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Abstract: The randomized response technique is one of the most commonly used indirect question-
ing methods to collect data on sensitive characteristics in survey research covering a wide variety of
statistical applications including, e.g., behavioral science, socio-economic, psychological, epidemiol-
ogy, biomedical, and public health research disciplines. After nearly six decades since the technique
was invented, many improvements of the randomized response techniques have appeared in the
literature. This work provides several different aspects of improvements of the original randomized
response work of Warner, as well as statistical methods used in the RR problems.

Keywords: indirect questioning; non-randomized response technique; randomized response tech-
nique; sensitive attribute; statistical methods
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1. Introduction to Randomized Response Techniques

Sample surveys are commonly used to collect data for studies in a wide range of
statistical applications such as behavioral science, socio-economic, psychological, epidemio-
logical, biomedical, and public health research disciplines. Mail surveys, telephone surveys,
and personal interviews (face-to-face interviews) are the commonly used traditional data-
collection methods; see, e.g., [1]. The data collected from these surveys are used to estimate
and make statistical inferences about the unknown population parameters of interest,
e.g., the population proportion of individuals with a certain property appearing in most
related research, the population honest response rate [2,3], and the sensitivity level of a
question of interest; in other words, the population proportion of individuals considering
the question of interest to be sensitive [4–6]. Because of that, researchers and practitioners
are particularly interested in the reliability of collected data (e.g., non-response rate and
dishonest answer rate) in studies using sample surveys, but more so while the topics of
investigation involve, e.g., threatening, embarrassing, stigmatizing, highly personal, and
even incriminating issues. The aforementioned issues are collectively referred to as sensi-
tive characteristics (attributes, behaviors, features, traits). For example, people consider
abortion behavior, cheating on examinations, discrimination, domestic violence, drug use,
gambling, illegal income, plagiarism, political opinions, sexual behavior, tax evasion, and
other illicit behaviors to be sensitive. Refer to [7] for a more detailed classification of the
three types of sensitive questions.

Research on sensitive issues is increasingly receiving the attention of many researchers,
practitioners, and social organizations. For instance, in the study by Krumpal and Voss [8],
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the General Social Survey (Allgemeine Beölkerungsumfrage der Sozialwissenschaften—
ALLBUS) in Germany asked respondents whether they have committed tax evasion and
shoplifting, dodged fares, or driven drunk. In the United States, the National Survey on Drug
Use and Health (NSDUH) and the General Social Survey (GSS) routinely require surveyees to
self-report on sensitive issues, e.g., sexual habits or drug use. The Taiwan Social Change Survey
(TSCS) conducted face-to-face interviews about sexual orientation [9,10], the presidential
election [11], monthly income [12], and extramarital relationships [13,14]. Estimating the
prevalence of such sensitive features is of great importance in helping researchers to build
scientific knowledge and recommend necessary strategies to the authorities.

It is widely accepted that most survey participants consider the aforementioned issues
to be secret, shameful, and even illegal. Then, when participating in surveys that use
traditional data-collection methods including, e.g., computer-assisted self-interviewing
or telephone interviewing and self-administered questionnaires with paper and pencil,
to avoid being stigmatized by society or punished by the government, and to leave a
good impression on others, survey respondents tend to ignore sensitive questions, which
causes a non-response bias problem, or they answer these sensitive questions according to
socially desirable behaviors and attitudes, which causes a social desirability bias problem.
See, e.g., [7,15,16]. For example, a student is directly asked a question about a socially
undesirable behavior: “Have you ever cheated on examinations?”. Naturally, regardless
of whether she/he has ever cheated on examinations or not, it is more likely she/he may
deny it. Refer to [17] for more information on this sensitive topic. Or, in a validation study
by Preisendörfer and Wolter [18], where the researchers knew the true answers in advance,
42 percent (face-to-face interviews) and 33 percent (mail survey) of respondents did not
admit that they had been convicted. Likewise, van der Heijden et al. [19] conducted a face-
to-face interview, and 75 percent of respondents who committed welfare or unemployment
benefits fraud denied doing so. As another real example, Hsieh and Perri [20] pointed
out that the proportion of non-heterosexual subjects present in a community is generally
underestimated if respondents have to answer sensitive questions directly. In contrast,
respondents tend to present themselves positively by displaying behaviors and attitudes
that conform to social norms, such as engaging in charitable activities, volunteering, and
eating healthily. See, e.g., [1]. In general, socially desirable attributes are over-reported
while socially undesirable attributes are under-reported when data are collected by direct
interrogation methods. Therefore, the quality of data collected through direct questions on
such topics is not guaranteed. As a result, collected data may produce inaccurate estimated
results and invalid inferences about the sensitive behavior under investigation.

In an effort to reduce potential bias due to social desirability response and non-
response and thereby improve the reliability of data gathered from responses to sensitive
questions for better estimation of the population proportion of individuals who have a
sensitive characteristic, various indirect questioning techniques (IQTs) have been proposed
by, e.g., [21–24]. Among them, some commonly used techniques are the randomized
response (RR) technique (RRT) [25], the unmatched count technique—also called the
item count technique—unmatched block design, or block total response [26,27], and the
triangular model (TRM) and crosswise model (CWM) [28], which are two of the non-
randomized response (NRR) techniques (NRRTs). These techniques have been developed
to ensure anonymity as well as minimize the feelings of jeopardy for survey respondents
when answering sensitive questions. That is what motivates them to answer honestly
sensitive questions.

Blair et al. [29] provided an excellent review of the RRTs and classified them into
mirrored question, forced response, disguised response, and unrelated question techniques.
Among these techniques, Sungkawichai et al. [30] extended the classical forced RRT by
using an arbitrary random variable. Tian and Tang [31] also presented another classification
for the RRTs. Interested readers may also refer to the monographs on the RRTs and other
alternative IQTs by [21,32–37] for comprehensive reviews. Tian and Tang [31] contributed
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an excellent monograph to the NRRT until 2013. Next, we present a review of RRTs from
the work of Warner [25] to the present.

2. Warner’s Randomized Response Design and Some Direct Extensions

The first version of the RRT, conceived by Warner [25] in 1965, is to increase the
response rate and eliminate dishonest responses for the estimation of the proportion of
individuals in a population bearing some sensitive attribute. The main idea of the RRT is to
add random noise to respondents’ answers for the protection of their privacy. Specifically,
according to the idea of Warner [25], two questions were designed: a sensitive question
of interest and its complementary question. That is why the original design of [25] is also
known as a “related-question RR design”. For example,

A : Have you ever had a one-night stand through a dating website or mobile app
(with probability p of selecting this question).

A : Have you never had a one-night stand through a dating website or mobile app
(with probability 1− p of selecting this question).

Suppose we wish to estimate the proportion θ of people belonging to a sensitive group,
called group A. A simple random sample of size n is selected from the population. Each
surveyee uses the outcome generated by a randomization device, e.g., spinners, dice, or
random number generators, which is not observed by the interviewer, to determine which
question to honestly answer “Yes” or “No” to. The interviewee responds to statements
A and A with probabilities p and 1− p, respectively. Let n1 be the number of individu-
als responding “Yes”. The parameter θ is estimated based on the indirect responses of
all individuals via the maximum likelihood (ML) estimator θ̂W = p−1

2p−1 + n1
n(2p−1) with

Var(θ̂W) = θ(1−θ)
n + p(1−p)

n(2p−1)2 as long as p 6= 0.5. θ̂W is then an unbiased estimator of θ

and used to replace θ to obtain an estimator of Var(θ̂W). See Appendix A.1. Because
the surveyor does not know which question has been answered by the interviewee, the
respondent can feel more comfortable with answering sensitive questions without fear of
personal privacy being revealed. It makes the respondent more likely to give an honest
response to the sensitive question in case she/he carries that sensitive characteristic. In fact,
a validation study by Lensvelt-Mulders et al. [38] showed that, for sensitive questions, the
RRT yields a more valid estimation of prevalence in comparison to other methods.

Despite solving many of the problems posed earlier, the original RR design of Warner [25]
has certain limitations. For example, Warner’s model does not work for p = 0.5. However,
the inefficiency of Warner’s model is its most serious limitation when compared with the
design of direct questioning (DQ), which is clearly demonstrated in Tian and Tang [31]. The
variance of the estimator θ̂ of θ by the DQ design is Var(θ̂) = θ(1−θ)

n , based on the binomial
distribution with parameters n and θ. Using the RR design of Warner [25] induces the extra
variance, p(1−p)

n(2p−1)2 , which is the variance due to the randomization device, compared to Var(θ̂).

Accordingly, θ̂W is less efficient than θ̂. During nearly six decades of efforts to overcome these
limitations and improve computational efficiency, quite a few alternative RR models have
been proposed and empirically applied. For instance, just to name a few, Horvitz et al. [39]
and Greenberg et al. [40] combined a sensitive question of interest and another question that
is innocuous and completely unrelated to the sensitive topic to propose an unrelated-question
RR design. Chaudhuri and Mukerjee [41] introduced optional RRTs. Bhargava and Singh [42]
introduced a modified randomization device for the RR design of [25]. Kim and Warde [43]
proposed a stratified RR design of [25].

Abbasi et al. [44] proposed a partial RRT to gather reliable sensitive data for the esti-
mation of the proportion of a population in a ranked set sampling scheme using auxiliary
information. The authors provided respondents the option of both “direct“ and “random-
ized” responses for the sensitive question in order to increase their confidence/co-operation.
Zapata et al. [45] proposed an electronic randomization device, which is able to directly
produce a response when utilized by a respondent. The proposed randomization device
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builds upon the model of Warner [25] by utilizing a variation on the spinner approach.
However, instead of a physical spinner, they have developed a model, which utilizes the
Python programming language to electronically replicate the functionality of a spinner
with the selection of a button, with the user simply being requested to choose either a “Red”
or “Green” button depending on his/her status of possessing a sensitive characteristic.

3. Some Aspects Extended from Warner’s Randomized Response Design
3.1. Unrelated-Question Randomized Response Design

Motivated by the case where the model of Warner [25] does not work when p = 0.5,
Horvitz et al. [39] and Greenberg et al. [40] modified Warner’s method by incorporating
a non-sensitive question within a sensitive question. Along with that, some respondents
find the questions in the design of [25] sensitive or uncomfortable to answer even if a
randomization device is used. Two questions in the unrelated-question design, for example,
are given as follows:

A : Have you ever had a one-night stand through a dating website or mobile app
(with probability p of selecting this question).

C : Were you born between January and September
(with probability 1− p of selecting this question).

Again, each respondent selected in the sample uses a device such as a deck of cards
to determine the question to which she/he responds. Let c0 be the true proportion of
individuals with non-sensitive characteristic. If c0 is known, [39,40] proposed the unbiased
estimator θ̂U1 = n1/n−(1−p)c0

p for θ. In the case where c0 is unknown, they considered two
independent samples of sizes n∗1 and n∗2 with n = n∗1 + n∗2 . In each sample, the above
procedure is carried out. Assume that the probabilities of selecting the designed sensitive
question in the samples of sizes n∗1 and n∗2 are p1 and p2, respectively, with p1 6= p2.

They proposed the unbiased estimator θ̂U2 =
(1−p2)m1/n∗1−(1−p1)m2/n∗2

p1−p2
for θ, where m1 and

m2 are the numbers of respondents who answer “Yes” in the first and second samples,
respectively. Because the modified method boosts the degree of privacy, it may receive
greater cooperation from respondents. According to Edgell et al. [46], compared to the RRT
of Warner [25], the unrelated-question RRT is much more statistically efficient and becomes
even more so when the population parameters of the non-sensitive question are known. To
assess whether respondents would honestly respond to the non-sensitive question, even if
it could be interpreted as socially undesirable when paired with a sensitive question, the
researchers conducted a study using an unrelated-question RRT. Shaw and Chaudhuri [47]
utilized the approach of the inverse hypergeometric trial to improve the revised unrelated
characteristics model device of Chaudhuri and Shaw [48]. Lee et al. [14] introduced a
data-collection method for survey on sensitive issues in which both the unrelated-question
RRT and the DQ design are combined. They proposed two new methods for estimating the
proportion of respondents possessing the sensitive attribute under a missing data setup.

3.2. Some Kind of Two-Stage Randomized Response Design

In 1990, Mangat and Singh [49] proposed a two-stage RR procedure in which two
randomization devices, R1 and R2, are used. In the first stage, each survey participant is
asked to use the randomization device R1, such as a well-shuffled deck of cards, to select
one from the following two statements:

A : I belong to group A.

C : go to the randomization device R2.

The two statements are selected with probabilities p0 and 1− p0, respectively. In the
second stage, the design of Warner [25] is used. An unbiased estimator of θ is shown as
θ̂MS = n1/n−(1−p0)(1−p)

2p−1+2p0(1−p) with Var(θ̂MS) =
θ(1−θ)

n + (1−p)(1−p0){1−(1−p)(1−p0)}
n{2p−1+2p0(1−p)}2 . It is shown

that compared to the RR design of Warner [25], the two-stage RR design is more efficient.
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Mangat [50] proposed another RR model in which each interviewee is asked to respond
“Yes” if she/he were in the sensitive group; she/he is guided to utilize the device of
Warner [25] otherwise. It is shown that the RR design of Mangat [50] is more efficient in
comparison to the RR designs of Warner [25] and Mangat and Singh [49]. Specially, for
this RR design, an unbiased estimator of θ and its variance are given by θ̂M = n1/n−(1−p)

p

with Var(θ̂M) = λM(1−λM)
np2 , respectively, where, λM = θ + (1− p)(1− θ). According to the

unrelated-question model of Horvitz et al. [39] and the model of Mangat and Singh [49],
Chang and Liang [51] conducted a new two-stage unrelated RR design. Gjestvang and
Singh [52] adjusted the parameters of the randomization device to propose a more efficient
RR model than the models of [25,49,50] to refine the two-stage randomization. Huang [3]
used the two-stage RR procedure to improve efficiency of the RR procedure of [25]. Recently,
Chang et al. [2] utilized logistic regression to estimate the prevalence of a sensitive feature
with a categorical or quantitative explanatory variable.

A new two-stage unrelated RR model was proposed by Vishwakarma et al. [53] to
estimate the mean number of individuals in a given population who have a rare sensitive
attribute by using Poisson probability distribution, when the proportion of rare non-
sensitive unrelated attribute is known and unknown.

3.3. The Generalized Randomized Response Design of Christofides and Some Direct Extensions

In 2003, Christofides [54] provided the generalized RR (GRR) design of a single
sensitive question to let respondents have more than two response options and be more
protective toward their privacy. It is shown that the GRR design is more efficient in
comparison to the RR design of Warner [25]. Let a respondent have one of the sensitive
and non-sensitive attributes. If the respondent had the sensitive attribute, let her/him
remember the number L + 1; otherwise, let her/him remember the number 0. Next, she/he
utilizes a randomization device to generate a random integer from 1 to L with probability
distribution P = (P1, P2, . . . , PL), where ∑L

j=1 Pj = 1. This number is not reported directly
to the surveyor. If the respondent had the sensitive attribute, she/he only provides the
answer how far this number is away from L + 1; otherwise, provide the answer how far
this number is away from 0.

Assume that Yi, i = 1, 2, . . . , n, is respondent i taking the value L + 1 if having the
sensitive attribute and 0 otherwise. Ti is a random integer generated by respondent i
using the randomization device to obtain the value j with probability Pj = P(Ti = j),
j = 1, 2, . . . , L. Assume that θ is the population proportion of the sensitive trait. Yi has the
Bernoulli distribution with probability θ = P(Yi = L + 1) and probability 1− θ = P(Yi =
0), denoted by Yi ∼ (L + 1) × B(1, θ), where B(1, θ) denotes the Bernoulli distribution
of a random variable taking the value 1 with probability θ and 0 with probability 1− θ.
See Figure 1 of Lee et al. [55] for illustration of the probability mass functions (pmfs) for
Yi and Ti, respectively. From the GRR design of Christofides [54], the ith respondent
reports how far Yi is away from Ti. Thus, this respondent only provides the value of Di =
|Yi − Ti|, whose pmf is P(Di = d) = (1− θ)Pd + θPL+1−d, i = 1, 2, . . . , n, d = 1, 2, . . . , L.
Christofides [54] obtained the expectation of Di, E(Di) = E(Ti) + θ(L + 1− 2E(Ti)), and
took D = ∑n

j=1 Dj/n to replace E(Di). Because the expectation of Ti is known, θ̂C =

D−E(Ti)

L+1−2E(Ti)
is used as an estimator of θ. Similarly, it is easy to verify the variance of

Di as Var(Di) = Var(Ti) + θ(1− θ)(L + 1− 2E(Ti))
2. Hence, Christofides [54] showed

Var(θ̂C) =
θ(1−θ)

n + Var(Ti)

n(L+1−2E(Ti))2 . See Appendix A.2. θ can be replaced by θ̂C to obtain

an estimator of Var(θ̂C). The first and second terms of Var(θ̂C) are the variance because
of random sampling and the variance due to the randomization procedure, respectively.

If choosing suitable values for P1, P2, . . . , PL such that Var(Ti)

n(L+1−2E(Ti))2 < p(1−p)
n(2p−1)2 , then θ̂C

is more efficient than θ̂W . When n → ∞, θ̂C is asymptotically normally distributed, and,
hence, interval estimation can be performed. When L = 2, P1 = p (and P2 = 1− p) and,
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hence, this GRR model is reduced to the RR model of Warner [25]. Furthermore, when
L ≥ 3, the mean squared error of θ̂C is smaller in comparison to that of θ̂W [54].

Christofides [54] also showed that Var(θ̂C) can be reduced by multiple use of the
randomization device. In this instance, individual i is asked to use the randomization
device mi times. The mi repetitions of the procedure must be independent of each other.
Let Tij be the number produced by individual i using the randomization device at the jth

time. Suppose that Dij = |Yi − Tij| is the reported number. Define θ̂m. =
Dm.−E(T)

L+1−2E(T)
, where

Dm. = (∑n
i=1 mi)

−1 ∑n
i=1 ∑mi

j=1 Dij. Assume that T has the same distribution as the Tij’s,

j = 1, 2, . . . , mi, i = 1, 2, . . . , n. θ̂m. is shown to be an unbiased estimator of θ with

Var(θ̂m.) =
∑n

i=1 mi
2

(∑n
i=1 mi)

2 θ(1− θ) +
1

∑n
i=1 mi

Var(T)

[L + 1− 2E(T)]2
.

In the special case where when mi = m, i = 1, 2, . . . , n, i.e., each respondent is asked to
use the randomization device m times,

Var(θ̂m.) =
θ(1− θ)

n
+

Var(T)

mn[L + 1− 2E(T)]2
.

Thus, when mi = m, i = 1, 2, . . . , n, Var(θ̂m.) is then smaller via multiple use of the random-

ization device in comparison to Var(θ̂C) =
θ(1−θ)

n + Var(T)
n[L+1−2E(T)]

2 in Christofides [54].

Christofides [54] proposed an improved modification of the RR design of Warner [25]
to estimate an unknown proportion of population bearing a sensitive characteristic in a
given community. Chaudhuri [56] presented methods to estimate an unknown population
proportion of a sensitive attribute when RR data of Christofides [57] are available from
unequal probability samples. Christofides [58] extended the GRR model of Christofides [54]
to the case of stratified sampling. Christofides [57] extended the GRR model of [54] by
proposing an RRTthat allows for estimation of the population proportion of subjects
with two sensitive attributes simultaneously. Lee et al. [59] proposed a special model
of the GRR version of Christofides [57], called a simple model. They also proposed a
so-called crossed model that is more efficient compared to the simple model. Perri et al. [60]
applied the crossed model to investigate the phenomena of the induced abortion and illegal
immigration simultaneously in Calabria, Italy and also attested to the fact that the crossed
model is more efficient.

3.4. Sensitive Characteristics with More Than One Category

It is in the RR model of Warner [25] supposed that every individual in a population
is in either the sensitive group or the non-sensitive group, and the population proportion
of subjects in the sensitive group is estimated by a survey. Abul-Ela et al. [61] improved
the RR design of Warner [25] for the trichotomous population with at least one sensitive
group. Hsieh et al. [9] extended the GRR design [54] to the case where there are more
than two categories and estimated the proportion of each category by employing the ML
method. Hsieh and Lukusa [10] used the ML method and Bayesian approach to estimate
the proportion of each group in a trichotomous population. The population with ` (` ≥ 3)
related mutually exclusive groups, with at least one and at most ` − 1 of them being
sensitive, was also extended by, e.g., Hsieh et al. [9] and Liu and Chow [62]. Recently, Hsieh
et al. [12] provided the two-stage multilevel RRT based on an extension of the GRR design
in [9] to collect the monthly income data.

3.5. Simultaneous Study of Multiple Sensitive Characteristics

Some works have estimated the population proportion of two sensitive features simul-
taneously. Barksdale [63] proposed some RRTs to collect data for analysis to investigate
two sensitive dichotomous traits. Drane [64] explored the problem of testing independence
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between two sensitive dichotomous characteristics by utilizing repeated applications of
various RRTs for single attribute. Fox and Tracy [65] estimated the correlation between
two sensitive traits. Christofides [57] introduced an RRT to estimate the proportion of
subjects with two sensitive attributes simultaneously. Lee et al. [59] extended the RR design
in [25] to capture two sensitive characteristics. Afterwards, Ewemooje [66] improved the
procedure to estimate the population proportion of two sensitive features at a time by
utilizing equal probabilities of protection on the randomization devices. It has been shown
that the proposed model is more efficient compared to the model of Lee et al. [59] in some
cases. Ewemooje and Amahia [67,68] extended the work of Mangat [50] to propose new
and more efficient estimators of the population proportion of respondents bearing two
related sensitive traits in survey sampling. Batool and Shabbir [69] considered the problem
of estimating the several proportions of two inter-dependent sensitive attributes prevailing
in a given population. Xu et al. [70] proposed a new, unique unrelated-question RR model,
where each card contains two questions, either both questions on the sensitive characteris-
tics or both questions on the unrelated characteristics. Chung et al. [71] implemented the
RRT with multiple sensitive traits and utilized a Bayesian approach to estimate covariance
matrices with incomplete information. Chu et al. [72] proposed a new statistical method
to combine the RRT, probit modeling, and Bayesian analysis to analyze large-scale online
surveys of multiple binary RRs. Recently, Hsieh and Perri [20] provided a logistic regression
extension for the RR simple and crossed models to discuss two related sensitive attributes
in [59].

3.6. Randomized Response Techniques for Quantitative Sensitive Data

Greenberg et al. [73] extended the RRT of reducing respondent bias in obtaining an-
swers to sensitive questions from a situation where the response is categorical to that in
which the response is quantitative. Gupta et al. [74] estimated the expected mean of the
stigmatized variable by using an optional RR sampling. By using double sampling, Grewal
et al. [75] estimated the expected mean of a sensitive quantitative variable. Hussain and
Shabbir [76] provided an unbiased estimator of the population mean of a sensitive quanti-
tative variable based on multiple selections of numbers from a scrambling distribution to
confound the actual response on a sensitive variable with some unrelated variable. Hsieh
et al. [12] estimated the personal monthly mean income by using a two-stage multilevel
RRT with proportional odds (PO) models.

Hussain et al. [77] proposed a new RR model to estimate the population total of a
sensitive variable of quantitative nature. To achieve the objective, they introduced additive
scrambling mechanism when sample is drawn through probability proportional to size
sampling scheme. Gupta et al. [78] proposed an optional enhanced trust (OET) quantitative
RRT model to mitigates the effect of respondents’ lack of trust by allowing them who do not
trust the traditional additive RRT model to use an alternative scrambling technique. They
utilized a combined measure of respondent privacy and model efficiency to demonstrate
both theoretically and empirically that the proposed OET model is superior to the traditional
model of Warner [79].

3.7. Applications of Randomized Response Techniques to Real Data

Applications of RRTs to real data related to sensitive topics can be found in various
works, such as illegitimacy of offspring [40], drug use [72,80–82], incidence of induced abor-
tions [60,62,83,84], fraudulent acts [19,85–88], racism [89,90], sexual behavior [2,9,10,20,55,91–93],
cheating in examinations [94], monthly income [12], illegal immigration [95], and conserva-
tion [23,24]. In recent years, many researchers have been attracted to using RRTs to collect
data on fraudulent behaviors during the COVID-19 pandemic. For example, Mieth et al. [96]
used indirect questions to provide prevalence estimates for personal hygiene behavior during
the early stages of the COVID-19 pandemic in Germany in 2020. Reiber et al. [97] conducted
a survey on intimate partner violence during the COVID-19 pandemic, along with various
other studies.
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Striegel et al. [98] estimated the prevalence of doping and illicit drug abuse. They used
a two-sided z-test to compare the anonymous standardized questionnaire and RRT results
with the respective official German National Anti-Doping Agency data on the prevalence
of doping. Christiansen et al. [99] measured the prevalence of doping in recreational sport
by using the RRT. Mielecka-Kubień and Toniszewski [100] estimated the prevalence of
illicit drug use among high school students living in the Silesian voivodship (Poland) by
using either the RRTs of forced response design or the Liu-Chow method [101]. Burgstaller
et al. [102] argued that the RRT and list experiments would validate and improve prevalence
estimates of undeclared work that is defined as a taxable and essentially legal economic
activity, but that is not intentionally reported to the relevant authority. They considered
an undeclared work case in Germany to demonstrate the strengths and weaknesses of
conventional surveys. Furthermore, readers can refer to [22,32] for more studies using IQT
for real data.

3.8. Statistical Methods for Randomized Response Data

The two well-known estimation methods, frequentist and Bayesian, in statistics have
been applied by several authors RR data.

3.8.1. Frequentist Methods

After collecting data through RR designs, estimation and statistical inference of un-
known population parameters of interest, such as the proportion of sensitive characteristics,
honest response rate, and sensitivity level of questions, can be carried out. In the fre-
quentist approach, the commonly used classical methods are the ML method and method
of moments (MM). A common problem with these two methods is that the estimated
parameter value may be out of the true parameter space. For example, the estimate of the
proportion of a sensitive feature may fall outside the interval [0, 1]; see, e.g., [20,33,103].
In addition, the calculation of ML estimates is sometimes more complicated and requires
numerical methods. The expectation–maximization (EM) method [104] can be used to
address this issue; see, e.g., [22,105–107]. Specifically, Bourke and Moran [105] presented
the particular applicability of the EM algorithm in obtaining ML estimates of proportions
where the sensitive data are collected by using an RR design. They considered two kinds
of RR designs: related-question [25] and unrelated-question [40] designs. van den Hout
and Kooiman [107] developed a fast and straightforward EM algorithm to obtain ML
estimates of the parameters of a linear regression model with categorical covariates subject
to RR. Groenitz [22] derived a general EM algorithm to obtain general ML estimates of
the parameters of a logistic regression model. Recently, to obtain an efficient estimator of
the proportion of a sensitive characteristic and to investigate the association between the
sensitive characteristic or latent variable and an observed binary variable, Lee et al. [106]
proposed a combination of Warner’s RRT [25] and a latent class model. An EM algorithm
is proposed to estimate the model parameters. However, the EM method also has its own
weaknesses, such as its tendency to fail to converge to the true value; see, e.g., [108].

3.8.2. Bayesian Method

Some authors have suggested using the Bayesian method to deal with the weaknesses
and improve the efficiency of previous estimation methods in cases where some prior
information on parameters is available. The major references on the RRT in the Bayesian
framework are listed below. Winkler and Franklin [84] proposed a seminal work in which
the Bayesian approach was used to analyze RR data. Hussain et al. [109], Migon and
Tachibana [110], and a bunch of other authors then used the Bayesian method to estimate
the population proportion of a sensitive trait in Warner’s RR design [25]. Pitz [111] used
a Bayesian analysis of the model of Fidler and Kleiknecht [112] to give a more useful
estimation when the sample size is not large or the response proportions are extreme.
O’hagan [113] employed a non-parametric approach to derive Bayes linear estimators.
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Oh [114] and Unnikrishnan and Kunte [115] used the Bayesian method through a
Gibbs sampling algorithm to estimate parameters of interest by introducing latent variables
to an RR model. Bar-lev et al. [103] presented a common conjugate prior structure for some
RR models. Hussain and Shabbir [116] used a stratified random sampling protocol and
the Bayesian method to estimate the population proportion of a sensitive feature. Song
and Kim [117] addressed the Bayesian formulation of two types of Poisson regression
models for RR sum score variables under the self-protection assumption. Adepetun and
Adewara [118] utilized both Kumaraswamy and generalised beta prior distributions to
propose the Bayesian estimators of the population proportion of a stigmatized characteristic
when data were obtained via the RRT of Kim and Warde [43]. Groenitz [119] proposed a
design method for multiple-choice sensitive features and provided the Bayesian method
combined with Gibbs sampling and Markov chain Monte Carlo (MCMC) to estimate
the population proportions of multichotomous sensitive features. Song and Kim [120]
employed the RRT to propose a Bayesian estimation of the rate of a rare sensitive trait.
Mehta and Aggarwal [4] and Narjis and Shabbir [5] provided Bayesian estimation of a
sensitivity level and the population proportion of a sensitive attribute of optional unrelated-
question RR models.

Recently, Nandram and Yu [108] introduced a Bayesian analysis of spare counts
gathered from the unrelated-question design. More recently, Hsieh and Lukusa [10] im-
plemented a Bayesian framework for multilevel RR data and compared the Bayesian
method with the ML method for estimating the population proportion of individuals aged
18–54 years who self-reported as bisexual and homosexual among Taiwanese. Hsieh and
Perri [20] proposed a Gibbs sampling algorithm to estimate the population proportion of the
sensitive characteristic θ. They compared, in connection with the GRR data-collection model
of [54], the MM, ML, and Bayesian methods for the estimation of the population proportion
of non-heterosexuals aged 20 years or older for the Taiwanese population, gender groups, and
age groups. Specifically, suppose that {(Di, Yi) : i = 1, 2, . . . , n} are available. The joint pmf of

(Di, Yi) is given by P(Di = di, Yi = yi) =
(

PL+1−di
θ
)I(yi=L+1)(Pdi

(1− θ)
)I(yi=0), where I(·)

is an indicator function. Given D∗ = {(di, yi) : i = 1, 2, . . . , n}, the likelihood function can
be obtained as L∗(θ|D∗) = θ∑n

i=1 I(yi=L+1)(1− θ)∑n
i=1 I(yi=0) ∏n

i=1 PI(yi=L+1)
L+1−di

PI(yi=0)
di

. Thus,
given that a beta prior distribution with parameters α1 and α2, denoted by θ ∼ Beta(α1, α2),
is assigned to θ, [20] derived the conditional posterior distribution of θ given D∗ as θ|D∗ ∼
Beta(α1 + ∑n

i=1 I(yi = L + 1), α2 + ∑n
i=1 I(yi = 0)). However, in practice, through the GRR

design of [54], only d = (d1, d2, . . . , dn) can be obtained, so, [20] treated Y = (Y1, Y2, . . . , Yn) as
latent variables to derive the conditional distribution of Yi given θ and Di = di. The probability

of Yi = L + 1 given θ and Di = di is p(θ, di) = P
(
Yi = L + 1|θ, Di = di

)
=

PL+1−di
θ

PL+1−di
θ+Pdi

(1−θ)
,

i = 1, 2, . . . , n. The conditional distribution of Yi given θ and Di = di is then a Bernoulli
distribution with probability p(θ, di) of Yi = L + 1 and probability 1− p(θ, di) of Yi = 0,
denoted by Yi|θ, Di = di ∼ (L + 1)× B(1, p(θ, di)), i = 1, 2, . . . , n.

Chung et al. [71] used a Bayesian approach to estimate covariance matrices with
incomplete information in a population with multiple sensitive characteristics. According
to the idea of Hsieh and Perri [20], Lee et al. [55] used the Bayesian estimation method
through data augmentation and MCMC to estimate the prevalence of the population
possessing the sensitive attribute and the distribution of a categorical or quantitative
variable in each of the non-sensitive and sensitive groups. The deviance information
criterion and marginal likelihood are employed to select a suitable model to describe the
association of the sensitive characteristic with the auxiliary random variable in this work.
Chu et al. [72] combined the RRT, probit modeling, and Bayesian approach to analyze
large-scale online surveys of multiple binary RRs.

In 2023, Ewemooje et al. [82] proposed a new Bayesian estimation method for Alterna-
tive Tripartite RRTs to gain the proportion of individuals belonging to a sensitive character.
The proposed Bayesian estimators used the Kumaraswamy and the generalized beta prior



Mathematics 2023, 11, 1718 10 of 26

distributions. A comparison of the classical technique and Bayesian method is provided
in [82].

3.9. Use of Auxiliary Information in Randomized Response Problems
3.9.1. Regression Models for Randomized Response Data

In sample surveys on sensitive topics, besides sensitive information of interest collected
by IQTs, information on some auxiliary variables is also obtained. The data of these auxiliary
variables are collected by using direct questioning techniques (DQTs). Using these auxiliary
variables reasonably to improve computational efficiency is an important issue that has
received the attention of several authors. The following is a brief summary of the use of
auxiliary variables in sensitive variable research.

In 1983, Maddala [81] employed a logit model to investigate the relationships be-
tween auxiliary variables and randomized response survey data through the RR design
of Warner [25]. The author obtained ML model parameter estimates using the Newton–
Raphson iterative procedure. An estimate of the asymptotic covariance matrix was shown.
This logit model was then illustrated for the first time in real data by Kerkvliet [121] in
the study of college students’ cocaine use at two public universities in the United States
that were surveyed in 1989. Scheers and Dayton [94] established a theory for an extension
of the RR design of [25] and a covariate extension of the unrelated-question RR design of
Greenberg et al. [40]. They showed that if the relationship between the covariates and the
sensitive population proportions is correctly specified, the covariate RR model is relatively
more efficient. In 1996, van der Heijden and van Gils [87] presented the model where the
response variable is subject to the RR design of Boruch [122] or Kuk [123]. van den Hout
et al. [88] discussed univariate and multivariate logistic regression where response variables
are subject to RR.

van den Hout and Kooiman [107] derived the likelihood of the linear regression model
with categorical covariates subject to RR. They developed a fast and straightforward EM
algorithm to obtain ML estimates of the regression parameters. Cruyff et al. [124] provided
a review of regression procedures for RR data, including the univariate and multivariate
logistic regression models, PO regression model, item response model, and self-protective
responses. Blair et al. [29] presented how their developed multivariate logistic regression
techniques were employed to analyze data collected from the four RR designs: mirrored
question, forced response, disguised response, and unrelated question. Hsieh et al. [85,86]
and recently Chang et al. [2] estimated the prevalence of a sensitive characteristic with a
categorical or quantitative explanatory variable by fitting logistic regression.

Let Y be the answer to a sensitive question, Z a vector of covariates that are always
observed, and X another covariate vector that may be missing on some subjects. Assume
that W is a surrogate for X and independent of Y given X and Z. Let Y = 1 and Y = 0
denote answering “Yes” and “No”, respectively, to the sensitive question. Now consider
the following logistic regression model:

P(Y = 1|X, Z, W) = H(β0 + βT
1 X + βT

2 Z) = H(βTX ),

where H(u) = 1/(1 + exp(−u)) and β = (β0, βT
1 , βT

2 )
T is a vector of unknown parameters

for X = (1, XT , ZT)T . Under the RRT, Y is not observable. Let Y0 denote the binary
response to the sensitive question based on some RRT, such as [25,40,42,49]. The probability
of Y0 given X and Z can then be expressed as follows:

P(Y0 = 1|X, Z) = kH(βTX ) + s, (1)

where k and s are known constants in different RRTs. For example, k = 2p− 1 and s = 1− p
in Warner’s RRT [25]; k = p and s = (1− p)c in the RRT proposed by Greenberg et al. [40],
where p is the probability of selecting the sensitive question and c is the probability of
selecting the innocuous question to answer “Yes”.
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Most recently, Groenitz [22] used logistic regression for the analysis of direct data
on the covariates and indirect data on the sensitive variable. The author derived a gen-
eral algorithm for the ML estimation and a general procedure for variance estimation.
Ronning [125] analyzed effects of RR with respect to some binary dependent variable on
the estimation of the probit model. Hsieh and Perri [95] proposed a logistic regression
extension for analyzing the factors that influence two sensitive variables when data are
collected by the RR simple and crossed models.

3.9.2. Missing Data in Randomized Response Problems

Most works on RR data assume that the data are observable. That means the data used
in these works are assumed to be fully observed. This assumption is sometimes difficult to
achieve in practice. Hsieh et al. [85] developed two semiparametric approaches to estimate
the parameters of logistic regression for RR data with missing covariates. After that, Hsieh
et al. [86] utilized a logistic regression model for analyzing RR data with covariates missing
at random (MAR). Hsieh et al. [13] combined the unrelated-question RRT of Greenberg
et al. [40] and the related-question RRT of Warner [25] to address the issue of an innocuous
question in the unrelated-question RR design. They utilized logistic regression with missing
data to estimate the prevalence of the sensitive characteristic. Lee et al. [14] combined both
the unrelated-question RRT of [40] and the DQT under a missing data setting to propose a
data-collection method for surveys of sensitive issues. Recently, Hsieh et al. [12] employed
PO regression on the two-stage multilevel RRT of [9] to investigate the monthly income
when some covariates are MAR.

Let δ indicate whether X is observed (δ = 1) or not (δ = 0). Assume that W is a
possible surrogate of X such that W is dependent on X and independent of Y0 given
X and Z. Hsieh et al. [85,86] assumed that the missing mechanism is missing at ran-
dom (MAR) [126], i.e., the probability of X being observed, the selection probability
P(δ = 1|Y0, X, Z, W) = π(Y0, Z, W), depends on (Y0, Z, W), but not on X. The valida-
tion data set consists of {(Y0

i , Xi, Zi, Wi, δi = 1) : i = 1, 2, . . . , n}, and the non-validation
data set includes {(Y0

i , Zi, Wi, δi = 0) : i = 1, 2, . . . , n}. Let v1, v2, . . . , vg denote the distinct
values of the Vi’s, where Vi = (Zi, Wi). For v ∈ {v1, v2, . . . , vg} and y0 = 0, 1, π(y0, v) is
estimated by

π̂(y0, v) =
∑n

i=1 δi I(Y0
i = y0, Vi = v)

∑n
i=1 I(Y0

i = y0, Vi = v)
.

To estimate β, Hsieh et al. [86] proposed the Horvitz and Thompson-type weighted
estimating equations [127] as follows:

Uw(β, π̂) =
1√
n

n

∑
i=1

{
δi

π̂(Y0
i , Vi)

Xi Ai(β)
[
Y0

i − [kH(βTXi) + s]
]}

= 0,

where π̂ = (π̂(Y0
1 , V1), π̂(Y0

2 , V2), . . . , π̂(Y0
n , Vn)),

Ai(β) =
kH(βTXi)[1− H(βTXi)]

(kH(βTXi) + s)(1− kH(βTXi)− s)
. (2)

Hsieh et al. [86] also proposed to model π(Y0
i , Vi) with logistic regression with known

parameters or unknown parameters to discuss the efficiency problem.
Multiple imputation (MI) is another statistical technique to deal with the missing data.

Lee et al. [128] and Stoklosa et al. [129] proposed generating imputed data by applying
the MI scheme developed by Wang and Chen [130] in different areas. One can estimate
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the parameters of the RR regression model in (1) by utilizing the empirical conditional
distribution function (CDF) as follows:

F̂(x|Y0
i , Vi) =

n

∑
r=1

{
δr I(Y0

r = Y0
i , Vr = Vi)

∑n
j=1 I(Y0

j = Y0
i , Vj = Vi)

}
I(Xr ≤ x). (3)

A unified estimate for the MI procedure proposed by Rubin [131] is the average of
estimates obtained from all imputed data sets. Given the number of imputations M, the MI
approach is summarized as follows:

Step 1. For missing Xi (δi = 0), generate X̃vi from the empirical CDF F̂(x|Y0
i , Vi) in (3),

v = 1, 2, . . . , M.
Step 2. Let β̂v denote the solution to the following estimating equations:

Uv(β) =
1√
n

n

∑
i=1

{
δiXi Ai(β)

[
Y0

i − [kH(βTXi) + s]
]

+ (1− δi)X̃vi Ãvi(β)
[
Y0

i − [kH(βTX̃vi) + s]
]}

= 0, (4)

where X̃vi = (1, XT
vi, ZT

i )
T and is used to replace Xi in Ai(β) in (2) to denote Ãvi(β).

Step 3. The MI estimate of β is β̂m1 = ∑M
v=1 β̂v/M.

Lee et al. [128] provided the second MI-type method as in Fay [132] to estimate β. In
step 2, one can define the following estimating function:

Um2(β) =
1
M

M

∑
v=1

Uv(β).

Let β̂m2 denote the solution to the estimating equations Um2(β) = 0. The asymptotic
properties of the two MI estimators, β̂m1 and β̂m2, and their corresponding asymptotic
variance estimators still need to be established.

In the above discussion, we considered all the elements of X to be missing simulta-
neously. In practice, the elements of X may be missing simultaneously or separately in
the RR regression model. Now consider Xi = (XT

1i, X
T
2i)

T , where X1i and X2i may be missing
simultaneously or separately.

Define the missingness statuses of the data as follows. For i = 1, 2, . . . , n, δi1 = 1 if
both X1i and X2i are observed; 0 otherwise. δi2 = 1 if X1i is missing and X2i is observed; 0
otherwise. δi3 = 1 if X1i is observed and X2i is missing; 0 otherwise. δi4 = 1 if both X1i and
X2i are missing; 0 otherwise. Assume that W1 and W2 are the possible surrogates of X1 and X2,
respectively, such that W1 and W2 are dependent on X1 and X2 and independent of Y0 given
X and Z. Let W = (WT

1 , WT
2 )

T . Under the assumption of MAR mechanism [126] of X1 and X2,
the selection probability model is assumed as follows:

P(δij = 1|Y0
i , X1i, X2i, Zi, Wi) = πj(Y0

i , Vi), j = 1, 2, 3, 4, (5)

where Vi = (ZT
i , W T

i )T and ∑4
j=1 πj(Y0

i , Vi) = 1. πj(Y0
i , Vi)’s are the nuisance parameters

and unknown, although it may be specified at design stage in some applications.
Lee et al. [133] proposed two different types of MI methods for the estimation of

the parameters of the logistic regression model with covariates missing separately or
simultaneously. Their approaches, which are based on the ideas of [130,132], involve a two-
step procedure instead of the three-step procedure as in the traditional MI approaches, in
order to reduce the computing time, and are more efficient in estimation. These estimation
methods can also be applied to the RRT. For example, one can use the first approach of [133]
in the RRT below.
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Consider the following empirical CDFs of X1i, given (X2i, Y0
i , Vi), X2i, given (X1i, Y0

i , Vi),
and Xi given (Y0

i , Vi):

F̃X1i (x1|X2i, Y0
i , Vi) =

n

∑
k=1

(
δk1 I(Y0

k = Y0
i , X2k = X2i, Vk = Vi)

∑n
s=1 δs1 I(Y0

s = Y0
i , X2s = X2i, Vs = Vi)

)
I(X1k ≤ x1),

F̃X2i (x2|X1i, Y0
i , Vi) =

n

∑
k=1

(
δk1 I(Y0

k = Y0
i , X1k = X1i, Vk = Vi)

∑n
s=1 δs1 I(Y0

s = Y0
i , X1s = X1i, Vs = Vi)

)
I(X2k ≤ x2),

F̃Xi (x|Y0
i , Vi) =

n

∑
k=1

(
δk1 I(Y0

k = Y0
i , Vk = Vi)

∑n
s=1 δs1 I(Y0

s = Y0
i , Vs = Vi)

)
I(Xk ≤ x),

respectively. The two steps of the MI method are given as follows:

Step 1. Imputation: Generate the vth imputed (“completed”) data set, v = 1, 2, . . . , M,
based on the missingness status of Xi = (XT

1i, X
T
2i)

T , i = 1, 2, . . . , n.

(i) If δi1 = 1, keep the values of X1i and X2i, and define Xi = (1, XT
1i, X

T
2i, ZT

i )
T for all v.

(ii) If δi2 = 1, keep the value of X2i, and generate X̃1iv from F̃X1i (x1|X2i, Y0
i , Vi) to

impute the missing value of X1i, and define X̃2iv = (1, X̃T
1iv, XT

2i, ZT
i )

T .
(iii) If δi3 = 1, keep the value of X1i, and generate F̃X2i (x2|X1i, Y0

i , Vi) to impute the

missing value of X2i, and define X̃3iv = (1, XT
1i, X̃

T
2iv, ZT

i )
T .

(iv) If δi4 = 1, generate X̃1iv and X̃2iv from F̃Xi (x|Y0
i , Vi) to impute the missing values

of X1i and X2i, and define X̃4iv = (1, X̃T
1iv, X̃T

2iv, ZT
i )

T .

Step 2. Analysis: Solve the following estimating equations:

UM(β) =
1√
n

n

∑
i=1

{
δi1Xi Ai(β)

(
Y0

i − [kH(βTXi) + s]
)

+
1
M

4

∑
j=2

M

∑
v=1

δijX̃jiv Ãjiv(β)
(

Y0
i − [kH(βTX̃jiv) + s]

)}
= 0,

to obtain the MI estimate of β, where

Ai(β) =
kH(1)(βTXi)

[kH(βTXi) + s][1− kH(βTXi)− s]
,

Ãjiv(β) =
kH(1)(βTX̃jiv)

[kH(βTX̃jiv) + s][1− kH(βTX̃jiv)− s]
,

with H(1)(·) = H(·)[1− H(·)]. In Step 1, the aforementioned empirical CDFs are uti-
lized to generate imputed data sets by using the complete-case data. δijs are employed
to identify exactly the partitioned covariate vector without missing observations that
are used as the information for the empirical CDFs. More specifically, when δi2 = 1
(δi3 = 1), one can employ the condition from the observed X2i (X1i), Y0

i , and Vi to
generate a set of values to impute the missing values of X1i (X2i). When δi4 = 1, i.e., X1i
and X2i missing simultaneously, the condition from Y0

i and Vi is utilized to generate
a set of values to impute the missing values of X1i and X2i. Therefore, the estimation
is more efficient. The estimation method can reduce computing time because it only
uses two steps to solve the estimating equations once. The asymptotic properties of
the MI estimators need to be established, along with the estimation of their variances.

3.9.3. Investigation of Influence of a Sensitive Trait on a Non-Sensitive Variable

In general, the aforementioned studies evaluate the influences of auxiliary variables
on sensitive variables of interest. However, there has not been any work evaluating the
association of a sensitive variable with auxiliary variables of interest, i.e., whether or not
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some random variable of interest on the research subjects depends on the sensitive char-
acteristic. Therefore, motivated by the issue, Lee et al. [55] proposed mixture models for
assessing the dependency relationship. Auxiliary information includes a univariate cate-
gorical variable, a univariate quantitative variable, and a multivariate quantitative variable
to examine in turn. They proposed the Bayesian method through data augmentation and
MCMC to estimate the prevalence of the population possessing the sensitive feature and
the distribution of a categorical or quantitative variable in each of the non-sensitive and
sensitive groups. Moreover, they employed three Bayesian model selection criteria to
choose the most suitable one among the proposed models to explore the association of the
sensitive variable with a multivariate auxiliary variable in simulation studies. Finally, the
two Bayesian model selection criteria, deviance information criterion [134], and marginal
likelihood [135] were utilized to choose a more suitable model for the univariate auxiliary
variable case.

It is difficult to study empirically sexual behaviors due to their sensitive nature.
Accurate estimation of the prevalence and frequency of sexual behaviors is difficult using
standard techniques, refer to, e.g., [20,92]. There are various works analyzing the efficacy
of the RRT, and more generally IQTs, to accomplish honest self-reporting about sexual
behaviors, compared to traditional survey techniques. Refer to, e.g., [92], for more detailed
discussions. The sensitive issue of a one-night stand was also mentioned in some materials,
including, e.g., Wentland and Reissing [136] and Kaspar et al. [137]. However, the number of
research works on this behavior is quite modest. A study on this topic can help researchers,
managers, and society have a more complete view of this sexual behavior of young people.
Lee et al. [55] applied their proposed methodology to study the influence of the response
to the sensitive question, “Have you ever had a one-night stand through a dating site
or mobile app?”, on each of the response to the statement, “I am considering finding a
one-night stand through a dating site or mobile app”, the response to the question, “How
many significant others have you had?”, and “the sum of scores of responses to six internet
dating experience questions” by using the data set collected from the survey study of
sexuality of freshmen at Feng Chia University in Taiwan in 2016.

Recently, Lee et al. [106] proposed a combination of Warner’s RRT [25] and a latent class
model to provide a more efficient estimation of the proportion of a sensitive characteristic
and to investigate the association between the sensitive characteristic or latent variable
and an observed binary variable. The concept of the relationship between the sensitive
characteristic variable and other variables in [55] was extended by employing the RR
design of [25] to collect sensitive characteristic information. Let Y be the answer to the
sensitive question and Z an observed vector of k dichotomous variables with values 0
and 1. In Warner’s RRT [25], p is the probability of selecting the sensitive question and
Y0 is a binary outcome, where Y0 = 1 and Y0 = 0 denote answering “Yes” and “No”,
respectively. Based on a latent variable model, it is assumed that under the group to
which an individual is known to belong, the corresponding observed/manifest variables
are independent. Therefore, assume that Z1, Z2, . . . , Zk given Y are independent. Let
P(Y = 1) = θ and P(Zs = 1|Y = y) = αys, y = 0, 1, s = 1, 2, . . . , k. Lee et al. [106] provided
the joint probability distribution of Y0, Z1, Z2, . . . , Zk as follows:

P(Y0 = 1, Z1 = z1, Z2 = z2, . . . , Zk = zk)

= P(Y0 = 1, Z1 = z1, Z2 = z2, . . . , Zk = zk|Y = 1)P(Y = 1)

+ P(Y0 = 1, Z1 = z1, Z2 = z2, . . . , Zk = zk|Y = 0)P(Y = 0)

= pθ
k

∏
s=1

αzs
1s(1− α1s)

1−zs + (1− p)(1− θ)
k

∏
s=1

αzs
0s(1− α0s)

1−zs
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and

P(Y0 = 0, Z1 = z1, Z2 = z2, . . . , Zk = zk)

= P(Y0 = 0, Z1 = z1, Z2 = z2, . . . , Zk = zk|Y = 1)P(Y = 1)

+ P(Y0 = 0, Z1 = z1, Z2 = z2, . . . , Zk = zk|Y = 0)P(Y = 0)

= (1− p)θ
k

∏
s=1

αzs
1s(1− α1s)

1−zs + p(1− θ)
k

∏
s=1

αzs
0s(1− α0s)

1−zs .

For obtaining the RR data and k-variate dichotomous data of responses to DQ,
Ref. [106] proposed an EM algorithm to estimate θ, α1s, and α0s, s = 1, 2, . . . , k. They
estimated the variances of estimators using the bootstrap method. An analytic expression
for the asymptotic variance still needs to be established. However, the k-variate data of
response to DQ are often not dichotomous. For example, “I think online dating is very
new/modern” is DQ, and there are five response options: “very consistent”, “almost
consistent”, “fairly consistent”, “a bit consistent” and “very inconsistent”. Therefore, one
can extend the case of k-variate dichotomous responses to DQ in [106] to the case of k-
variate multiple responses to DQ. Define P(Zs = r|Y = y) = αys,r, r = 1, 2, . . . , Bs, with
∑Bs

r=1 αys,r = 1, where y = 0, 1. Under the assumption that Z1, Z2, . . . , Zk given Y are inde-
pendent, one can express the joint probability distribution of Y0, Z1, Z2, . . . , Zk as follows:

P(Y0 = 1, Z1 = z1, Z2 = z2, . . . , Zk = zk) = pθ
k

∏
s=1

Bs

∏
r=1

α
I(zs=r)
1s,r + (1− p)(1− θ)

k

∏
s=1

Bs

∏
r=1

α
I(zs=r)
0s,r

and

P(Y0 = 0, Z1 = z1, Z2 = z2, . . . , Zk = zk) = (1− p)θ
k

∏
s=1

Bs

∏
r=1

α
I(zs=r)
1s,r + p(1− θ)

k

∏
s=1

Bs

∏
s=1

α
I(zs=r)
0s,r .

To estimate these parameters θ, α1s,r, and α0s,r, s = 1, 2, . . . , k, r = 1, 2, . . . , Bs, a pro-
cedure must be developed. One can consider an EM algorithm or the Newton–Raphson
method to solve unbiased estimating equations for these parameters and, hence, estimate
the variances of their estimators. Another way to estimate these parameters is to use the
Bayesian approach, which involves combining the MCMC/Gibbs sampler to generate
samples from the posterior distribution of these parameters.

3.10. Statistical Software: Packages and Modules for Randomized Response Data

Some authors have used statistical software to perform analysis of data from random-
ized surveys. For instance, Hox and Lensvelt-Mulders [138] presented a way to analyze
the relations between RR estimates and explanatory variables by using standard structural
equation modeling software, Mplus. Sehra [139] provided SAS code to perform analysis
of data gathered from a two-stage additive optional RR model. Jann [140] presented the
Stata module rrlogit to fit logistic regression to RR data. R software is also commonly
used in RR data analysis. Tian and Tang [31] provided numerous R programs to illus-
trate their analysis in a monograph. Moreover, some other researchers have developed R
packages for estimation with RR surveys. Some of them are mentioned as follows. Blair
et al. [29] developed the R package rr to perform regression analyses of sensitive data
under some standard RR designs. They also provided tools to conduct power analysis
for designing RR items. Heck and Moshagen [141] developed the R package RRreg to
conduct correlation and regression analysis of RR data, simple univariate analysis, bivariate
correlations including RR variables, logistic regression with an RR variable, and linear
regression with RR variables as predictors. Rueda et al. [142] developed the R package
RRTCS to perform point and interval estimation of linear parameters with data collected
from RR surveys under complex sampling designs. Fox et al. [143] extended the existing
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implementations by providing generalized regression tools for multiple-group RR designs
in the R package GLMMRR.

3.11. Non-Randomized Response Techniques

In RR surveys, respondents use a randomization device such as a coin or a deck of cards
to generate an outcome that influences the required scrambled answer. However, running
a random experiment can be cumbersome and expensive. This has led to the development
of NRRTs in recent years. In contrast to RR surveys, in NRR surveys, respondents use an
independent non-sensitive question such as their birthday in the questionnaire to obtain
their answer to a sensitive question indirectly. In NRR surveys, respondents are expected
to give the same response to the questions that are repeated. Some of the more common
NRRTs are reviewed below.

3.11.1. Some Common Non-Randomized Response Models

Hidden sensitivity model (HSM): In 2007, Tian et al. [144] proposed a non-randomized
HSM to investigate the association between two sensitive binary questions. For example,
they considered two variables X1, X2 ∈ {0, 1}, where X1 = 1 if using drugs and X2 = 1 if
having AIDS. This technique is called the HSM because the truthful sensitive attributes
of all respondents are hidden. Before Tian et al. [144], for example, Fox and Tracy [65]
estimated the correlation between two sensitive questions. Christofides [57] provided an
RRT for two sensitive characteristics simultaneously. However, all of these models require
the use of randomization devices.

CWM and TRM: In 2008, Yu et al. [28] introduced two NRRTs—the CWM and TRM—
for a single sensitive question with binary options. Of which, the CWM can be viewed as a
non-randomized version of the original RR model of Warner [25]. However, compared to
the original Warner’s RR model, the CWM has several advantages, including, e.g., better
reproducibility of results and increased cooperation from respondents due to its perceived
lower invasiveness. Let X be the sensitive attribute. In these models, X has two categories.
For instance, X ∈ {1, 0} with X = 1 if having sensitive characteristics and X = 0 otherwise.
In 2009, Tan et al. [145] showed that the non-randomized TRM has higher relative efficiency
and better degree of privacy protection compared to the Warner’s RR model [25]. In 2020,
Hoffmann et al. [146] conducted a study to compare directly the validity of the CWM and
TRM and contrast their performance with a conventional DQ approach.

Multi-category response model (MCRM): In 2009, Tang et al. [147] developed a non-
randomized MCRM for surveys with a single categorical sensitive question. This model is
suitable for the case of the sensitive variable X with k categories: X ∈ {1, 2, . . . , k}, k ≥ 2.
For example, let X ∈ {1, 2, 3} with X = 1 if having never violated traffic laws; X = 2 if
having ever violated traffic laws once or twice; and X = 3 if having violated traffic laws
three or more times. A requirement for this model is that at least one value of X, say X = 1,
is non-sensitive.

Diagonal model (DM): In 2014, Groenitz [148] proposed a survey technique, called a
DM, for multi-categorical sensitive variables. The DM is an NRR method to avoid using
any randomization device and, hence, reduce the complexity and costs of surveys. That
at least one category of the sensitive variable be non-sensitive is not required in the DM.
Consequently, one can even apply the DM to attributes, such as income, which are sensitive
as a whole.

Parallel model (PM): In 2014, Tian [149] introduced another NRRT, the PM that is a
non-randomized version of the randomized unrelated-question model. He explored the
asymptotic properties of the ML estimator and its modified version for the proportion
of interest. Theoretical comparisons have shown that the PM is generally more efficient
than the CWM and TRM for most possible parameter ranges. Additionally, he developed
Bayesian methods to analyze survey data gathered from the PM.

By using direct and indirect questions, Perri et al. [150] proposed a procedure to detect
the presence of liars in sensitive surveys that allows researchers to evaluate the impact
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of untruthful responses on the estimation of the prevalence of a sensitive attribute. They
first introduced the theoretical framework, then applied the proposal to the RR method of
Warner [25], the unrelated question model [40], the item count technique, the CWM, and
the TRM.

3.11.2. Statistical Methods for Non-Randomized Response Models

In 2009, Tian et al. [151] proposed the Bayesian NRR models for surveys including one
and two sensitive questions. They derived the exact posterior distributions and their explicit
posterior moments, as well as posterior modes via the EM algorithm. They also presented
an approach to generate independent and identically-distributed posterior samples for
the CWM and TRM, respectively. For the HSM, Tian et al. [144] presented the Bayesian
analysis under a conjugate Dirichlet prior as well as some other prior structures. In 2011,
Tian et al. [152] developed the formula for determining the sample size required for the non-
randomized TRM. This formula was designed to help researchers determine the optimal
sample size for a given survey design and level of desired precision.

In 2014, Tang et al. [93] considered a non-randomized TRM to test the equality of the
proportions of individuals with a sensitive feature between two independent populations.
They derived the Wald, score, and likelihood ratio (LR) tests. They also developed the
formulae for determining the sample size. In 2015, Groenitz [119] introduced Bayesian
estimation for the DM in [148]. In 2019, Tian et al. [153] developed hidden logistic regression
according to the non-randomized PM in Tian [149] to study the relationships between non-
sensitive covariates and a sensitive binary response variable. Groenitz [22] developed a
general approach for logistic regression analysis with direct data on the covariates and
indirect data on the sensitive variable that covers many NRRTs to generate the indirect data.
Groenitz [22] derived a general algorithm for the ML estimation and a general procedure
for variance estimation.

3.11.3. Real Data with Non-Randomized Response Models

Various applications of NRR designs have appeared in the literature. For instance,
Tian et al. [144] described how the non-randomized HSM can be utilized to assess the
association between “sex exchange for drugs or money” and “HIV status”. Tang et al. [147]
illustrated how their NRR method is used to estimate the distribution of the attribute,
“number of sex partners”, in the population of Korean adolescents. Tang et al. [93] applied
a TRM to conduct a simple questionnaire survey to test whether the proportions of college
students who had homosexual experience were equal for men and women. The equality
of the proportions of college students who had homosexual experience for males and
females were examined by the Wald, score, and LR tests. Hoffmann et al. [146] conducted
an experimental comparison of the CWM and TRM.

Hoffmann et al. [146] conducted a study on Xenophobia and opposition to reception of
refugees in Germany. In a paper-pencil survey of 1,382 students, they estimated prevalence
of the two sensitive features, xenophobia and rejection of further refugee admissions, and
one non-sensitive control trait with a known prevalence (the first letter of respondents’
surnames). They showed that NRRTs provide more valid prevalence estimates for socially
undesirable characteristics compared to conventional DQ. The CWM was particularly able
to successfully control for the influence of social desirability bias, and outperformed the
TRM, presumably because of the favorable influence of the response symmetry found in the
CWM but not the TRM. They also found that the sensitivity of two questions was contingent
on respondents’ political orientation, and that the CWM provided the most valid estimates
for respondents for whom these questions were most sensitive. According to these results,
they recommended the use of the CWM over the TRM or DQ for highly sensitive topics
in a survey’s target population. Recently, Chang et al. [2] and Lee et al. [55] studied the
experience of one-night stands among freshmen at Feng Chia University in Taiwan in 2016.
They used an NRR design via the concept of Warner’s RR model [25] and Christofides GRR
model [54], respectively. Groenitz [22] re-presented real data on the sales of gas stations in
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Germany with the sensitive characteristic sales (with categories low, medium and high) to
demonstrate the applicability of the developed general framework. Perri et al. [150] used
the CWM and the TM to collect the data and to investigate the problem of racism among
students at the University of Calabria, Italy, in 2016, and the phenomenon of workplace
mobbing. They showed the estimates for the prevalence of the sensitive attributes under
study and evaluated the impact of the liars on the reliability of the final results.

3.11.4. Some Extensions of the Non-Randomized Response Models

Extended crosswise model (ECRM): In the CRM, the sample is not split into multiple
groups. Heck et al. [154] introduced the ECRM, where respondents are randomly assigned
to two groups. The ECRM not only guarantees the same statistical efficiency as the CRM
but also can enable researchers to detect respondents’ non-compliance with instructions.

Dual NRR model and alternating NRR model: Wu and Tang [155] proposed the dual
NRRT and the alternating NRRT to actively account for deception in the TRM. In the former,
the sample is split into two groups, with two different non-sensitive questions. In the latter,
although the sample is also split into two groups, only one non-sensitive question is used.
Both the two methods have been argued to provide more accurate estimates than the TRM.

Cheating detection triangular model (CDTM): To improve upon the previous IQTs,
Meisters et al. [156] proposed the new CDTM. Similar to the cheating detection model
of Clark and Desharnais [157], it includes a mechanism for detecting instruction non-
adherence and, similar to the TRM, it utilizes simplified instructions to improve respon-
dents’ understanding of the procedure. Based on their results, the CDTM appears to be the
best choice among the investigated IQTs.

4. Conclusions

We have systematically reviewed the RRT-related works, from the pioneering work of
Warner (1965) [25] to the present, according to their respective aspects and to the best of our
knowledge. It includes several developments in RR designs as well as statistical methods
used in the problems of interest in this field. In each respect, instead of introducing all
related works, we re-introduced typical and pioneering works. A more complete view of
the evolution of the RRT can be found in the monographs listed in the References.
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Appendix A

Appendix A.1. Expectation and Variance of θ̂W in the Model of Warner [25]

Let λ denote the probability of answering “Yes”. Then, λ = P(Yes) = P(A)P(Yes|A) +
P(A)P(Yes|A) = θp + (1− θ)(1− p). Let n1 be the number of individuals responding
“Yes”. n1 then follows the binomial distribution with parameters n and λ. Its expectation
and variance are given by

E(n1) = n(θp + (1− θ)(1− p)),

Var(n1) = n(θp + (1− θ)(1− p))[1− (θp + (1− θ)(1− p))]

= n
(
−θ2(2p− 1)2 + θ(2p− 1)2 + p(1− p)

)
.
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θ̂W = p−1
2p−1 + n1

(2p−1)n is then an unbiased estimator of θ because

E(θ̂W) =
p− 1

2p− 1
+

E(n1)

(2p− 1)n

=
p− 1

2p− 1
+

n(θp + (1− θ)(1− p))
(2p− 1)n

=
p− 1

2p− 1
+

1− p + θ(2p− 1)
2p− 1

= θ.

Moreover, we can get

Var(θ̂W) =
Var(n1)

(2p− 1)2n2

=
n
(
−θ2(2p− 1)2 + θ(2p− 1)2 + p(1− p)

)
(2p− 1)2n2

=
−θ2(2p− 1)2 + θ(2p− 1)2 + p(1− p)

(2p− 1)2n

=
θ(1− θ)

n
+

1
4n

[
1

(2p− 1)2 − 1
]

=
θ(1− θ)

n
+

p(1− p)
n(2p− 1)2 .

Appendix A.2. Expectation and Variance of θ̂C in the Model of Christofides [54]

Now, each sampled person is provided with a randomization device that is used to
generate the integers 1, 2, . . . , L with probabilities P1, P2, . . . , PL, respectively. Using the
randomization device, the individual generates one of these L numbers and reports how
far the generated number is away from L + 1 if she/he had the sensitive characteristic or
from 0 otherwise.

Let Yi take on the value L + 1 if individual i had the sensitive characteristic and the
value 0 if not. Clearly P(Yi = L + 1) = θ and P(Yi = 0) = 1− θ. Let Ti be the integer
produced by individual i using the randomization device. The reported number is then
Di = |Yi − Ti| whose pmf is given by

P(Di = d) = (1− θ)Pd + θPL+1−d, d = 1, 2, . . . , L.

Direct calculation shows that

E(Di) =
L

∑
d=1

dP(Di = d)

=
L

∑
d=1

d[(1− θ)Pd + θPL+1−d]

=
L

∑
d=1

dPd + θ
L

∑
d=1

d(PL+1−d − Pd).

Because
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L

∑
d=1

d(PL+1−d − Pd) = (PL − P1) + 2(PL−1 − P2) + · · ·+ L(P1 − PL)

= (L− 1)P1 + (L− 3)P2 + (L− 5)P3 + · · ·+ (L− (2L− 1))PL

= (L + 1− 2)P1 + (L + 1− 4)P2 + (L + 1− 6)P3 + · · ·+ (L + 1− (2L))PL

= (L + 1)
L

∑
d=1

Pd − 2P1 − 4P2 − · · · − 2LPL

= (L + 1)× 1− 2(P1 + 2P2 + · · ·+ LPL)

= L + 1− 2
L

∑
d=1

dPd,

it can yield

E(Di) =
L

∑
d=1

dPd + θ

(
L + 1− 2

L

∑
d=1

dPd

)
= E(Ti) + θ(L + 1− 2E(Ti)).

Similarly, one can obtain

E(D2
i ) =

L

∑
d=1

d2P(Di = d)

=
L

∑
d=1

d2((1− θ)Pd + θPL+1−d)

=
L

∑
d=1

d2Pd + θ
L

∑
d=1

d2(PL+1−d − Pd).

We have

L

∑
d=1

d2(PL+1−d − Pd)

= (PL − P1) + 22(PL−1 − P2) + · · ·+ L2(P1 − PL)

= (L2 − 1)P1 + ((L− 1)2 − 22)P2 + ((L− 2)2 − 32)P3 + · · ·+ ((L− (L− 1))2 − L2)PL

= (L + 1)(L− 1)P1 + (L + 1)(L− 3)P2 + (L + 1)(L− 5)P3 + · · ·+ (L + 1)(L− (2L− 1))PL

= (L + 1)[(L− 1)P1 + (L− 3)P2 + (L− 5)P3 + · · ·+ (L− (2L− 1))PL]

= (L + 1)[(L + 1− 2)P1 + (L + 1− 4)P2 + (L + 1− 6)P3 + · · ·+ (L + 1− 2L)PL]

= (L + 1)

[
(L + 1)

L

∑
d=1

Pd − 2P1 − 4P2 − 6P3 − · · · − 2LPL

]

= (L + 1)

[
L + 1− 2

L

∑
d=1

dPd

]
.
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Thus,

E(D2
i ) =

L

∑
d=1

d2Pd + θ
L

∑
d=1

d2(PL+1−d − Pd)

=
L

∑
d=1

d2Pd + θ

{
(L + 1)

[
L + 1− 2

L

∑
d=1

dPd

]}
= E(T2

i ) + θ{(L + 1)[L + 1− 2E(Ti)]}.

Accordingly,

Var(Di)

= E(D2
i )− (E(Di))

2

= E(T2
i ) + θ{(L + 1)[L + 1− 2E(Ti)]} − {E(Ti) + θ[L + 1− 2E(Ti)]}2

= Var(Ti) + θ{(L + 1)[L + 1− 2E(Ti)]} − 2E(Ti)θ[L + 1− 2E(Ti)]− {θ[L + 1− 2E(Ti)]}2

= Var(Ti) + θ(1− θ)[L + 1− 2E(Ti)]
2.

Let D = 1
n ∑n

i=1 Di and define the estimator

θ̂C =
D− E(Ti)

L + 1− 2E(Ti)
,

provided that L + 1− 2E(Ti) 6= 0. Then,

E(θ̂C) =
E(D)− E(Ti)

L + 1− 2E(Ti)

=
E(Di)− E(Ti)

L + 1− 2E(Ti)

=
E(Ti) + θ[L + 1− 2E(Ti)]− E(Ti)

L + 1− 2E(Ti)

= θ,

and

Var(θ̂C) =
Var(D)

[L + 1− 2E(Ti)]2

=
Var(Di)

n[L + 1− 2E(Ti)]2

=
Var(Ti) + θ(1− θ)[L + 1− 2E(Ti)]

2

n[L + 1− 2E(Ti)]2

=
θ(1− θ)

n
+

Var(Ti)

n[L + 1− 2E(Ti)]2
.
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100. Mielecka-Kubień, Z.; Toniszewski, M. Estimation of illicit drug use among high school students in the Silesian voivodship
(Poland) with the use of the randomized response technique. Math. Popul. Stud. 2022, 29, 47–57. [CrossRef]

http://dx.doi.org/10.1002/bimj.202000395
http://dx.doi.org/10.1214/18-AOAS1139
http://dx.doi.org/10.1016/j.ecosta.2022.01.003
http://dx.doi.org/10.1080/01621459.1971.10482248
http://dx.doi.org/10.1016/S0378-3758(01)00137-9
http://doi.org/10.1080/01621459.1971.10482364
http://dx.doi.org/10.1080/01621459.1975.10480307
http://dx.doi.org/10.1016/j.sciaf.2023.e01584
http://dx.doi.org/10.2307/2060019
http://dx.doi.org/10.1080/01621459.1979.10481639
http://dx.doi.org/10.1016/j.csda.2009.01.011
http://dx.doi.org/10.1016/j.jspi.2009.09.020
http://dx.doi.org/10.1016/j.csda.2006.12.002
http://dx.doi.org/10.1016/j.ssresearch.2012.05.015
http://dx.doi.org/10.1002/ejsp.588
http://dx.doi.org/10.3233/MAS-150344
http://dx.doi.org/10.1177/1079063219825872
http://www.ncbi.nlm.nih.gov/pubmed/32138630
http://dx.doi.org/10.1080/03610926.2012.657323
http://dx.doi.org/10.1080/01621459.1988.10478686
http://dx.doi.org/10.1177/0049124120914950
http://dx.doi.org/10.1186/s12889-020-10109-5
http://dx.doi.org/10.1177/00491241211043138
http://dx.doi.org/10.1016/j.drugalcdep.2009.07.026
http://dx.doi.org/10.1186/s40798-022-00548-2
http://dx.doi.org/10.1080/08898480.2021.1893009


Mathematics 2023, 11, 1718 25 of 26

101. Liu, P.T.; Chow, L.P. A new discrete quantitative randomized response model. J. Am. Stat. Assoc. 1976, 71, 72–73. [CrossRef]
102. Burgstaller, L.; Feld, L.P.; Pfeil, K. Working in the shadow: Survey techniques for measuring and explaining undeclared work. J.

Econ. Behav. Organ. 2022, 200, 661–671. [CrossRef]
103. Bar-Lev, S.K.; Bobovich, E.; Boukai, B. A common conjugate prior structure for several randomized response models. Test 2003,

12, 101–113. [CrossRef]
104. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser.

B-Stat. Methodol. 1977, 39, 1–22.
105. Bourke, P.D.; Moran, M.A. Estimating proportions from randomized response data using the EM algorithm. J. Am. Stat. Assoc.

1988, 83, 964–968. [CrossRef]
106. Lee, S.M.; Tran, P.L.; Le, T.N.; Li, C.S. Prediction of a sensitive feature under indirect questioning via Warner’s randomized

response technique and latent class model. Mathematics 2023, 11, 345. [CrossRef]
107. van den Hout, A.; Kooiman, P. Estimating the linear regression model with categorical covariates subject to randomized response.

Comput. Stat. Data Anal. 2006, 50, 3311–3323. [CrossRef]
108. Nandram, B.; Yu, Y. Bayesian analysis of sparse counts obtained from the unrelated question design. Int. J. Stat. Probab. 2019, 8,

66–84. [CrossRef]
109. Hussain, Z.; Shabbir, J.; Riaz, M. Bayesian estimation using Warner’s randomized response model through simple and mixture

prior distributions. Commun. Stat.-Simul. Comput. 2011, 40, 147–164. [CrossRef]
110. Migon, H.S.; Tachibana, V.M. Bayesian approximations in randomized response model. Comput. Stat. Data Anal. 1997, 24,

401–409. [CrossRef]
111. Pitz, G.F. Bayesian analysis of random response models. Psychol. Bull. 1980, 87, 209–212. [CrossRef]
112. Fidler, D.S.; Kleinknecht, R.E. Randomized response versus direct questioning: Two data-collection methods for sensitive

information. Psychol. Bull. 1977, 84, 1045–1049. [CrossRef]
113. O’Hagan, A. Bayes linear estimators for randomized response models. J. Am. Stat. Assoc. 1987, 82, 580–585. [CrossRef]
114. Oh, M.S. Bayesian analysis of randomized response models: A Gibbs sampling approach. J. Korean Stat. Soc. 1994, 23, 463–482.
115. Unnikrishnan, N.K.; Kunte, S. Bayesian analysis for randomized response models. Sankhyā Indian J. Stat. (Ser. B) 1999, 61,
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