual true value.

MAE =
1
N

N

∑
i=1

∣∣Yi − Ŷi
∣∣ (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Yi − Ŷi

)2 (3)

MSA = 100

(
e(M(|loge (

Ŷi
Yi
)|)) − 1

)
(4)

4.2. Evaluation

This section presents the model evaluation metrics MAE, RMSE, and MSA on the test
datasets, compared to the Naive mathematical approach. The values of these metrics are in
Table 2. At a glance, it can be easily seen that the LSTM approach is better than the Naive
approach on all considered metrics for both initial_values and all_values datasets. MAE and
RMSE, being scale-dependent metrics, are influenced by the multitude of values close to 0
that are present in the all_values dataset. This is not the case with the MSA metric, which is
order-dependent and shows that the error magnitude is similar for both small and large values.

Table 2. Metrics of LSTM and Naive Time Formula.

Data Set
LSTM Naive

MAE RMSE MSA MAE RMSE MSA

initial_values 3.38 8.02 2.56% 5.37 9.46 6.59%
all_values 1.29 2.64 2.13% 2.28 4.21 6.12%
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Figures 11 and 12 show the frequency and cumulative frequency of the initial_values
and all_values datesets, respectively. It is visible that the predicted values follow the real
values distribution much better than the Naive approach, especially on the initial_values
dataset. While the Naive approach shows deep valleys and high peaks compared to the true
values, the LSTM approach follows the true values much closer. Both methods struggle in
the lower interval (travel times between 0 and 50 s) on the initial_values dataset. We consider
this to be caused by the multitude of training examples in that time interval present in the
all_values dataset. The model is trained on sequences from the all_values dataset, while the
initial_values dataset contains just the first element of each sequence.
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Figure 11. initial_values dataset. (a) Frequency, mean and standard deviation. (b) Cumulative frequency.
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Figure 12. all_values dataset. (a) Frequency, mean and standard deviation; (b) Cumulative frequency.
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An important characteristic of the network is whether it is biased towards under-
predicting or overpredicting, especially on the initial_values dataset as these values will
influence the system planning the most. This is important because in an industrial setting
with multiple robots and actions planned based on travel time prediction, an underpre-
diction could cause a jam near a working station while an overprediction could allow
the robot to anticipate it by waiting in designated areas along the way. In Figure 13, we
can see that the Naive method underpredicts most of the time, while the LSTM approach
is more centered and closer to 0. On the right side of Figure 13, the log accuracy ratio
(LAR)—Equation (5)—of each prediction in the initial_values dataset is shown. Negative
LAR values show an underprediction while a positive one shows an overprediction. Again,
the LSTM method is more centered compared to the Naive method. The advantage of LAR
is that it has a dimensionless value and can be compared across different datasets.

LAR = loge

(
Ŷi
Yi

)
(5)
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Figure 13. initial_values dataset. (a) Estimation error. (b) Log accuracy ratio.

4.3. Discussion

Figures 14 and 15 compare a case where the obstacle blocks a doorway and a usual
case where an obstacle is placed in a spot that allows the robot to pass it easily. When
looking at the inconvenient case, the big difference at the beginning between the actual time
travel and the estimated one is due to the robot navigation behavior. Even though the robot
finds a feasible path plan to overcome the obstacle, localization errors can pose difficulties
in implementing that plan. Another explanation is that if the robot does not have a great
positioning precision in the environment, there will be multiple trials of squeezing through
the small gap. In addition, if the robot navigation stack detects a deadlock, there are several
recovery behaviors that the robot can try to get out of the deadlock, such as a recovery
behavior that rotates the robot in place attempting to move the obstacles around the robot,
a recovery behavior that clears the navigation stack cost maps, or a recovery behavior that
reduces the robot translation and rotational speed to increase the positioning precision. Of
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course, these recovery strategies add unexpected delays. As soon as the obstacle is cleared,
the estimations are very close to the real remaining travel time.
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Figure 14. The path is blocked. (a) Trajectory on map. Red square marks the position of the obstacle.
(b) Time samples and estimates of travel time.
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Since in case of a possible deadlock, the default implemented ROS behavior is clearing
it in a trial-and-error way and ultimately requesting human assistance after a timeout, we
consider these extreme cases to be a limitation of the current used model and possibly of
other approaches too.
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Another aspect that should be discussed is the capability of the network to generalize
in other situations. We consider that small changes to the environment will not affect the
model or at least not in a considerable manner. In our specific environment, a new chair
added to a room, or a piece of furniture moved to another place would be considered as
any other situation with an obstacle on the path that was present in the training dataset. Of
course, a totally new environment will be considered a major change and will require a
new model to be trained.

An aspect that could be discussed refers to the steps and associated costs required
to apply this research in a real-world scenario. In our opinion, the costliest and most
time-consuming operation would be to create an accurate simulation of the factory that will
allow the generation of the training datasets. Even if creating a simulation environment for
the specific industrial use case is an expensive task, there are multiple ways in which it can
be used, and not only for travel time estimation. If that organization will use the simulation
for other use cases as well, then the cost associated only with travel time estimation will be
lower. Another source for the dataset would be to use previous travel times if they were
recorded. A risk with this second approach is that some of the recorded data is not accurate
for the current configuration of the environment, whereas the AMR that generated the
data is replaced or the layout is changed. We consider that the training of the network
and inference cost to be much smaller compared to the cost of developing the simulation
environment. Looking at the error difference of 3.99%, from 6.12% with the Naive approach
to 2.13% when using the LSTM method, it might not be significant for a small number
of AMRs, but for an organization with multiple locations and a much higher number of
AMRs, it might be beneficial.

5. Conclusions

The original contribution of this work was applying LSTM for travel time estimation
of AMRs. The article successfully shows that a neural network approach, in this case LSTM,
gives better results in estimating the travel time of an autonomous robot when compared
with the traditional way of computing time based on speed and distance when there is
historical data available. The entire work is carried out by making use of digital twin
concepts: the training data is generated in simulations, reducing the required effort, and the
machine learning algorithm is implemented as part of the prediction and analytics module
of the digital twin. After the algorithm is trained and tested, data gathered from the real
world can be used to estimate the real travel time of the robot. Another thing to consider
is that the features used as network input are limited compared to the use cases present
in real-life situations such as public transport travel time, where parameters including
weather, time of day, or temperature also influence the result. Still, the LSTM network
manages to learn and estimate correctly with limited features.

There are several points that require our attention for further work. Currently the
planned path information is reduced to the planned distance to travel parameter. We expect
that by using the planned path, the network can determine if the chosen route has a higher
chance of delays and adjust accordingly. Another research direction is to see if a more
complex LSTM network, such as Bidirectional LSTM, or a combination of LSTM layer and
other types of layers will provide a performance improvement and at what computational
cost. In the long term, our goal is to incorporate multiple robots in the simulation, handle
more sensor information, and simulate the demand for parts, which ultimately will improve
the overall time estimation and efficiency of our task planning model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11071723/s1, Spreadsheet S1: Learning Rate; Spreadsheet
S2: Dropout; Spreadsheet S3: Layer 2—No. of LSTM units, Spreadsheet S4: Optimizer, Spreadsheet
S5: Lidar scan interval, Spreadsheet S6: Final model results.
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