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Abstract: This paper recovers quiescent optical solitons that are self-sustaining, localized wave pack-
ets that maintain their shape and amplitude over long distances due to a balance between nonlinearity
and dispersion. When a soliton is in a state of quiescence, it means that it is stationary in both space
and time. Quiescent optical solitons are typically observed in optical fibers, where nonlinearity and
dispersion can lead to the formation of solitons. The concatenation model is considered to understand
the behavior of optical pulses propagating through nonlinear media. Here, we consider the familiar
nonlinear Schrödinger equation, the Lakshmanan–Porsezian–Daniel equation, and the Sasa–Satsuma
equation. The current paper also addresses the model with nonlinear chromatic dispersion, a phe-
nomenon that occurs in optical fibers and other dispersive media, where the chromatic dispersion
of the material is modified by nonlinear effects. In the presence of nonlinearities, such as self-phase
modulation and cross-phase modulation, the chromatic dispersion coefficient becomes a function of
the optical intensity, resulting in nonlinear chromatic dispersion. A full spectrum of stationary optical
solitons, along with straddled stationary solitons, are obtained. There are four integration schemes
that made this retrieval possible. The numerical simulations are also included for these solitons. The
parameter constraints also indicate the existence criteria for these quiescent solitons.

Keywords: concatenation; solitons; stationary

MSC: 78A60

1. Introduction

Optical solitons are self-sustaining, nonlinear waves that propagate in optical fibers
or other dispersive media. They are characterized by their ability to maintain their shape
and velocity over long distances, without spreading out or dissipating their energy, and
can be used for long-distance communication and information processing. To understand
optical solitons, it is important to first understand dispersion. In optics, dispersion refers
to the phenomenon where different frequencies of light travel at different speeds in a
medium. This causes the different frequencies to spread out and interfere with each
other, leading to distortion and loss of signal. Optical solitons arise when the effects of
dispersion are balanced by nonlinear effects, such as self-phase modulation, four-wave
mixing, and stimulated Raman scattering. These nonlinear effects cause the different
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frequencies of light to interact with each other, leading to the formation of a solitary wave
packet that can propagate over long distances without spreading out or dissipating its
energy. The shape of an optical soliton depends on the balance between the dispersion
and nonlinear effects. If the nonlinear effects are stronger than the dispersion, the soliton
is “self-compressed”, with a narrow, high-intensity peak. If the dispersion is stronger
than the nonlinear effects, the soliton is “self-expanded”, with a wider, lower-intensity
peak. One of the key features of optical solitons is their ability to “heal” after encountering
disturbances or perturbations. This is due to the soliton’s nonlinear properties, which allow
it to self-adjust and maintain its shape and velocity. As a result, optical solitons can be used
for long-distance communication and information processing in optical fiber networks.
There are different types of optical solitons, such as bright solitons, dark solitons, and
soliton trains. Bright solitons are characterized by a narrow, high-intensity peak, while
dark solitons have a narrow, low-intensity peak surrounded by a wider, higher-intensity
background. Soliton trains are a series of solitons that propagate together, separated by
small gaps.

Hasegawa and Tappert reported on an optical soliton burning bright fifty years after
its first appearance. There exists a wide variety of models that govern the study of such
solitons through diverse forms of waveguides. These models provide a mathematical
description of the behavior of optical solitons, which is important for understanding and
predicting their behavior in different types of nonlinear media. Almost a decade ago a new
model was proposed that is a concatenated version of the familiar nonlinear Schrödinger’s
equation (NLSE), Lakshmanan–Porsezian–Daniel (LPD) equation and the Sasa–Satsuma
equation (SSE). This is being referred to as the concatenation model [1,2], where the NLSE
is, perhaps, the most commonly used equation to describe the behavior of solitons in a wide
range of physical systems, including optical fibers. The LPD equation is a modification of
the NLSE that includes higher-order nonlinear effects. The SS equation is another modified
form of the NLSE that includes higher-order nonlinear effects. All of these equations are
important tools for understanding the behavior of optical solitons in nonlinear media.
By solving these equations, researchers can gain insights into the properties of solitons,
including their stability, interactions, and propagation characteristics.

The concatenation model was studied extensively in 2022 and a plethora of results
reported. These results included the recovery of single bright, dark and singular opti-
cal solitons using the following methods: undetermined coefficients, the conservation
laws, Painleve analysis, numerical simulation using the Laplace–Adomian decomposition
scheme, and further analytical studies to the model conducted using the trial equation
approach. A bright optical soliton is a self-trapped pulse with a positive amplitude that
maintains its shape and intensity while propagating through a nonlinear medium. Bright
solitons have a maximum in the center of the pulse and are created through the process
of soliton compression. A dark optical soliton is a self-trapped pulse with a negative
amplitude that maintains its shape and intensity while propagating through a nonlinear
medium. Dark solitons have a minimum in the center of the pulse and are created through
the process of soliton fission. Singular optical solitons are localized waves that are char-
acterized by a phase singularity or vortex. They can have either bright or dark intensity
profiles, depending on the sign of the singularity. Singular optical solitons are created
through the process of phase engineering, which involves shaping the phase profile of an
input beam to create a phase singularity.

Mobile straddled solitons with the concatenation model were also obtained by the
usage of a couple of integration schemes [2–8]. The current paper aimed to study and
recover the quiescent optical solitons for this concatenation model using four integration
schemes. This recovery is possible when chromatic dispersion (CD) is rendered to be
nonlinear. Mobile optical solitons are solitons that move through a medium without
changing their shape or amplitude. They maintain their stability and can propagate over
long distances without distortion. Bright optical solitons are typically mobile solitons, and
they are widely used in optical communications. Quiescent optical solitons are solitons
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that are stationary or nearly stationary. They are created by balancing the nonlinear effects
of the medium with the dispersion and losses of the system. When the nonlinear effects are
balanced, the soliton comes to rest, resulting in a quiescent soliton. Dark optical solitons
are typically quiescent solitons. Mobile solitons are particularly important for high-speed
data transmission, while quiescent solitons are useful for generating stable and localized
sources of light. The integration procedure and the analytical results for these stationary
solitons are exhibited, along with their respective numerical simulations. The parametric
restrictions for the existence of such solitons are also presented in the rest of the paper.

Governing Model

The concatenation model takes the form [1–8]:

iqt + a
(
|q|nq

)
xx + b|q|2q

+ c1

[
δ1qxxxx + δ2(qx)

2q∗ + δ3|qx|2q + δ4|q|2qxx + δ5q2q∗xx + δ6|q|4q
]

+ ic2

[
δ7qxxx + δ8|q|2qx + δ9q2q∗x

]
= 0. (1)

Taking c1 = 0 falls back (1) to the SSE, while assuming c1 = c2 = 0 reduces (1) to the
NLSE. Furthermore, taking c2 = 0 collapses (1) to the LPD model. The c1 and c2 arise from
the dispersion terms, while q = q(x, t) stems from the wave profile. The a comes from
the nonlinear CD, while the first term signifies the linear temporal evolution. The x and t
arise from the spatial and temporal variables in sequence, while b evolves from the Kerr
of nonlinearity. The first term on the left-hand side of the equation represents the rate of
change of the pulse envelope with respect to distance, while the second term represents
the effect of nonlinear chromatic dispersion, which causes different wavelengths of light to
propagate at different speeds. The third term represents the effect of nonlinear self-phase
modulation, which causes the phase of the pulse to vary with intensity.

Here, the NLSE is a well-known partial differential equation that describes the propa-
gation of nonlinear waves in a variety of physical systems, including optics, water waves,
and Bose–Einstein condensates. In optics, the NLSE is widely used to model the behavior
of ultrafast optical pulses in fiber optic communication systems. The LPD equation is a
modified version of the NLSE that includes higher-order nonlinear effects. It was pro-
posed by Lakshmanan, Porsezian, and Daniel in 1992 as a more accurate model for the
propagation of ultrafast optical pulses in fiber optic communication systems. The LPD
equation can be used to study a wide range of nonlinear optical phenomena, including
soliton propagation, pulse compression, and supercontinuum generation, and it provides a
more accurate model than the NLSE for systems with higher-order nonlinear effects. The
SSE is another nonlinear equation that is used to model the propagation of optical pulses
in dispersive and nonlinear media. It was proposed by Sasa and Satsuma in 1974 and is
a modification of the NLSE that includes higher-order nonlinear and dispersive effects.
The SSE can be used to study a variety of nonlinear optical phenomena, including soliton
propagation, pulse compression, and supercontinuum generation. In particular, the SSE
can predict the formation of higher-order solitons, which are self-sustaining wave packets
with more complex shapes than the fundamental solitons described by the NLSE. The
SSE can also predict the generation of frequency-shifted solitons, which can be used for
wavelength conversion and other applications in optical communications.

The stationary soliton profile is assumed to be

q(x, t) = U(kx)ei(ωt+θ), (2)

where θ stems from the phase constant and ω stems from the wave number. Plugging (2)
into (1) yields the real part

ak2n(n + 1)Un(U′)2
+ ak2(n + 1)U1+nU′′ + c1k2(δ2 + δ3)

(
U′)2U2
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+c1k2(δ4 + δ5)U3U′′ + c1δ1k4U(iv)U − ωU2 + bU4 + c1δ6U6 = 0, (3)

and the imaginary part

c2δ7U′′′Uk3 + c2k(δ8 + δ9)U3U′ = 0. (4)

For integrability, one requires
n = 2, (5)

δ7 = 0, (6)

and
δ8 + δ9 = 0. (7)

After implementing these, the governing Equation (1) modifies to:

iqt + a
(
|q|2q

)
xx

+ b|q|2q

+ c1

[
δ1qxxxx + δ2(qx)

2q∗ + δ3|qx|2q + δ4|q|2qxx + δ5q2q∗xx + δ6|q|4q
]
+ ic2

[
δ8|q|2qx + δ9q2q∗x

]
= 0. (8)

Then, Equation (3) reduces to:

c1δ1k4U(iv) +
[
3ak2 + c1k2(δ4 + δ5)

]
U2U′′ +

[
6ak2 + c1k2(δ2 + δ3)

]
U
(
U′)2 − ωU + bU3 + c1δ6U5 = 0. (9)

2. Review of Implemented Integration Algorithms

Consider the model equation

G(q, qx, qt, qxt, qxx, ...) = 0, (10)

where q = q(x, t) is the optoelectronic wave field, while x and t are spatial and temporal
variables.

Set the certain restrictions

q(x, t) = U(ξ), ξ = µ(x − vt), (11)

where v is the wave velocity, ξ is the wave variable and µ is the wave width. Thus, (10)
falls out as

P(U,−µυU′, µU′, µ2U′′, ...) = 0. (12)

2.1. Sine–Gordon Equation Scheme

Step–1 : The theoretical model (12) permits the solution form [9]

U(ξ) =
N

∑
i=1

cosi−1(F(ξ))[Bi sin(F(ξ)) + Ci cos(F(ξ))] + C0, (13)

along with the auxiliary equation

F′(ξ) = sin(F(ξ)), (14)

which holds the soliton wave structures

sin(F(ξ)) = sech(ξ) or sin(F(ξ)) = icsch(ξ), (15)

and
cos(F(ξ)) = tanh(ξ) or cos(F(ξ)) = coth(ξ), (16)



Mathematics 2023, 11, 1709 5 of 25

where C0, Ci and Bi (i = 0, 1, · · · , N) are constants, while N comes from the balancing
algorithm in (12).

Step–2: Substituting (13), along with (14), into (12), we obtain a polynomial expression
in terms of cos(F(ξ)) and sin(F(ξ)). We then collect all terms with the same powers and
set them equal to zero, resulting in an over-determined system of algebraic equations.
This system can be solved using software such as Maple or Mathematica to obtain the
unknown parameters. Once these parameters are found, we substitute them, along with
Equations (15) and (16), back into Equation (13) to obtain the nonlinear wave profiles.

2.2. F–Expansion Procedure

Step–1: The simplified model (12) satisfies the solution structure [10]

U(ξ) =
N

∑
i=0

BiFi(ξ), (17)

with the aid of the ancillary equation

F′(ξ) =
√

PF4(ξ) + QF2(ξ) + R, (18)

which leaves us with the soliton wave profiles

F(ξ) = sn(ξ) = tanh(ξ), P = m2, Q = −(1 + m2), R = 1, m → 1−, (19)

F(ξ) = ns(ξ) = coth(ξ), P = 1, Q = −(1 + m2), R = m2, m → 1−, (20)

F(ξ) = cn(ξ) = sech(ξ), P = −m2, Q = 2m2 − 1, R = 1 − m2, m → 1−, (21)

F(ξ) = ds(ξ) = csch(ξ), P = 1, Q = 2m2 − 1, R = −m2
(

1 − m2
)

, m → 1−, (22)

F(ξ) = ns(ξ)± ds(ξ) = coth(ξ)± csch(ξ), P =
1
4

, Q =
m2 − 2

2
, R =

m2

4
, m → 1−, (23)

and

F(ξ) = sn(ξ)± icn(ξ) = tanh(ξ)± isech(ξ), P =
m2

4
, Q =

m2 − 2
2

, R =
m2

4
, m → 1−, (24)

where sn(ξ), ns(ξ), cn(ξ) and ds(ξ) are the Jacobi’s elliptic functions (JEFs), while 0 < m <
1 is the modulus of the JEFs. Bi (i = 0, 1, · · · , N) are constants, while N stems from the
balancing approach in (12).

Step–2: Inserting (17), together with (18), into (12), we obtain a polynomial in F(ξ).
We then group terms of the same powers and set each group equal to zero. This results in an
over-determined system of algebraic equations, which can be solved using software such
as Maple or Mathematica. Solving these equations yields the values of the unknown pa-
rameters. Substituting these parameters, along with Equations (19)–(24), into Equation (17)
gives us the optoelectronic wave fields.

2.3. Riccati Equation Method

Step–1: The theoretical model (12) permits the solution form [11]

U(ξ) =
N

∑
i=0

AiVi(ξ), (25)

along with the auxiliary equation

V′(ξ) = S2V2(ξ) + S1V(ξ) + S0, S2 ̸= 0, (26)
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which holds the soliton wave structures

V(ξ) = − S1

2S2
−

√
ρ

2S2
tanh

(√
ρ

2
ξ + ξ0

)
, ρ > 0, (27)

and

V(ξ) = − S1

2S2
−

√
ρ

2S2
coth

(√
ρ

2
ξ + ξ0

)
, ρ > 0, (28)

where S0, S1, S2 and ξ0 are constants and ρ = S2
1 − 4S0S2, while N comes from the balancing

algorithm in (12).
Step–2: Plugging (25), along with (26), into (12), we obtain a polynomial expression in

terms of V(ξ). We then collect all terms with the same powers and set them equal to zero,
resulting in an over-determined system of algebraic equations. This system can be solved
using software such as Maple or Mathematica to obtain the unknown parameters. Once
these parameters are found, we substitute them, along with Equations (27) and (28), back
into Equation (25) to obtain the nonlinear waveforms.

2.4. Extended Jacobi’s Elliptic Function Expansion

Step–1: The simplified model (12) satisfies the solution structure [12]

U(ξ) =
N

∑
i=0

Aisni(ξ) +
N

∑
i=1

Bisn−i(ξ), (29)

with the aid of the ancillary equations

cn2(ξ) = 1 − sn2(ξ), (30)

dn2(ξ) = 1 − l2sn2(ξ), (31)

d
dξ

sn(ξ) = cn(ξ)dn(ξ), (32)

d
dξ

cn(ξ) = −sn(ξ)dn(ξ), (33)

and
d

dξ
dn(ξ) = −l2sn(ξ)cn(ξ), (34)

which leaves us with the soliton wave profiles

sn(ξ) = tanh(ξ), l → 1−, (35)

and
sn−1(ξ) = coth(ξ), l → 1−, (36)

where sn(ξ), cn(ξ) and dn(ξ) are the JEFs, while 0 < l < 1 is the modulus of the JEFs. Ai
and Bi (i = 0, 1, · · · , N) are constants, while N stems from the balancing approach in (12).

Step–2: Putting (29), together with (30)–(34), into (12), we obtain a polynomial in
sn(ξ), cn(ξ) and dn(ξ). We then group terms of the same powers and set each group
equal to zero. This results in an over-determined system of algebraic equations, which
can be solved using software such as Maple or Mathematica. Solving these equations
yields the values of the unknown parameters. Substituting these parameters, along with
Equations (35) and (36), into Equation (29) gives us the soliton wave profiles.

3. Quiescent Optical Solitons

Quiescent optical solitons are a type of soliton that arise in nonlinear optical systems
with competing nonlinearities. Unlike traditional optical solitons, which propagate at a
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constant velocity and maintain their shape over long distances, quiescent optical solitons
are stationary and have a nontrivial shape. Quiescent solitons have been observed experi-
mentally in a variety of nonlinear optical systems, including optical fibers, photonic lattices,
and waveguide arrays. They have also been studied theoretically using models such as the
nonlinear Schrödinger equation with competing nonlinearities and the Gross–Pitaevskii
equation for Bose–Einstein condensates. Quiescent solitons have unique properties com-
pared to traditional solitons. A quiescent soliton has a broader spectrum, and a shape that
is less robust to perturbations due to having lower intensity in the central region. However,
they have been shown to have advantages in applications, such as pulse compression and
optical switching. Quiescent optical solitons can be classified into several types based
on their properties, for which we offer brief descriptions of some of the types. Quiescent
optical bright solitons have a localized peak in the intensity of the optical pulse. They are
characterized by a central region of high intensity surrounded by lower intensity regions.
Quiescent optical dark solitons have a localized dip in the intensity of the optical pulse.
They are characterized by a central region of low intensity surrounded by higher intensity
regions. Quiescent optical singular solitons have a sharp point or cusp in the intensity
profile. They are sometimes referred to as “kinks” or “peaks”. Quiescent optical straddled
solitons have two peaks separated by a dip in the intensity profile. They are characterized
by a central region of low intensity surrounded by two regions of high intensity.

In this section, the four integration strategies are implemented to secure quiescent
optical solitons for the model. To this end, balancing the terms U(iv) with U5 in (9) yields
N = 1. The procedures are organized in the coming subsections.

3.1. Sine–Gordon Equation Method

In this integration tool, the formal solution structure (13) condenses to

U(ξ) = B1 sin(F(ξ)) + C1 cos(F(ξ)) + C0. (37)

Inserting (37), along with (14), into (9), the auxiliary equations are enlisted as:

bB1
3 − ω B1 + k2B1C1

2c1δ2 + k2B1C1
2c1δ3 − k2B1

3c1δ4 − k2B1
3c1δ5

+5 k4B1c1δ1 + 6 ak2B1C1
2 − 3 ak2B1

3 + B1
5c1δ6 = 0, (38)

−ω C1 − 4 k2B1
2C1c1δ4 − 4 k2B1

2C1c1δ5 − 2 k2B1
2C1c1δ3 − 2 k2B1

2C1c1δ2 − 24 ak2B1
2C1

+16 c1δ1k4C1 + 5 B1
4C1c1δ6 + k2C1

3c1δ2 + k2C1
3c1δ3 + 6 ak2C1

3 + 3 bB1
2C1 = 0, (39)

−2 k2B1
3c1δ4 − 2 k2B1

3c1δ5 − 10 B1
3C1

2c1δ6 + 5 B1C1
4c1δ6 − k2B1

3c1δ2

−k2B1
3c1δ3 + 24 k4B1c1δ1 + 36 ak2B1C1

2 + B1
5c1δ6 − 12 ak2B1

3 + 3 k2B1C1
2c1δ2

+6 k2B1C1
2c1δ4 + 6 k2B1C1

2c1δ5 + 3 k2B1C1
2c1δ3 = 0, (40)

−10 B1
2C1

3c1δ6 + 5 B1
4C1c1δ6 + C1

5c1δ6 − 3 k2B1
2C1c1δ2 − 3 k2B1

2C1c1δ3

−6 k2B1
2C1c1δ4 − 6 k2B1

2C1c1δ5 + 24 c1δ1k4C1 + 2 k2C1
3c1δ4 + 2 k2C1

3c1δ5

−36 ak2B1
2C1 + k2C1

3c1δ2 + k2C1
3c1δ3 + 12 ak2C1

3 = 0, (41)
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bC1
3 + 5 k2B1

2C1c1δ2 + 5 k2B1
2C1c1δ3 + 10 k2B1

2C1c1δ4 + 10 k2B1
2C1c1δ5

−10 B1
4C1c1δ6 + 10 B1

2C1
3c1δ6 + 60 ak2B1

2C1 − 2 k2C1
3c1δ2 − 2 k2C1

3c1δ3

−40 c1δ1k4C1 − 2 k2C1
3c1δ4 − 2 k2C1

3c1δ5 − 3 bB1
2C1 − 18 ak2C1

3 = 0, (42)

10 B1
3C1

2c1δ6 + k2B1
3c1δ2 + k2B1

3c1δ3 − 28 k4B1c1δ1 + 3 k2B1
3c1δ4

+3 k2B1
3c1δ5 − 39 ak2B1C1

2 + 3 bB1C1
2 − 2 B1

5c1δ6 + 15 ak2B1
3 − 4 k2B1C1

2c1δ3

−4 k2B1C1
2c1δ2 − 5 k2B1C1

2c1δ4 − 5 k2B1C1
2c1δ5 − bB1

3 = 0. (43)

On solving these equations, one retrieves the following results:

Result–1:

δ6 =

(
2k2c1δ2 + 2k2c1δ3 + 2k2c1δ4 + 2k2c1δ5 + 18ak2 − b

)(
−k2c1δ2 − k2c1δ3 + 4k2c1δ4 + 4k2c1δ5 + 6ak2 + 3b

)
200k4c1

2δ1
,

ω =
8δ1c1

(
−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 2 b

)
k4

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
,

C0 = 0, B1 = 0, C1 = ±2k2

√
− 10δ1c1

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
. (44)

Inserting (44), along with (16) into (37), the quiescent dark and singular optical solitons are
presented as indicated below:

q(x, t) = ±2k2

√
− 10δ1c1

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
tanh(kx)

×e
i

8δ1c1
(
−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 2 b

)
k4

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
t+θ


, (45)

and

q(x, t) = ±2k2

√
− 10δ1c1

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
coth(kx)

×e
i

8δ1c1
(
−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 2 b

)
k4

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
t+θ


, (46)

where
δ1c1

(
2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b

)
< 0. (47)

The optoelectronic wave field (45) is depicted in Figure 1. The parameter values
chosen were: k = 1, c1 = 1, δ2 = 1, δ3 = 1, δ4 = 1, δ5 = 1, a = 1, b = 1 and δ1 = −1.
Figure 1 shows a localized dip, or trough, in intensity at the center of the wave pattern. The
surrounding wave pattern is characterized by an increase in intensity towards the edges,
creating a ring-like, or circular, shape around the dark spot. The dark spot appears as a
self-contained entity, maintaining its shape and size as it propagates through the medium.
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x

q(x)2

Figure 1. Profile of quiescent dark optical soliton in polarization controlled fibers.

Result–2:

ω = k4c1δ1, B1 = ±2k2

√
5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 + b
, C1 = 0, C0 = 0,

3 δ4
6 B1

4c1 +
(

k2c1δ2 + k2c1δ3 − 2 k2c1δ4 − 2 k2c1δ5 + 4 b
)

B1
2 − 8 k4c1δ1 = 0. (48)

Inserting (48), along with (15), into (37), the bright soliton wave is recovered as:

q(x, t) = ±2

√
5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 + b
sech(kx)ei(k4c1δ1t+θ), (49)

with the parameter constraints

δ1c1

(
k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 + b

)
> 0. (50)

The singular nonlinear wave profile is also defined as

q(x, t) = ±2

√
− 5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 + b
csch(kx)ei(k4c1δ1t+θ), (51)

with the parameters criteria

δ1c1

(
k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 + b

)
< 0. (52)

The optical nonlinear waveform (49) is portrayed in Figure 2. The parameter values
chosen were: k = 1, c1 = 1, δ2 = 1, δ3 = 1, δ4 = 1, δ5 = 1, a = 1, b = 1 and δ1 = 1.
Figure 2 typically shows a localized bright spot, or peak, in the center of the wave pattern.
The surrounding wave pattern is characterized by a decay in intensity towards the edges,
creating a ring-like, or circular, shape around the bright spot. The bright spot appears as a
self-contained entity, maintaining its shape and size as it propagates through the medium.
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-2 -1 1 2
x

1.0

q(x)2

Figure 2. Profile of quiescent bright optical soliton in polarization controlled fibers.

Result–3:

k = ±2
5

√
− 5b

c1δ4 + c1δ5 + 3 a
, ω = − 176 b2c1δ1

225 (c1δ4 + c1δ5 + 3 a)2 ,

B1 = ±2
3

√
−22 bc1δ1

c1δ4 + c1δ5 + 3 a
, C1 = ±2

3

√
−2 bc1δ1

c1δ4 + c1δ5 + 3 a
, C0 = 0,

δ2 = − c1δ3 − c1δ4 − c1δ5 + 3 a
c1

, δ6 =
27 (c1δ4 + c1δ5 + 3 a)2

200 c1
2δ1

. (53)

Substituting (53), along with (15) and (16), into (37), the straddled quiescent bright–singular
and bright–dark soliton profiles are extracted as

q(x, t) =


±2

3

√
−22 bc1δ1

c1δ4 + c1δ5 + 3 a
sech

(
±2

5

√
− 5b

c1δ4 + c1δ5 + 3 a
x
)

±2
3

√
−2 bc1δ1

c1δ4 + c1δ5 + 3 a
coth

(
±2

5

√
− 5b

c1δ4 + c1δ5 + 3 a
x
)


×e
i

−
176 b2c1δ1

225 (c1δ4 + c1δ5 + 3 a)2 t+θ


, (54)

and

q(x, t) =


±2

3

√
−22 bc1δ1

c1δ4 + c1δ5 + 3 a
sech

(
±2

5

√
− 5b

c1δ4 + c1δ5 + 3 a
x
)

±2
3

√
−2 bc1δ1

c1δ4 + c1δ5 + 3 a
tanh

(
±2

5

√
− 5b

c1δ4 + c1δ5 + 3 a
x
)


×e
i

−
176 b2c1δ1

225 (c1δ4 + c1δ5 + 3 a)2 t+θ


, (55)

with the specific restrictions
bc1δ1 < 0, (56)

and
b(c1δ4 + c1δ5 + 3 a) > 0. (57)
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The optical soliton profile (55) is shown in Figure 3. The parameter values chosen were:
c1 = 1, δ4 = 1, δ5 = 1, a = 1, b = −1 and δ1 = 1. Figure 3 shows a localized bright
spot flanked by dark troughs on either side. The bright spot propagates through the
medium while the dark troughs move at the same speed in the opposite direction. The
interaction between the bright and dark regions creates a stable, self-sustaining wave, that
can propagate over long distances without changing its shape.

-2 -1 1 2
x

1.25

q(x)2

Figure 3. Profile of straddled quiescent bright–dark soliton profile in polarization controlled fibers.

Result–4:

δ6 =

(
−k2c1δ2 − k2c1δ3 + 4k2c1δ4 + 4k2c1δ5 + 6ak2 + 12b

)(
k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9ak2 − 2b

)
100k4c1

2δ1
,

ω =
δ1c1

(
−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 8 b

)
k4

4(k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b)
,

B1 = ±ik2

√
− 5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b
, C0 = 0,

C1 = ±k2

√
− 5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b
. (58)

Plugging (58), together with (15) and (16), into (37), the dark–singular straddled and
singular–singular straddled quiescent solitons are respectively structured as

q(x, t) =


±k2

√
− 5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b
csch(kx)

±k2
√
− 5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b
tanh(kx)


×e

i

 δ1c1
(
−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 8 b

)
k4

4(k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b)
t+θ


, (59)

and
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q(x, t) =


±k2

√
− 5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b
csch(kx)

±k2
√
− 5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b
coth(kx)


×e

i

 δ1c1
(
−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 8 b

)
k4

4(k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b)
t+θ


, (60)

with the parameter conditions

δ1c1

(
k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b

)
< 0. (61)

3.2. F–Expansion Approach

In this integration mechanism, the solution structure (17) simplifies to

U(ξ) = B0 + B1F(ξ). (62)

Inserting (62), together with (18), into (9) leaves us with the simplest equations:

B0
5c1δ6 + k2B1

2RB0c1δ3 + k2B1
2RB0c1δ2 + 6 k2B1

2RaB0 − ω B0 + bB0
3 = 0, (63)

5 B0B1
4c1δ6 + 4 k2B1

2PB0c1δ4 + 4 k2B1
2PB0c1δ5

+k2B1
2PB0c1δ3 + k2B1

2PB0c1δ2 + 18 k2B1
2PaB0 = 0, (64)

12 k2B1
3Pa + B1

5c1δ6 + k2B1
3Pc1δ3 + k2B1

3Pc1δ2

+24 c1δ1k4B1P2 + 2 k2B1
3Pc1δ4 + 2 k2B1

3Pc1δ5 = 0, (65)

9 k2B1
3Qa + 10 B0

2B1
3c1δ6 + 20 c1δ1k4B1PQ + 2 k2B1PB0

2c1δ4 + 2 k2B1PB0
2c1δ5

+k2B1
3Qc1δ3 + k2B1

3Qc1δ2 + k2B1
3Qc1δ4 + k2B1

3Qc1δ5 + 6 k2B1PaB0
2 + bB1

3 = 0, (66)

6 k2B1
3Ra + 5 B0

4B1c1δ6 + 3 bB0
2B1 + k2B1QB0

2c1δ4 + k2B1QB0
2c1δ5 + 12 PRk4B1c1δ1

+k2B1
3Rc1δ2 + c1δ1k4B1Q2 + 3 k2B1QaB0

2 + k2B1
3Rc1δ3 − ω B1 = 0, (67)

k2B1
2QB0c1δ2 + k2B1

2QB0c1δ3 + 2 k2B1
2QB0c1δ4 + 2 k2B1

2QB0c1δ5

+12 k2B1
2QaB0 + 10 B0

3B1
2c1δ6 + 3 bB0B1

2 = 0. (68)

On solving these equations, one arrives at the following cases:

Case–1:

ω = −
c1δ1k4

(
8 PQRk2c1δ2 + 8 PQRk2c1δ3 − 12 PQRk2c1δ4 − 12 PQRk2c1δ5 − Q3k2c1δ2
−Q3k2c1δ3 − Q3k2c1δ4 − Q3k2c1δ5 + 12 PQRak2 − 9 Q3ak2 − 12 PRb − Q2b

)
Qk2c1δ2 + Qk2c1δ3 + Qk2c1δ4 + Qk2c1δ5 + 9 Qk2a + b

,

B0 = 0, B1 = ±2k2

√
− 5QPc1δ1

Qk2c1δ2 + Qk2c1δ3 + Qk2c1δ4 + Qk2c1δ5 + 9 Qk2a + b
,
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δ6 =
1

100 k4c1
2δ1Q2



−Q2k4c1
2δ2

2 − 2 Q2k4c1
2δ2δ3 + 3 Q2k4c1

2δ2δ4
+3 Q2k4c1

2δ2δ5 − Q2k4c1
2δ3

2 + 3 Q2k4c1
2δ3δ4

+3 Q2k4c1
2δ3δ5 + 4 Q2k4c1

2δ4
2 + 8 Q2k4c1

2δ4δ5
+4 Q2k4c1

2δ5
2 − 3 Q2ak4c1δ2 − 3 Q2ak4c1δ3

+42 Q2ak4c1δ4 + 42 Q2ak4c1δ5 + 54 Q2a2k4

−7 Qbk2c1δ2 − 7 Qbk2c1δ3 − 2 Qbk2c1δ4
−2 Qbk2c1δ5 − 48 Qabk2 − 6 b2


. (69)

Result–1: Plugging (69), with the aid of (19) and (20), into (62), quiescent dark and singular
optical solitons emerge, respectively, as

q(x, t) = ±2k2

√
− 10δ1c1

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
tanh(kx)

×e
i

8c1δ1
(
−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 2 b

)
k4

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
t+θ


, (70)

and

q(x, t) = ±2k2

√
− 10δ1c1

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
coth(kx)

×e
i

8c1δ1
(
−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 2 b

)
k4

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
t+θ


, (71)

where
δ1c1

(
2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b

)
< 0. (72)

Result–2: Inserting, (69) with the usage of (21) and (22), into (62), the quiescent bright
soliton is recovered:

q(x, t) = ±2k2

√
5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 + b
sech(kx)ei(k4δ1c1t+θ), (73)

where
δ1c1

(
k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 + b

)
> 0. (74)

The quiescent singular optical soliton is also presented as given below:

q(x, t) = ±2k2

√
− 5δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 + b
csch(kx)ei(k4δ1c1t+θ), (75)

where
δ1c1

(
k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 + b

)
< 0. (76)

Result–3: Plugging (69), together with (23), into (62), quiescent straddled singular–singular
soliton is structured as
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q(x, t) =


± k2

4

√
− 80δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b
coth(kx)

± k2

4

√
− 80δ1c1

k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b
csch(kx)


×e

i

 c1δ1
(
−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 8 b

)
k4

4k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b
t+θ


, (77)

where
δ1c1

(
k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − 2 b

)
< 0. (78)

Case–2:

R = −24 P2B0
4 + 20 PQB0

2B1
2 + Q2B1

4

12PB1
4 ,

b =
k2
(

6 P2B0
4 − PQB0

2B1
2 + Q2B1

4
)
(c1δ4 + c1δ5 + 3 a)

6PB0
2B1

2 ,

ω =
k2
(

2 PB0
2 + QB1

2
)(

342 P2B0
4 + 135 PQB0

2B1
2 + 5 Q2B1

4
)
(c1δ4 + c1δ5 + 3 a)

120 B1
2P2B0

2 ,

δ1 =
B1

2(c1δ4 + c1δ5 + 3 a)
(

2 PB0
2 + QB1

2
)

60 P2B0
2k2c1

,

δ2 = −2 PB0
2c1δ3 + 5 PB0

2c1δ4 + 5 PB0
2c1δ5 + QB1

2c1δ4 + QB1
2c1δ5 + 27 PaB0

2 + 3 QaB1
2

2PB0
2c1

,

δ6 = −
k2(c1δ4 + c1δ5 + 3 a)

(
3 PB0

2 − QB1
2
)

10B0
2B1

2c1
. (79)

Result–1: Substituting (79), with the help of (19) and (20), into (62), quiescent singular and
dark optical solitons are indicated below

q(x, t) =

{
± 2

√
−5 bc1δ1

c1δ4 + c1δ5 + 3 a
±

√
−30 bc1δ1

c1δ4 + c1δ5 + 3 a
coth

(√
b

2 c1δ4 + 2 c1δ5 + 6 a
x

)}

×e
i

−
b2c1δ1t

(c1δ4 + c1δ5 + 3 a)2 t+θ


, (80)

and

q(x, t) =

{
± 2

√
−5 bc1δ1

c1δ4 + c1δ5 + 3 a
±

√
−30 bc1δ1

c1δ4 + c1δ5 + 3 a
tanh

(√
b

2 c1δ4 + 2 c1δ5 + 6 a
x

)}

×e
i

−
b2c1δ1t

(c1δ4 + c1δ5 + 3 a)2 t+θ


, (81)

respectively, where
bc1δ1 < 0, (82)

and
b(2 c1δ4 + 2 c1δ5 + 6 a) > 0. (83)
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Result–2: Inserting (79), with the usage of (23), into (62), the quiescent singular–singular
straddled optical soliton is recovered as

q(x, t) =



± 2
√
−5 bc1δ1

c1δ4 + c1δ5 + 3 a

±
√
−30 bc1δ1

c1δ4 + c1δ5 + 3 a
coth

(√
2b

c1δ4 + c1δ5 + 3 a
x
)

±
√
−30 bc1δ1

c1δ4 + c1δ5 + 3 a
csch

(√
2b

c1δ4 + c1δ5 + 3 a
x
)


×e

i

−
b2c1δ1t

(c1δ4 + c1δ5 + 3 a)2 t+θ


, (84)

where
bc1δ1 < 0, (85)

and
b(c1δ4 + c1δ5 + 3 a) > 0. (86)

Result–3: Inserting (79), with the usage of (21) and (22), into (62), the quiescent singular
optical soliton is recovered as

q(x, t) =

B0 ± B1csch

B1B0

√√√√− 10δ6c1(
3 B0

2 − B1
2
)
(c1δ4 + c1δ5 + 3 a)

x




×e

i

−

(
2 B0

2 + B1
2
)(

342 B0
4 + 135 B0

2B1
2 + 5 B1

4
)

δ6c1

12
(

3 B0
2 − B1

2
) t+θ


, (87)

where
δ6c1(c1δ4 + c1δ5 + 3 a) < 0. (88)

The quiescent bright optical soliton is also presented as below

q(x, t) =

B0 ± B1sech

B1B0

√√√√ 10δ6c1(
3 B0

2 + B1
2
)
(c1δ4 + c1δ5 + 3 a)

x




×e

i

−

(
2 B0

2 − B1
2
)(

342 B0
4 − 135 B0

2B1
2 + 5 B1

4
)

δ6c1

12
(

3 B0
2 + B1

2
) t+θ


, (89)

where
δ6c1(c1δ4 + c1δ5 + 3 a) > 0. (90)

3.3. Riccati Equation Method

In this integration tool, the formal solution structure (25) condenses to

U(ξ) = A0 + A1V(ξ). (91)

Putting (91), along with (26), into (9), the auxiliary equations are enlisted as

24 c1δ1k4 A1S2
4 + 2 A1

3c1k2δ4S2
2 + 2 A1

3c1k2δ5S2
2

+A1
3c1k2δ2S2

2 + 12 A1
3ak2S2

2 + c1δ6 A1
5 + A1

3c1k2δ3S2
2 = 0, (92)
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c1δ1k4 A1S1
3S0 + 3 A1 A0

2ak2S1S0 + 8 c1δ1k4 A1S2S1S0
2 + A1 A0

2c1k2δ4S1S0 + A1 A0
2c1k2δ5S1S0

+bA0
3 − ω A0 + 6 A1

2 A0ak2S0
2 + c1δ6 A0

5 + A1
2 A0c1k2δ2S0

2 + A1
2 A0c1k2δ3S0

2 = 0, (93)

18 A0 A1
2ak2S2

2 + 21 A1
3ak2S2S1 + 60 c1δ1k4 A1S2

3S1 + 4 A0 A1
2c1k2δ4S2

2

+4 A0 A1
2c1k2δ5S2

2 + 3 A1
3c1k2δ4S2S1 + 3 A1

3c1k2δ5S2S1 + 5 c1δ6 A0 A1
4

+A1
2 A0c1k2δ2S2

2 + A1
2 A0c1k2δ3S2

2 + 2 A1
3c1k2δ2S2S1 + 2 A1

3c1k2δ3S2S1 = 0, (94)

c1δ1k4 A1S1
4 + 3 A1 A0

2ak2S1
2 + A1

3c1k2δ2S0
2 + 16 c1δ1k4 A1S2

2S0
2

+A1 A0
2c1k2δ4S1

2 + A1 A0
2c1k2δ5S1

2 + 6 A1 A0
2ak2S2S0 + 18 A0 A1

2ak2S1S0

+6 A1
3ak2S0

2 + 5 c1δ6 A0
4 A1 + 22 c1δ1k4 A1S2S1

2S0 + 2 A1 A0
2c1k2δ4S2S0

+2 A1 A0
2c1k2δ5S2S0 + 2 A0 A1

2c1k2δ4S1S0 + 2 A0 A1
2c1k2δ5S1S0

+2 A1
2 A0c1k2δ2S1S0 + 2 A1

2 A0c1k2δ3S1S0 + 3 bA0
2 A1 − ω A1 + A1

3c1k2δ3S0
2 = 0, (95)

12 A0 A1
2ak2S1

2 + 15 A1
3ak2S1S0 + 15 c1δ1k4 A1S2S1

3 + 9 A1 A0
2ak2S2S1 + 2 A0 A1

2c1k2δ4S1
2

+2 A0 A1
2c1k2δ5S1

2 + 24 A0 A1
2ak2S2S0 + A1

3c1k2δ4S1S0 + 10 c1δ6 A0
3 A1

2 + 60 c1δ1k4 A1S2
2S1S0

+3 A1 A0
2c1k2δ4S2S1 + 3 A1 A0

2c1k2δ5S2S1 + 4 A0 A1
2c1k2δ4S2S0 + 4 A0 A1

2c1k2δ5S2S0

+2 A1
2 A0c1k2δ2S2S0 + 2 A1

2 A0c1k2δ3S2S0 + 3 bA0 A1
2 + A1

3c1k2δ5S1S0

+A1
2 A0c1k2δ2S1

2 + A1
2 A0c1k2δ3S1

2 + 2 A1
3c1k2δ2S1S0 + 2 A1

3c1k2δ3S1S0 = 0, (96)

A1
3c1k2δ4S1

2 + A1
3c1k2δ5S1

2 + 18 A1
3ak2S2S0 + 6 A1 A0

2ak2S2
2 + A1

3c1k2δ2S1
2

+40 c1δ1k4 A1S2
3S0 + 50 c1δ1k4 A1S2

2S1
2 + 2 A1 A0

2c1k2δ4S2
2 + 2 A1 A0

2c1k2δ5S2
2

+30 A0 A1
2ak2S2S1 + 2 A1

3c1k2δ4S2S0 + 2 A1
3c1k2δ5S2S0 + 9 A1

3ak2S1
2 + 10 c1δ6 A0

2 A1
3

+6 A0 A1
2c1k2δ4S2S1 + 6 A0 A1

2c1k2δ5S2S1 + 2 A1
2 A0c1k2δ2S2S1 + 2 A1

2 A0c1k2δ3S2S1 + bA1
3

+2 A1
3c1k2δ2S2S0 + 2 A1

3c1k2δ3S2S0 + A1
3c1k2δ3S1

2 = 0. (97)

On solving these equations, one retrieves the upcoming results:

Result–1:

b =

2k2S2

 A0
2 A1

2S2c1δ4 + A0
2 A1

2S2c1δ5 − 9 aS0 A1
4 + 9 aA0

2 A1
2S2

+A0
2 A1

2S2c1δ2 + 20 k2 A0
2S2

3c1δ1 − 20 c1δ1k2S0 A1
2S2

2

−c1δ4S0 A1
4 − c1δ5S0 A1

4 + A0
2 A1

2S2c1δ3 − A1
4c1δ2S0 − A1

4c1δ3S0


A1

4 ,

ω =

k2


16 c1δ1k2 A0

4S2
4 + 6 A0

4aS2
2 A1

2 + A1
6c1δ2S0

2

+A1
6c1δ3S0

2 + A0
4S2

2 A1
2c1δ2 + A0

4S2
2 A1

2c1δ3 + 6 A1
6aS0

2

−12 A0
2aS2S0 A1

4 + 16 c1δ1k2S2
2S0

2 A1
4 − 32 c1δ1k2S2

3 A0
2S0 A1

2

−2 A0
2c1δ2S2S0 A1

4 − 2 A0
2c1δ3S2S0 A1

4


A1

4 ,

S1 =
2A0S2

A1
, δ6 = −

k2S2
2
(

24 k2S2
2c1δ1 + A1

2c1δ2 + A1
2c1δ3

+2 A1
2c1δ4 + 2 A1

2c1δ5 + 12 aA1
2

)
A1

4c1
. (98)
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Inserting (98), along with (27) and (28), into (91), the quiescent dark and singular optical
solitons are, respectively, presented below:

q(x, t) = − A1

S2

√√√√S2

(
A0

2S2 − A1
2S0

)
A1

2 tanh

k

√√√√S2

(
A0

2S2 − A1
2S0

)
A1

2 x + ξ0



×e

i



k2


16 c1δ1k2 A0

4S2
4 + 6 A0

4aS2
2 A1

2 + A1
6c1δ2S0

2

+A1
6c1δ3S0

2 + A0
4S2

2 A1
2c1δ2 + A0

4S2
2 A1

2c1δ3 + 6 A1
6aS0

2

−12 A0
2aS2S0 A1

4 + 16 c1δ1k2S2
2S0

2 A1
4 − 32 c1δ1k2S2

3 A0
2S0 A1

2

−2 A0
2c1δ2S2S0 A1

4 − 2 A0
2c1δ3S2S0 A1

4


A1

4 t+θ


, (99)

and

q(x, t) = − A1

S2

√√√√S2

(
A0

2S2 − A1
2S0

)
A1

2 coth

k

√√√√S2

(
A0

2S2 − A1
2S0

)
A1

2 x + ξ0



×e

i



k2


16 c1δ1k2 A0

4S2
4 + 6 A0

4aS2
2 A1

2

+A1
6c1δ2S0

2 + A1
6c1δ3S0

2 + A0
4S2

2 A1
2c1δ2

+A0
4S2

2 A1
2c1δ3 + 6 A1

6aS0
2 − 12 A0

2aS2S0 A1
4

+16 c1δ1k2S2
2S0

2 A1
4 − 32 c1δ1k2S2

3 A0
2S0 A1

2

−2 A0
2c1δ2S2S0 A1

4 − 2 A0
2c1δ3S2S0 A1

4


A1

4 t+θ


, (100)

where
S2

(
A0

2S2 − A1
2S0

)
> 0. (101)

Result–2:

b = −
k4c1δ1S2

2
(

4 A0
2S2

2 − 4 A0 A1S1S2 + A1
2S1

2
)

45A1
4 ,

ω = −
9 k4c1δ1

(
16 A0

4S2
4 − 32 A0

3 A1S1S2
3 + 24 A0

2 A1
2S1

2S2
2 − 8 A0 A1

3S1
3S2 + A1

4S1
4
)

16 A1
4 ,

S0 = −12 A0
2S2

2 − 12 A0 A1S1S2 + A1
2S1

2

8A1
2S2

, δ2 = −−60 k2S2
2c1δ1 + A1

2c1δ3 + 6 aA1
2

A1
2c1

,

δ4 = −60 k2S2
2c1δ1 + A1

2c1δ5 + 3 aA1
2

A1
2c1

, δ6 =
36δ1k4S2

4

A1
4 . (102)

Putting (102), along with (27) and (28), into (91), the quiescent dark and singular
solitons are, respectively, recovered as:
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q(x, t) =

A0 −
A1S1

2S2
−

√
6A1

4S2

√
(2 A0S2 − A1S1)

2

A1
2 tanh

 k
√

6
4

√
(2 A0S2 − A1S1)

2

A1
2 x + ξ0



×e

i

−

9 k4c1δ1

(
16 A0

4S2
4 − 32 A0

3 A1S1S2
3

+24 A0
2 A1

2S1
2S2

2 − 8 A0 A1
3S1

3S2 + A1
4S1

4

)
16 A1

4 t+θ


, (103)

and

q(x, t) =

A0 −
A1S1

2S2
−

√
6A1

4S2

√
(2 A0S2 − A1S1)

2

A1
2 coth

 k
√

6
4

√
(2 A0S2 − A1S1)

2

A1
2 x + ξ0



×e

i

−

9 k4c1δ1

(
16 A0

4S2
4 − 32 A0

3 A1S1S2
3

+24 A0
2 A1

2S1
2S2

2 − 8 A0 A1
3S1

3S2 + A1
4S1

4

)
16 A1

4 t+θ


. (104)

Result–3:

b =
3k2S1

2(c1δ4 + c1δ5 + 3 a)
4

, ω =
3 A1

2(c1δ4 + c1δ5 + 3 a)k2S1
4

320 S2
2 , A0 = 0, S0 = − S1

2

8S2
,

δ1 = − A1
2(c1δ4 + c1δ5 + 3 a)

60 k2S2
2c1

, δ2 = − c1δ3 + c1δ4 + c1δ5 + 9 a
c1

, δ6 = −3k2S2
2(c1δ4 + c1δ5 + 3 a)

5A1
2c1

. (105)

Inserting (105), along with (27) and (28), into (91), the qiescent dark and singular
solitons are presented:

q(x, t) =

− A1S1

2S2
−

A1
√

6
√

S1
2

4S2
tanh

[
k
√

6
4

√
S1

2x + ξ0

]e
i

3 A1
2(c1δ4 + c1δ5 + 3 a)k2S1

4

320 S2
2 t+θ


, (106)

and

q(x, t) =

− A1S1

2S2
−

A1
√

6
√

S1
2

4S2
coth

[
k
√

6
4

√
S1

2x + ξ0

]e
i

3 A1
2(c1δ4 + c1δ5 + 3 a)k2S1

4

320 S2
2 t+θ


. (107)

3.4. Extended Jacobi’s Elliptic Function Expansion Method

In this integration mechanism, the solution structure (29) simplifies to

U(ξ) = A0 + A1sn(ξ) + B1sn−1(ξ). (108)

Putting (108), together with (30)–(34), into (9) leaves us with the simplest equations:

5 c1δ6 A0 A1
4 + 4 A0 A1

2c1k2δ4l2 + 4 A0 A1
2c1k2δ5l2 + 18 A0 A1

2ak2l2

+A0c1k2δ2 A1
2l2 + A0c1k2δ3 A1

2l2 = 0, (109)
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5 c1δ6 A0B1
4 + A0c1k2δ2B1

2 + A0c1k2δ3B1
2 + 4 A0B1

2c1k2δ4

+4 A0B1
2c1k2δ5 + 18 A0B1

2ak2 = 0, (110)

c1δ6 A1
5 + A1

3c1k2δ3l2 + 24 c1δ1k4 A1l4 + 2 A1
3c1k2δ4l2 + 2 A1

3c1k2δ5l2

+A1
3c1k2δ2l2 + 12 A1

3ak2l2 = 0, (111)

c1δ6B1
5 + 2 B1

3c1k2δ4 + 2 B1
3c1k2δ5 + B1

3c1k2δ2 + B1
3c1k2δ3

+24 c1δ1k4B1 + 12 B1
3ak2 = 0, (112)

6 bA0 A1B1 + c1δ6 A0
5 + bA0

3 − ω A0 + 20 c1δ6 A0
3 A1B1 + 30 c1δ6 A0 A1

2B1
2

−4 A0 A1c1k2δ4B1 − 4 A0 A1c1k2δ5B1 + 2 A0c1k2δ2 A1B1 + 2 A0c1k2δ3 A1B1

+A0c1k2δ2B1
2l2 + A0c1k2δ3B1

2l2 + 6 A0B1
2ak2l2 + A0c1k2δ2 A1

2 + A0c1k2δ3 A1
2

−4 A0 A1c1k2δ4B1l2 − 4 A0 A1c1k2δ5B1l2 + 2 A0c1k2δ2 A1B1l2

+2 A0c1k2δ3 A1B1l2 + 6 A0ak2 A1
2 = 0, (113)

10 c1δ6 A0
2 A1

3 + 5 c1δ6 A1
4B1 + bA1

3 + 2 A0
2c1k2δ5 A1l2 − A1

2c1k2δ2B1l2

−A1
2c1k2δ3B1l2 + 4 A1

2c1k2δ4B1l2 + 4 A1
2c1k2δ5B1l2 + 2 A0

2c1k2δ4 A1l2

−A1
3c1k2δ2l2 − A1

3c1k2δ3l2 + 6 A0
2ak2 A1l2 + 6 A1

2ak2B1l2 − 20 c1δ1k4 A1l4

−20 c1δ1k4 A1l2 − A1
3c1k2δ4l2 − A1

3c1k2δ5l2 − 9 A1
3ak2 − 9 A1

3ak2l2

−A1
3c1k2δ4 − A1

3c1k2δ5 − A1
3c1k2δ2 − A1

3c1k2δ3, 10 c1δ6 A0
2B1

3

+5 c1δ6 A1B1
4 + bB1

3 + 4 A1B1
2c1k2δ4 + 4 A1B1

2c1k2δ5 − B1
3c1k2δ2l2

−B1
3c1k2δ3l2 − 20 c1δ1k4B1l2 − B1

3c1k2δ4l2 − B1
3c1k2δ5l2 − A1c1k2δ2B1

2

−A1c1k2δ3B1
2 + 2 A0

2c1k2δ4B1 + 2 A0
2c1k2δ5B1 − 9 B1

3ak2 − B1
3c1k2δ3 − 20 c1δ1k4B1

+6 A0
2ak2B1 + 6 A1B1

2ak2 − 9 B1
3ak2l2 − B1

3c1k2δ4 − B1
3c1k2δ5 − B1

3c1k2δ2 = 0, (114)

−3 A0
2ak2 A1 − 3 A1

2ak2B1 + c1δ1k4 A1 + 6 A1
3ak2 + 3 bA0

2 A1 + 3 bA1
2B1

+A1
2c1k2δ2B1l2 + A1

2c1k2δ3B1l2 − 3 A1
2c1k2δ4B1l2 − 3 A1

2c1k2δ5B1l2 − A0
2c1k2δ4 A1l2

−A0
2c1k2δ5 A1l2 + 30 c1δ6 A0

2 A1
2B1 − 3 A0

2ak2 A1l2 − 3 A1
2ak2B1l2 + 14 c1δ1k4 A1l2

+c1δ1k4 A1l4 − ω A1 + 5 c1δ6 A0
4 A1 + 10 c1δ6 A1

3B1
2 + A1

3c1k2δ2 + A1
3c1k2δ3 + A1

2c1k2δ2B1

+A1
2c1k2δ3B1 + 2 A1B1

2c1k2δ4l2 + 2 A1B1
2c1k2δ5l2 − A0

2c1k2δ4 A1 − A0
2c1k2δ5 A1

−3 A1
2c1k2δ4B1 − 3 A1

2c1k2δ5B1 − A1c1k2δ2B1
2l2 − A1c1k2δ3B1

2l2 = 0, (115)

5 c1δ6 A0
4B1 + 10 c1δ6 A1

2B1
3 + 3 bA0

2B1 + 3 bA1B1
2 + 6 B1

3ak2l2 − 3 A1B1
2ak2

−3 A0
2ak2B1 − ω B1 + 30 c1δ6 A0

2 A1B1
2 + B1

3c1k2δ2l2 + B1
3c1k2δ3l2 + 14 c1δ1k4B1l2

−3 A0
2ak2B1l2 − A0

2c1k2δ4B1 − A0
2c1k2δ5B1 − 3 A1B1

2c1k2δ4 − 3 A1B1
2c1k2δ5

−3 A1B1
2ak2l2 − A1

2c1k2δ2B1 − A1
2c1k2δ3B1 + c1δ1k4B1 − A0

2c1k2δ4B1l2 − A0
2c1k2δ5B1l2

−3 A1B1
2c1k2δ4l2 − 3 A1B1

2c1k2δ5l2 + A1c1k2δ2B1
2 + A1c1k2δ3B1

2 + c1δ1k4B1l4

+2 A1
2c1k2δ4B1 + 2 A1

2c1k2δ5B1 + A1c1k2δ2B1
2l2 + A1c1k2δ3B1

2l2 = 0, (116)



Mathematics 2023, 11, 1709 20 of 25

−A0c1k2δ2B1
2l2 − A0c1k2δ3B1

2l2 − 2 k2l2 A0B1
2c1δ4 − 2 k2l2 A0B1

2c1δ5 − 12 A0B1
2ak2l2

−2 A0c1k2δ2 A1B1 − 2 A0c1k2δ3 A1B1 + 4 A0 A1c1k2δ4B1 + 4 A0 A1c1k2δ5B1 − A0c1k2δ2B1
2

−A0c1k2δ3B1
2 − 2 A0B1

2c1k2δ4 − 2 A0B1
2c1k2δ5 + 10 c1δ6 A0

3B1
2 + 20 c1δ6 A0 A1B1

3

−12 A0B1
2ak2 + 3 bA0B1

2 = 0, (117)

−A0c1k2δ2 A1
2l2 − A0c1k2δ3 A1

2l2 − 2 A0 A1
2c1k2δ4l2 − 2 A0 A1

2c1k2δ5l2

−2 A0c1k2δ2 A1B1l2 − 2 A0c1k2δ3 A1B1l2 + 4 A0 A1c1k2δ4B1l2 + 4 A0 A1c1k2δ5B1l2

−12 A0 A1
2ak2l2 − A0c1k2δ2 A1

2 − A0c1k2δ3 A1
2 − 2 k2 A0 A1

2c1δ4 − 2 k2 A0 A1
2c1δ5

+10 A0
3 A1

2c1δ6 + 20 A0 A1
3B1c1δ6 − 12 A0ak2 A1

2 + 3 bA0 A1
2 = 0. (118)

On solving these equations, one extracts the cases:

Result–1:

ω =

c1δ1k4



k2l6c1δ2 + k2l6c1δ3 + k2l6c1δ4
+k2l6c1δ5 + 9 ak2l6 − 5 k2l4c1δ2

−5 k2l4c1δ3 + 15 k2l4c1δ4 + 15 k2l4c1δ5
+15 ak2l4 − 5 k2l2c1δ2 − 5 k2l2c1δ3
+15 k2l2c1δ4 + 15 k2l2c1δ5 + 15 ak2l2

−bl4 + k2c1δ2 + k2c1δ3 + k2c1δ4
+k2c1δ5 + 9 ak2 − 14 bl2 − b


(

k2l2c1δ2 + k2l2c1δ3 + k2l2c1δ4 + k2l2c1δ5 + 9 ak2l2

+k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − b

) ,

A0 = 0, A1 = 0, B1 = ±2k2

√√√√√√√
− 5c1δ1(l2 + 1) k2l2c1δ2 + k2l2c1δ3 + k2l2c1δ4

+k2l2c1δ5 + 9 ak2l2 + k2c1δ2
+k2c1δ3 + k2c1δ4 + k2c1δ5 + 9 ak2 − b

 ,

δ6 =


−k2l2c1δ2 − k2l2c1δ3

+4 k2l2c1δ4 + 4 k2l2c1δ5
+6 ak2l2 − k2c1δ2
−k2c1δ3 + 4 k2c1δ4

+4 k2c1δ5 + 6 ak2 + 6 b




k2l2c1δ2 + k2l2c1δ3
+k2l2c1δ4 + k2l2c1δ5
+9 ak2l2 + k2c1δ2
+k2c1δ3 + k2c1δ4

+k2c1δ5 + 9 ak2 − b


100 c1

2δ1k4(l2 + 1)2 . (119)

Putting (119), with the aid of (35) and (36), into (108), the quiescent singular nonlinear
soliton emerges as:

q(x, t) = ±2k2

√
− 10c1δ1

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
coth(kx)

×e
i

8c1δ1k4(−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 2 b
)

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
t+θ


, (120)

where
c1δ1

(
2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b

)
< 0. (121)
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Result–2

ω =

c1δ1k4



k2l6c1δ2 + k2l6c1δ3 + k2l6c1δ4
+k2l6c1δ5 + 9 ak2l6 − 5 k2l4c1δ2

−5 k2l4c1δ3 + 15 k2l4c1δ4 + 15 k2l4c1δ5
+15 ak2l4 − 5 k2l2c1δ2 − 5 k2l2c1δ3
+15 k2l2c1δ4 + 15 k2l2c1δ5 + 15 ak2l2

−bl4 + k2c1δ2 + k2c1δ3 + k2c1δ4
+k2c1δ5 + 9 ak2 − 14 bl2 − b


 k2l2c1δ2 + k2l2c1δ3 + k2l2c1δ4

+k2l2c1δ5 + 9 ak2l2 + k2c1δ2 + k2c1δ3
+k2c1δ4 + k2c1δ5 + 9 ak2 − b

 , (122)

B1 = 0, A0 = 0, A1 = ±2lk2

√√√√√√√
− 5c1δ1(l2 + 1) k2l2c1δ2 + k2l2c1δ3 + k2l2c1δ4

+k2l2c1δ5 + 9 ak2l2 + k2c1δ2 + k2c1δ3
+k2c1δ4 + k2c1δ5 + 9 ak2 − b

 ,

δ6 =


−k2l2c1δ2 − k2l2c1δ3

+4 k2l2c1δ4 + 4 k2l2c1δ5
+6 ak2l2 − k2c1δ2
−k2c1δ3 + 4 k2c1δ4

+4 k2c1δ5 + 6 ak2 + 6 b




k2l2c1δ2 + k2l2c1δ3
+k2l2c1δ4 + k2l2c1δ5
+9 ak2l2 + k2c1δ2
+k2c1δ3 + k2c1δ4

+k2c1δ5 + 9 ak2 − b


100 c1

2δ1k4(l2 + 1)2 . (123)

Substituting (123), with the aid of (35) and (36), into (108), the quiescent dark soliton
is indicated below

q(x, t) = ±2k2

√
− 10c1δ1

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
tanh(kx)

×e
i

8c1δ1k4(−k2c1δ2 − k2c1δ3 + 4 k2c1δ4 + 4 k2c1δ5 + 6 ak2 − 2 b
)

2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b
t+θ


, (124)

where
c1δ1

(
2 k2c1δ2 + 2 k2c1δ3 + 2 k2c1δ4 + 2 k2c1δ5 + 18 ak2 − b

)
< 0. (125)

Result–3:

ω =

c1δ1k4



k2l6c1δ2 + k2l6c1δ3 + k2l6c1δ4
+k2l6c1δ5 + 9 ak2l6 − 14 k2l5c1δ2

−14 k2l5c1δ3 + 66 k2l5c1δ4 + 66 k2l5c1δ5
+114 ak2l5 − 145 k2l4c1δ2 − 145 k2l4c1δ3
+495 k2l4c1δ4 + 495 k2l4c1δ5 + 615 ak2l4

−196 k2l3c1δ2 − 196 k2l3c1δ3 + 924 k2l3c1δ4
+924 k2l3c1δ5 + 1596 ak2l3 − 145 k2l2c1δ2
−145 k2l2c1δ3 + 495 k2l2c1δ4 + 495 k2l2c1δ5
+615 ak2l2 − bl4 − 14 k2lc1δ2 − 14 k2lc1δ3

+66 k2lc1δ4 + 66 k2lc1δ5 + 114 ak2l
−60 bl3 + k2c1δ2 + k2c1δ3 + k2c1δ4 + k2c1δ5

+9 ak2 − 134 bl2 − 60 lb − b




k2l2c1δ2 + k2l2c1δ3 + k2l2c1δ4 + k2l2c1δ5
+9 ak2l2 + 6 k2lc1δ2 + 6 k2lc1δ3 + 6 k2lc1δ4
+6 k2lc1δ5 + 54 ak2l + k2c1δ2 + k2c1δ3

+k2c1δ4 + k2c1δ5 + 9 ak2 − b


,
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A0 = 0, A1 = ±2lk2

√√√√√√√√√√√√
− 5c1δ1(l2 + 6 l + 1)

k2l2c1δ2 + k2l2c1δ3 + k2l2c1δ4
+k2l2c1δ5 + 9 ak2l2 + 6 k2lc1δ2

+6 k2lc1δ3 + 6 k2lc1δ4 + 6 k2lc1δ5
+54 ak2l + k2c1δ2 + k2c1δ3
+k2c1δ4 + k2c1δ5 + 9 ak2 − b


,

B1 = ±2k2

√√√√√√√√√√√√
− 5c1δ1(l2 + 6 l + 1)

k2l2c1δ2 + k2l2c1δ3 + k2l2c1δ4
+k2l2c1δ5 + 9 ak2l2 + 6 k2lc1δ2

+6 k2lc1δ3 + 6 k2lc1δ4 + 6 k2lc1δ5
+54 ak2l + k2c1δ2 + k2c1δ3
+k2c1δ4 + k2c1δ5 + 9 ak2 − b


,

δ6 =



−k2l2c1δ2 − k2l2c1δ3
+4 k2l2c1δ4 + 4 k2l2c1δ5
+6 ak2l2 − 6 k2lc1δ2

−6 k2lc1δ3 + 24 k2lc1δ4
+24 k2lc1δ5 + 36 ak2l
−k2c1δ2 − k2c1δ3

+4 k2c1δ4 + 4 k2c1δ5
+6 ak2 + 6 b





k2l2c1δ2 + k2l2c1δ3
+k2l2c1δ4 + k2l2c1δ5
+9 ak2l2 + 6 k2lc1δ2
+6 k2lc1δ3 + 6 k2lc1δ4
+6 k2lc1δ5 + 54 ak2l
+k2c1δ2 + k2c1δ3
+k2c1δ4 + k2c1δ5

+9 ak2 − b


100 c1

2δ1k4(l2 + 6 l + 1)2 . (126)

Putting (126), with the aid of (35) and (36), into (108), the quiescent straddled dark–
singular soliton evolves as:

q(x, t) =


±4k2

√
− 10c1δ1

8 k2c1δ2 + 8 k2c1δ3 + 8 k2c1δ4 + 8 k2c1δ5 + 72 ak2 − b
tanh(kx)

±4k2
√
− 10c1δ1

8 k2c1δ2 + 8 k2c1δ3 + 8 k2c1δ4 + 8 k2c1δ5 + 72 ak2 − b
coth(kx)


×e

i

256
(
−2 k2c1δ2 − 2 k2c1δ3 + 8 k2c1δ4 + 8 k2c1δ5 + 12 ak2 − b

)
c1δ1k4

8 k2c1δ2 + 8 k2c1δ3 + 8 k2c1δ4 + 8 k2c1δ5 + 72 ak2 − b
t+θ


, (127)

where
c1δ1

(
8 k2c1δ2 + 8 k2c1δ3 + 8 k2c1δ4 + 8 k2c1δ5 + 72 ak2 − b

)
< 0. (128)

4. Conclusions

The current work presented located the quiescent optical solitons for the concatenation
model, considered with the Kerr law of nonlinearity. The aspect of nonlinear CD was
considered for the formation of these stationary solitons. The parameter of nonlinearity for
the CD was set to n = 2 for the integrability of the concatenation model. The conclusion
is, therefore, a stern warning to ground engineers when they lay the fiber optic cable
underground or under oceans. They must make absolutely sure to avoid rough handling
of fibers that inadvertently lead to the bending and twisting of fibers which would trigger
the solitons to stall during transmission across intercontinental distances. This would lead
to unfathomable catastrophic chaos and must be avoided at all costs. Therefore, it is of
paramount importance for ground engineers to make absolutely sure that the CD is never
rendered to be nonlinear.

The same conclusions were drawn when quiescent solitons were studied for various
other models. These include the complex Ginzburg–Landau equation or the nonlinear
Schrodinger’s equation with Kudryashov’s form of nonlinear refractive index, which
includes Kudryashov’s quintuple form of nonlinear refractive index. There are a variety of
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mathematical algorithms that have been employed to secure quiescent solitons for such
modes. They range from the application of the extended G’/G—expansion approach,
Jacobi’s elliptic function expansion approach and several others [13–17]. The current
paper, however, implemented the sine–Gordon equation scheme, F-expansion procedure,
Riccati equation method and the extended Jacobi’s elliptic function expansion approach.
These algorithms collectively yielded a plethora of quiescent solitons. A full spectrum
of such solitons, including straddled quiescent solitons, emerged and were enumerated
sequentially. Numerical simulations were also included for the reader to get a visual
perspective to such solitons. The analytical results are long and new. They represent the
true form of stationary soliton solutions for the nonlinear parameter of the CD to be set at 2.

The result of the current work opens up a floodgate of upcoming opportunities that
could lead to a plethora of opportunities to explore. The extension of this model to several
other models is pending at the current stage. While the work has been done on the model
with cubic–quartic, as well as quadratic–cubic nonlinear forms of refractive index, the
Sasa–Satsuma equation, Lakshmanan–Porsezian–Daniel model and many others, there is a
lot of work yet to be done. It is encouraging to address this study with additional models.
It must be noted that one of the pioneering scientists, namely, Wazwaz, reported a lot of
work on optical solitons with several models, as well as in multi–dimensions, but it must
be observed that none of his works were on quiescent optical solitons. His results were
confined to mobile optical solitons.

Another future avenue is the consideration of the CD for the concatenation model to
be with the power—law of nonlinear refractive index. Such a nonlinear form of optical
fiber is visible in reality and, therefore, extending studies to such a nonlinear medium
is necessary and rewarding. A future challenge would be to study the concatenation
model with Kudryashov’s form of nonlinear refractive index, including the quintuple type,
with two, as well as three, parameters, and to search for its quiescent soliton solutions.
Subsequently, other forms of quiescent soliton solutions are also to be recovered, including
the following: dispersive optical solitons, dispersion-managed optical solitons, as well as
gap solitons, and spatial optical solitons, including the spatio–temporal optical solitons.

Apart from the plethora of mathematical engineering aspects to address quiescent
optical solitons, yet another approach derives from direct software application. This gives
way to implicit quiescent optical solitons and has been lately recovered for the complex
Ginzburg–Landau equation [18]. This direct software approach, when applied to additional
models, would yield a wide form of additional results that are not possible to recover using
the analytical mathematical schemes known thus far. This is also an unfulfilled agenda at
the current stage.

Other burning questions that need to be answered relate to the inclusion of the
spatio—temporal dispersion term in addition to the CD. In such a case, the STD is rendered
to be nonlinear as well, in addition to the CD being nonlinear, and the issue of how the
structure of the quiescent solitons form needs to be addressed. It is well known that the
inclusion of STD in addition to CD can always control the Internet traffic flow to, thus,
transform it into regulated Internet traffic. The effect of an Internet bottleneck is, thus, cut
down drastically. However, on the contrary, how are the quiescent optical solitons going to
formulate if, additionally, the STD is also transformed to be nonlinear with the twisting
and bending of fibers? This is yet another unanswered question that needs to be addressed
and explored.

The model will be addressed in the future for quiescent solitons in birefringent fibers
and the natural extension is to consider the model for dispersion–flattened fibers. These
would give a broader perspective to the model. Next, perturbation terms are to be incor-
porated in the concatenation model and the perturbed version of the model is yet to be
addressed for its scalar version, as well as with differential group delay. The results will be
aligned with the output of pre–existing works and will be disseminated in future [19–40].
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