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Abstract: We consider a time series with real data from a water lift station, equipped with three water
pumps which are activated and deactivated depending on certain starting and halting thresholds.
Given the water level and the number of active pumps, both read every 5 min, we aim to infer
when each pump was activated or deactivated. To do so, we build an algorithm that sets a hierarchy
of criteria based on the past and future of a given interval to identify which thresholds have been
crossed during that interval. We then fill the gaps between the 5 min time steps, modeling the water
level continuously with a piecewise linear function. This filling takes into account not only every
water level reading and every previously identified change of status, but also the fact that activation
and deactivation of a pump has no immediate effect on water level. This allows for the fulfillment of
the ultimate objective of the problem in its real context, which is to provide the water management
company an estimate of how long each pump has been working. Additionally, our estimates correct
the errors contained in the time series regarding the number of active pumps.

Keywords: gap filling; time series; error correction; discrete-to-continuous model; water pump
system

MSC: 93A30; 65G20

1. Introduction

A certain water lift station, receiving a continuous but variable and unknown flow of
water, is equipped with three water pumps to release water and thus prevent the overflow
of the tank. Activation and deactivation of the pumps depends on the water level (measured
in meters), according to predefined thresholds, as given in Table 1 and explained next. The
tank is also equipped with sensors that read, at 5 min intervals, the water level and the
number of active pumps. In order to better understand the scope of our objectives, a small
sample of the database, which spans an entire year, is displayed in Table 2.

We shall denote the thresholds 2.1, 2.3 and 2.5 using U1, U2 and U3, respectively, and
the thresholds 0.6, 1.2 and 1.9 using L1, L2 and L3, respectively. We will refer to U1, U2 and
U3 as the upward thresholds and to L1, L2 and L3 as the downward thresholds. We denote,
using s(n), the number of active pumps at time step n and refer to it as the status of the
system at time n.

The system operates according to the following rules. In case no pump is active and
an increasing water level reaches U1, the first pump is activated. Similarly, in case only
one pump is (or, respectively, two pumps are) active and the water level reaches U2 (or,
respectively, U3), a second (or, respectively, third) pump is activated. Analogously, in case
all three pumps are working and the water level drops below L3, one pump is deactivated;
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if the level keeps lowering and reaches L2, another pump stops working, and if the level
reaches the level L1, the remaining active pump is switched off. In other words:

• When none of the pumps is working, the status of the system will not change unless
the water level reaches U1;

• When only one pump is working, the status of the system will not change unless the
water level reaches U2 or drops below L1;

• When two pumps are working, the status of the system will not change unless the
water level reaches U3 or drops below L2;

• When all three pumps are working, the status of the system will not change unless the
water level drops below L3.

Table 1. Activation and deactivation thresholds.

# of Active Pumps Activation (m) Deactivation (m)

1 2.1 0.6
2 2.3 1.2
3 2.5 1.9

Table 2. Sequence of 20 rows of the original data set.

Time Reading Water Level (m) Number of Active Pumps

12:10 0 0.699375 0
12:15 1 1.0975 0
12:20 2 2.1115625 1
12:25 3 2.338125 1
12:30 4 2.2928125 1
12:35 5 1.9346875 1
12:40 6 1.445 1
12:45 7 0.99875 1
12:50 8 1.2565625 1
12:55 9 1.4234375 1
13:00 10 1.2134375 1
13:05 11 0.8346875 0
13:10 12 0.7 0
13:15 13 0.9665625 2
13:20 14 2.51125 2
13:25 15 1.955625 1
13:30 16 1.6290625 1
13:35 17 1.2696875 1
13:40 18 1.576875 2
13:45 19 1.82 1

Figure 1 shows, for 60 consecutive entries of the database (the first 20 of which constitute
the data given in Table 2), the water level and the corresponding number of active pumps as
given in the data set.

Whereas the data relative to the water level can be considered accurate (apart from
occasional typos, such as negative values and values significantly below L1 or above U3),
the data relative to the number of active pumps is easily seen to contain errors. For example,
in Reading 3 from Table 2, the correct number of active pumps must be at least 2, since the
water level had already reached U2, prompting a second pump to switch on (for a better
visualization, we refer to Reading 4 on Figure 1, where the threshold U2 is clearly attained).
Another example is Reading 14, where the level U3 was already reached, so the number
of active pumps is 3, and it should only decrease to 2 at Reading 16, when L3 is reached.
Whenever detected, these values are replaced with one consistent with the remaining data,
and we will make a thorough description in Section 2 of the criteria to determine the correct
value at each time step.
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In order to estimate for how long the pumps have been working, we model the level
of the water continuously, so that we may estimate at which instant a pump has been
activated or deactivated. To do so, we first identify under which conditions one or more
thresholds have been attained in the interval of time under analysis, according to the data
for the near past and near future of the interval. We then design an algorithm that models
the water level, taking into account the switching on and off of the pumps, as well as an
associated delay.

Figure 1. The water level and the number of active pumps for 60 consecutive entries of the database.

Given that both the data and common sense suggest that the effect of a pump being
activated or deactivated may not be immediate and that the influx of water is variable and
unknown, we consider a minimum delay of 5 s and a maximum delay of 15 s. Although
empirical, these values are sustained by the data. For example, there exist readings above
an upward threshold which are followed by a decrease in water level, meaning that the
water level did not start to decrease immediately after the threshold was attained. Further
evidence of this fact is the existence of values below 0.6 and above 2.5. Thus, let dm = 0.0167
and dM = 0.05 (measured in time steps). Delays within dm and dM are called admissible.

Concerning the literature on this framework, several recent works used machine learn-
ing tools to address problems, and goals, similar to ours. For example, in [1], the authors
take an approach to fill gaps on a scarce data time series using the MissForest algorithm,
and, in [2], gap filling is achieved by means of automated evolutionary identification of the
optimal structure for a composite data-driven model. Our data set, however, contains a
large number of errors in the status time series and thus does not provide a reliable training
set for the application of machine learning regression techniques to infer the status of the
system. Therefore, even though the status inference (with errors) from the water-level time
series has an accuracy of 99% by means of the application of a random forest algorithm
(cf. the public GitHub repository indicated at the end of this work), this will not allow for
acquisition of the real status values, since it accurately predicts the status with those errors.

In [3], a multiple-point statistics algorithm suited for pattern reproduction is used.
The main advantage of this method is its ability to provide probabilistic estimates of the
missing values, which allows for uncertainty quantification. Although uncertainty is
obviously also present in our problem, in our framework, pattern recognition benefits
greatly from taking into account contextualized hands-on information about the system.
For this reason, we favored an approach of a more deterministic nature, where uncertainty
is addressed by providing criteria that establish which status change is most likely to have
happened. The subsequent data gaps are then filled by means of several synchronized
steps of linear interpolation.
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A different, but related, possible approach to status inference would be an error-
correction method, similar to those studied in [4] in an econometrics environment. Our
framework is not related, since the corrections that we are interested in are based on
empirical information and not on any difficulty in finding a fit model that performs the
regression between the two time series.

Regarding data completion, we note that, in our problem, the gaps are the time values
between the 5 min time steps instead of the erratic and larger gaps often considered in the
literature. Several regression methods for gap filling between regular time steps can be
found easily in the literature. For example, in [5], the author gives some insight on how to
fit a discrete data time series into a continuous time function. Again, in our framework,
the complexity arises from information outside the data set (threshold crossing and delays)
and not with any difficulty in finding an appropriate regression model in particular. Other
methods range from simple linear models to complex deterministic or stochastic tech-
niques. Common approaches include, for example, the simple nearest neighbor method
via data transfer [6], interpolation techniques [7], auto-regressive models [8], and simple
and multiple regressions [9].

In short, to accomplish our goal, we first design an algorithm to predict the system
status. Based on the previous and next water level readings of a given time step, this
procedure identifies the thresholds, if any, that have been crossed between this and the
following time step. Next, we define rules to model the water level, filling the gaps between
the 5 min time steps continuously with piecewise linear functions. These rules follow these
required principles:

• Take the water level readings from the original data set as constraints, since these are
considered to be correct;

• Have the water level behave according to every previously identified change of status;
• Take into consideration the fact that the effect of the activation and deactivation of a

pump on water level is not immediate, but rather comes with a certain delay.

Combining the status inference—that is, the estimated number of active pumps at
each reading—with the estimated water level, we are able to determine the moment when
each pump has been activated or deactivated. This allows for fulfillment of the company’s
ultimate objective, which is to estimate for how long each pump has been active.

This paper is organized in the following way: in the next section, we determine the
conditions under which the status of the system changes; in the following section, we
define how the gaps between readings should be filled for each type of transition; the
fourth section is devoted to the implementation of Sections 2 and 3 on a sample of the data
set; and in the final section, we present an analysis of the results obtained.

2. Inferring the System Status

As stated before, we consider the water-level time series to be accurate, and so any
incoherence between the water-level readings and the number of active pumps is due to an
error in the latter.

In this section we will describe a detailed procedure to obtain the correct status of the
system at every time step n, and to do this we must consider what happens both before
and after n. Moreover, the conclusions will be obtained using not only the water-level
readings, but also the rate changes, in order to encompass the trend of the water level.
The procedure not only addresses the reasons to infer changes in the status, but it also
establishes prioritization criteria that allows us to settle which changes are the most likely
to have occurred.

Let r(n) = f (n)− f (n− 1) denote the rate corresponding to the difference between
the water level at time step n and n − 1. If the line that contains (n − 2, f (n − 2)) and
(n− 1, f (n− 1)) and the line that contains (n, f (n)) and (n + 1, f (n + 1)) intersect within
[n− 1, n], we denote the x-coordinate of this point using xI(n). Figure 2 exemplifies the
existence and non-existence of xI(n).
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(n− 2, f (n− 2))

(n− 1, f (n− 1))
(n, f (n))

(n + 1, f (n + 1))

xI(n)

(a)

(n− 2, f (n− 2))

(n− 1, f (n− 1))
(n, f (n))

(n + 1, f (n + 1))

(b)

Figure 2. Example of existent and non-existent xI(n). (a) The x-coordinate of the intersection belongs
to [n− 1, n]. (b) The x-coordinate of the intersection does not belong to [n− 1, n].

An analysis of the data set allows us to infer some useful properties of the sys-
tem, namely:

1. 0.5 < f (n) < 2.6 for the whole data set;
2. |r(n)| < 2 for the whole data set;
3. If s(n) = 3, then r(n + 1) < 0 (this means that whenever all the pumps are simultane-

ously active, the water level decreases);
4. If s(n) = 0, then r(n + 1) > 0.5 (this means that the minimum inflow of water into

the system is of 0.5 m per 5 min). As a consequence, since U1 − L1 = 1.5, the system
is never fully turned off for more than three time steps;

5. If |r(n + 1)− r(n− 1)| > 1 and r(n− 1) · r(n + 1) < 0, then some threshold must
have been crossed within [n− 2, n + 1]—if not within [n− 2, n− 1] nor [n, n + 1], then
within [n− 1, n];

6. If r(n)− r(n + 1) > 0.6, r(n) · r(n + 1) < 0 and Ui − f (n) < 0.1, then the upward
threshold Ui was crossed;

7. Similarly, if r(n + 1)− r(n) > 0.6, r(n) · r(n + 1) < 0 and f (n)− Li < 0.1, then the
downward threshold Li was crossed;

8. If Ui − f (xI(n)) < 0.05 or f (xI(n))− Li < 0.05, then the corresponding threshold
was crossed.

Next, we establish the conditions under which the system status changes from a time
step n− 1 to a time step n. For simplicity and ease of reference, these conditions are listed
in Tables 3–6.

The main challenge is, of course, to identify which conditions imply that a certain
status change takes place. Based on the analysis above, we consider four distinct conditions
as evidence of a change from a status k to a neighbouring status k± 1 and three distinct
conditions as evidence of a change from a status k to a non-neighbouring status k± p with
p ≥ 2. Moreover, due to the fact that the transition from a status k to a status k± 1 and the
transition from a status k̃ to a status k̃± 1, both being transitions between neighbouring
statuses, share similarities between them, the four conditions are precisely of the same type
in both cases. The same applies to transitions between non-neighbouring statuses. Thus,
overall, s(n) will be different than s(n− 1) if one of the following occurs:

(a) An explicit crossing of the relevant threshold;
(b) Evidence of the trend before n − 1 and the trend after n meeting at a water level

higher/lower than or close enough to the relevant threshold within ]n− 1, n[ more
likely than later on;

(c) For changes between neighbouring statuses, evidence of a sharp change from a
positive/negative r(n− 1) to a negative/positive r(n + 1);

(d) Evidence of a significant change from a positive/negative r(n) to a negative/positive
r(n + 1) coexisting in a reading close to the relevant threshold.
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We shall detail the transition of s(n− 1) = 2 to s(n) = 3, with the remaining transitions
following analogous reasoning. As shorthand to make our arguments more concise, in
the remainder of this work, both the conditions f (xI(n)) > f (xI(n + 1)) and f (xI(n)) <
f (xI(n + 1)) will always be considered satisfied if f (xI(n)) exists and f (xI(n + 1)) does
not exist.

Table 3. Conditions for status change with s(n− 1) = 3.

s(n) Conditions

0
(30a) f (n) ≤ L1
(30b) f (xI(n)) < L1 + 0.05
(30d) 0 < f (n)− L1 < 0.1, r(n + 1)− r(n) > 0.6 and r(n) · r(n + 1) < 0

1
(31a) L1 < f (n) ≤ L2
(31b) L1 + 0.05 ≤ f (xI(n)) < L2 + 0.05
(31d) 0 < f (n)− L2 < 0.1, r(n + 1)− r(n) > 0.6 and r(n) · r(n + 1) < 0

2

(32a) L2 < f (n) ≤ L3
(32b) L2 + 0.05 ≤ f (xI(n)) < L3 + 0.05
(32c) r(n + 1)− r(n− 1) > 1, r(n− 1) · r(n + 1) < 0 and f (xI(n)) < f (xI(n + 1))
(32d) 0 < f (n)− L3 < 0.1, r(n + 1)− r(n) > 0.6 and r(n) · r(n + 1) < 0

Table 4. Conditions for status change with s(n− 1) = 2.

s(n) Conditions

0
(20a) f (n) ≤ L1
(20b) f (xI(n)) < L1 + 0.05 and f (xI(n)) < f (xI(n + 1))
(20d) 0 < f (n)− L1 < 0.1, r(n + 1)− r(n) > 0.6 and r(n) · r(n + 1) < 0

1

(21a) L1 < f (n) ≤ L2
(21b) L1 + 0.05 ≤ f (xI(n)) < L2 + 0.05 and f (xI(n)) < f (xI(n + 1))
(21c) r(n + 1)− r(n− 1) > 1, r(n− 1) · r(n + 1) < 0 and f (xI(n)) < f (xI(n + 1))
(21d) 0 < f (n)− L2 < 0.1, r(n + 1)− r(n) > 0.6 and r(n) · r(n + 1) < 0

3

(23a) f (n) ≥ U3
(23b) f (xI(n)) > U3 − 0.05 and f (xI(n)) > f (xI(n + 1))
(23c) r(n− 1)− r(n + 1) > 1, r(n− 1) · r(n + 1) < 0 and f (xI(n)) > f (xI(n + 1))
(23d) 0 < U3 − f (n) < 0.1, r(n)− r(n + 1) > 0.6 and r(n) · r(n + 1) < 0

Table 5. Conditions for status change with s(n− 1) = 1.

s(n) Conditions

3
(13a) f (n) ≥ U3
(13b) f (xI(n)) > U3 − 0.05 and f (xI(n)) > f (xI(n + 1))
(13d) 0 < U3 − f (n) < 0.1, r(n)− r(n + 1) > 0.6 and r(n) · r(n + 1) < 0

2

(12a) U2 ≤ f (n) < U3
(12b) U2 − 0.05 < f (xI(n)) ≤ U3 − 0.05 and f (xI(n)) > f (xI(n + 1))
(12c) r(n− 1)− r(n + 1) > 1, r(n− 1) · r(n + 1) < 0 and f (xI(n)) > f (xI(n + 1))
(12d) 0 < U2 − f (n) < 0.1, r(n)− r(n + 1) > 0.6 and r(n) · r(n + 1) < 0

0

(10a) f (n) ≤ L1
(10b) f (xI(n)) < L1 + 0.05 and f (xI(n)) < f (xI(n + 1))
(10c) r(n + 1)− r(n− 1) > 1, r(n− 1) · r(n + 1) < 0 and f (xI(n)) < f (xI(n + 1))
(10d) 0 < f (n)− L1 < 0.1, r(n + 1)− r(n) > 0.6 and r(n) · r(n + 1) < 0
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Table 6. Conditions for status change with s(n− 1) = 0.

s(n) Conditions

3
(03a) f (n) ≥ U3
(03b) f (xI(n)) > U3 − 0.05 and f (xI(n)) > f (xI(n + 1))
(03d) 0 < U3 − f (n) < 0.1, r(n)− r(n + 1) > 0.6 and r(n) · r(n + 1) < 0

2
(02a) U2 ≤ f (n) < U3
(02b) U2 − 0.05 < f (xI(n)) ≤ U3 − 0.05 and f (xI(n)) > f (xI(n + 1))
(02d) 0 < U2 − f (n) < 0.1, r(n)− r(n + 1) > 0.6 and r(n) · r(n + 1) < 0

1

(01a) U1 ≤ f (n) < U2
(01b) U1 − 0.05 < f (xI(n)) ≤ U2 − 0.05 and f (xI(n)) > f (xI(n + 1))
(01c) r(n− 1)− r(n + 1) > 1, r(n− 1) · r(n + 1) < 0 and f (xI(n)) > f (xI(n + 1))
(01d) 0 < U1 − f (n) < 0.1, r(n)− r(n + 1) > 0.6 and r(n) · r(n + 1) < 0

For s(n) to go from 2 to 3 between n− 1 and n, the water level must have reached the
upward threshold U3 during this interval. This is obviously the case if the water level is
at least U3 at n, that is, if f (n) ≥ U3. Since this is a condition of type “a”, we shall denote
it with (23a). Of course, it may also happen that, although U3 was attained during the
interval ]n− 1, n[, the water level is no longer above U3 by the time reading n takes place.
One evidence of this fact is that the trend before n− 1 and the trend after n meet at a water
level higher than or close enough to U3 within ]n − 1, n[, that is, f (xI(n)) > U3 − 0.05,
along with an extra condition, f (xI(n)) > f (xI(n + 1)), which ensures that the change is
more likely to have happened in [n− 1, n] than later on. Since this condition is of type “b”,
we labeled it (23b). Given that 2 and 3 are neighbouring statuses, a sharp change from a
positive r(n− 1) to a negative r(n + 1) is also indicative of the water level having attained
U3 during ]n − 1, n[. Thus, having r(n − 1) − r(n + 1) > 1 and r(n − 1) · r(n + 1) < 0,
along with the same extra condition, f (xI(n)) > f (xI(n + 1)), which was included in (23b),
is evidence of a status change from 2 to 3, and will be labeled (23c). Figure 3 illustrates
conditions (23b) and (23c), according to whether U3 − 0.05 sits below or above f (xI(n)),
respectively. Finally, if a significant change from a positive r(n) to a negative r(n + 1)
coexists in a reading close to U3, quantified as 0 < U3 − f (n) < 0.1, r(n)− r(n + 1) > 0.6,
we also consider that the status changed from 2 to 3. This condition is labeled (23d).
If none of the conditions (23a), (23b), (23c) or (23d) is met, we conclude that the status
remains unchanged.

(n− 2, f (n− 2))

(n− 1, f (n− 1))

(xI(n), f (xI(n)))

(n, f (n))
(xI(n + 1), f (xI(n + 1)))

(n + 1, f (n + 1))

(n + 2, f (n + 2))

Figure 3. Illustration of conditions (23b) and (23c).

It is also important to note that the order in which these conditions should be verified,
given a status s(n − 1) = k, is not entirely random. To prevent the change from being
underestimated, the status farthest possible from k must be checked first, the status second
farthest from k must be checked next, and so on (but it makes no difference whether one
first checks if s(n) = k− 1 or s(n) = k + 1).
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3. Data Gap Completion

Having established that the status of the system will change from a time step n− 1 to
a time step n—along with exactly which change will take place and the reason such a change
will occur, that is, the type of condition (“a”, “b”, “c” or “d”) that
applies—we aim to continuously describe the water level, completing the information
that the system does not convey regarding the water level. In this section, we establish
how this completion should be accomplished for each of the status transition conditions
identified in the previous section. We detail the procedure to follow for crossing the upward
thresholds, since crossing the downward thresholds has entirely symmetrical consequences
on the water level. Recall that we always allow for a delay, between dm and dM, from the
instant when a pump is activated or deactivated to the instant when its effect on the water
level takes place.

To ease the notation, the water level at time step n will be denoted as fn instead of
f (n), and the rate r(n) = f (n)− f (n− 1) will be denoted as rn. If the line segment that
joins (n− 1, fn−1) and (n, fn) intersects y = Ui or, in case this intersection does not exist, if
the line segment that joins (n− 1, fn−1) and (xI(n), f (xI(n))) intersects y = Ui, we denote
this point as (xUi (n), Ui).

In case there is no change of status between readings n− 1 and n, the water level is
given by the linear function that joins (n− 1, fn−1) and (n, fn). The task is thus to establish
how to fill the gaps when it has been determined that the status changed between two
consecutive readings. The procedure must ensure that the relevant threshold(s) was(were)
indeed crossed, verify the existence of a delay within the given limits, and verify a change in
the rate of the water level once this delay is fulfilled. This is accomplished with a piecewise
linear function, with the smallest possible difference from the linear function connecting
the readings.

The procedure also takes into account the type of condition that sustains the status
change. In fact, if the condition is of type “a”, we have a reading above/below the relevant
threshold, so that it is guaranteed that the water level will cross the threshold (and the
adjustments to make, if any, have to do with ensuring an admissible delay), whereas in a
condition of type “b”, this crossing must be accomplished between n− 1 and n. Likewise,
conditions of type “c” and “d” have their own specificity. On the other hand, the procedure
functions differently accordingly to the number of thresholds crossed. Therefore, we
consider the following cases (recall that conditions of type “c” only exist for transitions
between neighbouring statuses):

A1/A2/A3: for transitions of type “a” in which 1/2/3 thresholds are crossed;
B1/B2/B3: for transitions of type “b” in which 1/2/3 thresholds are crossed;
C1: for transitions of type “c”;
D1/D2/D3: for transitions of type “d” in which 1/2/3 thresholds are crossed.

The remainder of this section is devoted to describing the procedure followed in each
of these cases.

3.1. Case A1: Transitions of Type (01a), (12a) and (23a)

In this case, (xUi (n), Ui) is given by the intersection of a line segment that joins
(n− 1, fn−1) and (n, fn) with y = Ui. Notice that n− xUi (n) represents the delay by which
the water level is affected following the crossing of Ui (and consequent activation of the
pump). There are three sub-cases to consider:

A1 (i). dm ≤ n− xUi (n) ≤ dM A1 (ii). n− xUi (n) < dm A1 (iii). n− xUi (n) > dM.

Case A1 (i) requires no intervention, since the delay is within the admissible values. If
A1 (ii) occurs, we shift the maximum towards the right, along the line segment that joins
(n− 1, fn−1) and (n, fn), in order to comply with the minimum delay, that is, a delay of
dm. Notice that the water level at the new maximum will not exceed Ui+1. In fact, since
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the maximum is attained at (xUi (n) + dm, dmrn + Ui), for the water level to reach the next
threshold, we would have

dmrn + Ui ≥ Ui+1 ⇔ dmrn ≥ 0.2⇔ rn ≥
0.2
dm
≈ 11.97 ,

which is impossible in this framework. Finally, in case A1 (iii), we split the the line
segment that joins (n− 1, fn−1) and (n, fn) into two line segments. If xUi (n)− dM > 0 and

Ui− fn−1
xUi

(n)−dM
< 2, the break point will be at x = xUi (n) along the line that contains (n− 1, fn−1)

and (xUi (n)− dM, Ui)—since xUi (n)− dM sits dM to the left of xUi (n), we thus ensure a
delay of dM; since Ui− fn−1

xUi
(n)−dM

< 2, the water level at xUi (n) will be at most Ui + 0.1, and

so Ui+1 is not reached. If xUi (n)− dM < 0 or Ui− fn−1
xUi

(n)−dM
> 2, the first line segment leaves

(n− 1, fn−1) with a slope of 2rn and halts at
(Ui− fn−1

2rn
+ dM, Ui + 2dM( fn − fn−1)

)
—again,

the delay of dM is ensured, and, since rn < 2 in this framework, Ui + 2dMrn < Ui+1 is
guaranteed as well. In either case, the second line segment is the one that joins the break
point and (n, fn).

Figure 4 illustrates sub-cases A1 (ii) and A1 (iii). The blue dots represent actual data
entries (and blue line segments represent the water level as given directly by the readings),
and the red dots represent additional break points, as given by the rules adopted (and red
line segments represent the corrected water level). The purple (respectively, light blue)
dashed lines help to locate the upward (respectively, downward) thresholds. This color
code will be adopted throughout the entire work.

(a) (b)
Figure 4. Two sub-cases of case A1. (a) Illustration of sub-case A1 (ii): fn−1 = 1.635, fn = 2.104 and
fn+1 = 1.73. (b) Illustration of sub-case A1 (iii): fn−1 = 1.61, fn = 2.21 and fn+1 = 1.82.

3.2. Case B1: Transitions of Type (01b), (12b) and (23b)

This turn, (xUi (n), Ui) is given by the intersection of a line segment that joins
(n− 1, fn−1) and (xI(n), f (xI(n))) with y = Ui. We consider the following sub-cases:

B1 (i): dm ≤ xI(n)− xUi (n) ≤ dM
B1 (ii): xI(n)− xUi (n) < dm
B1 (iii): xI(n)− xUi (n) > dM
B1 (iv): f (xI(n)) < Ui.

Again, case B1 (i) requires no correction. In case B1 (ii), we proceed as in case A1 (ii),
using (xI(n), f (xI(n))) instead of (n, fn). In case B1 (iii), we lower (xI(n), f (xI(n))) to
(xI(n), ỹI), so that the line segment that joins (n− 1, fn−1) and (xI(n), ỹI) intersects y = Ui
in such a way that the delay equals dM. To be precise, we have

ỹI = fn−1 +
xI(n)(Ui − fn−1)

xI(n)− dM
.
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Finally, in case B1 (iv), we proceed symmetrically to case B1 (iii), shifting the point
(xI(n), f (xI(n))) upwards to (xI(n), ỹI), but this turn occurs in order to get a delay of dm,
namely,

ỹI = Ui +
Ui − fn−1

xI(n)− dm − (n− 1)
.

Figure 5 illustrates sub-cases of (iii) and (iv) of case B1. The dotted line segments
indicate the extension of the previous or future line segments, and so (xI(n), f (xI(n))) is
their intersection point.

(a) (b)
Figure 5. Two sub-cases of case B1. (a) Illustration of sub-case B1 (iii): fn−1 = 1.968 and fn = 1.997
(with fn−2 = 1.286 and fn+1 = 1.587). (b) Illustration of sub-case B1 (iv): fn−1 = 1.94 and fn = 2.01
(with fn−2 = 1.785 and fn+1 = 1.76).

3.3. Case C1: Transitions of Type (01c), (12c) and (23c)

In the case when xI(n) exists, but case B1 does not apply (and so f (xI(n)) < Ui − 0.05)
and the evidence of a threshold crossing comes from the sharp change from rn−1 to rn+1 (in
this case, from a positive rn−1 to a negative rn+1) along with f (xI(n)) > f (xI(n + 1)) (or
the non-existence of f (xI(n + 1))), we nonetheless proceed as in case B1 (iv).

3.4. Case D1: Transitions of Type (01d), (12d) and (23d)

This turn, the evidence of a threshold crossing is given by a reading close to a threshold
together with a significant change and opposite signs in rn to rn+1. We proceed similarly in
the two sub-cases

D1 (i). |rn| > |rn+1| D1 (ii). |rn| ≤ |rn+1|.

considering we extend the line segment with the greatest incline, allowing for a minimum
delay. Figure 6 illustrates the sub-cases of (i) and (ii) of case D1, respectively.

(a) (b)
Figure 6. The 2 sub-cases of case D1. (a) Illustration of case D1 (i): fn−1 = 1.435, fn = 2.04 and
fn+1 = 1.73). (b) Illustration of case D1 (ii): fn−1 = 1.73, fn = 2.04 and fn+1 = 1.435.
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3.5. Case A2: Transitions of Type (02a) and (13a)

In this case, one or two additional break points are defined, following the same
principles that were adopted in case A1. Given that the uncorrected version yields an
exaggerated delay after the first threshold has been reached, we first proceed as in case
A1 (iii). Therefore, we split the line segment between (n− 1, fn−1) and (n, fn) into two line
segments, with a break point sitting dM to the left of the point where the line segment that
joins (n− 1, fn−1) and (n, fn) meets the first threshold. Next, we consider the line segment
that joins the first break point and (n, fn) and again apply the appropriate the sub-case of
A1. Figure 7 illustrates an instance of case A2.

Figure 7. Illustration of case A2: fn−1 = 1.804, fn = 2.336 and fn+1 = 2.245. The dotted extension of
the first line segment shows how the slope of the water level decreases after the first break point. In
this example, the line segment joining the first break point and (n, fn) yields an excessive delay, and
so the second break point is again found as in A1 (iii).

3.6. Case B2: Transitions of Type (02b) and (13b)

As in case B1, (xUi (n), Ui) is given by the intersection of a line segment that joins
(n− 1, fn−1) and (xI(n), f (xI(n))) with y = Ui. We set a first break point at x = xUi (n)
along the line that contains (n− 1, fn−1) and (xUi (n)− dM, Ui). In case the line segment that
joins the first break point and (xI(n), f (xI(n))) yields an admissible delay when crossing
the second threshold, we take (xI(n), f (xI(n))) to be the local maximum; otherwise, we
proceed as in cases B1 (ii), (iii) or (iv), adjusting the maximum value ỹI in order of the
corresponding delay to be within the interval [dm, dM]. Figures 8 illustrates case B2.

Figure 8. Illustration of case B2: fn−1 = 1.968 and fn = 2.017 ( with fn−2 = 1.086 and fn+1 = 1.287).
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3.7. Case D2: Transitions of Type (02d) and (13d)

Here, we determine a first break point using the procedure established for case A1 (iii)
and then apply the appropriate sub-case of case D1, according to whose line segment has
the greatest incline: the line segment joining the first break point and (n, fn) or the line
segment joining (n, fn) and (n + 1, fn+1).

3.8. Case A3: Transitions of Type (03a)

This case is dealt with analogously to case A2, now with the introduction of an extra
initial break point. In order to obtain a more natural decay in the rate of the water level, we
consider that the water level reaches U1 at xU1(n)− 2dM (thus anticipating the crossing of
the first threshold) and that the first break point occurs at xU1(n)− dM.

3.9. Case B3: Transitions of Type (03b)

Analogous to case A3, we introduce the extra initial break point, as defined there, and
then proceed as in case B2.

3.10. Case D3: Transitions of Type (03d)

Again, we introduce the extra initial break point and then proceed as in case D2.

4. Implementation on a Sample of the Data Set

In this section, we apply the algorithms from Sections 2 and 3 to a sample of the data
set and analyse the results obtained. For purposes of this exercise, and since the initial
reading is 0.699375, we consider that the status for the first reading, as given in the data set,
is correct. Thus, s(0) = 0.

We begin by inferring the status of the system as described in Tables 3–6. The status
change condition, if any, that applies to each row of the sample displayed in Table 2,
together with the corrected status of the system, is indicated in Table 7. Figure 9 shows the
water level as given by the data along with the points (xI(n), f (xI(n))), when they exist.
As we saw in Section 2, these points are instrumental when deciding the status transitions.

Table 7. Sequence of 20 rows of the data set with the system status correction.

Time Reading Water Level Original Status Status Change
Condition Corrected Status

12:10 0 0.699375 0 — 0
12:15 1 1.0975 0 — 0
12:20 2 2.1115625 1 (01a) 1
12:25 3 2.338125 1 (12a) 2
12:30 4 2.2928125 1 (23b) 3
12:35 5 1.9346875 1 — 3
12:40 6 1.445 1 (32a) 2
12:45 7 0.99875 1 (21a) 1
12:50 8 1.2565625 1 — 1
12:55 9 1.4234375 1 — 1
13:00 10 1.2134375 0 — 1
13:05 11 0.8346875 2 — 1
13:10 12 0.7 2 — 1
13:15 13 0.9665625 2 (10b) 0
13:20 14 2.51125 2 (03a) 3
13:25 15 1.955625 1 — 3
13:30 16 1.6290625 1 (32a) 2
13:35 17 1.2696875 1 — 2
13:40 18 1.576875 2 (21d) 1
13:45 19 1.82 1 — 1
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Figure 9. The water level using the readings and the existing intersection points (xI(n), f (xI(n))) for
a sample of the data set.

Figure 10 exhibits the comparison between the system status given in the data set and
the corrected status at each time step (in black, as given by the data set, and in red, as given
by the status inference set up in Section 2). Overall, this sample of the original data set
yields a total of 78 5-min “active intervals”, that is, 5-min intervals (some of which coincide
in time) during which a pump was active, whereas the corrected version yields a total of 89
such intervals.

Figure 10. The system status for a sample of the data set, as given in the data set and by its correction
using the rules established in Section 2.

For comparison, we remark that, in the original (complete) data set, there were 7971
5-min intervals in which no pump was working, 53,107 5-min intervals in which one
pump was working, 8924 5-min intervals in which two pumps were working and 41 5-min
intervals in which all pumps were working. Applying the status inference algorithm to
the whole data set, these figures become 9251, 39,531, 18,120 and 3141, respectively. It is
particularly striking how the full operation of the pumps was being underestimated.

Detailing individually for each of the three pumps, the correction of the status deter-
mined by Section 2 yields a total of 30 5-min active intervals for pump 1, 21 5-min active
intervals for pump 2 and 38 5-min active intervals for pump 3. (This analysis, impossible to
perform on the original data on account of its incoherence, uses the modus operandi of the
system: when activating a pump, the system chooses the one that has been switched off
longest and similarly for deactivation.)

Taking into account the modeling of the water level set up in Section 3, which always
anticipates or delays the change of status, these values become 27.664, 20.115 and 38.076,
respectively. Thus, comparing the un-modeled with the modeled version, pump 1 works
approximately 8% less of the time, pump 2 works approximately 4% less of the time, pump
3 works roughly the same time, and the system works approximately 4.5% less of the time
(the total having become 85.855 5-min units). Figure 11 displays the comparison between
the moment when each pump is activated and deactivated (in black, as given by the status
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inference algorithm from Section 2, and in red, as given by the modeling established in
Section 3).

Figure 11. Timeline of the activation and deactivation of each pump for a sample of the data set,
as given by the status inference algorithm from Section 2 and by its correction using the modeling
established in Section 3.

Finally, Figure 12 displays the water level as given by the original data (blue dashed
line) and the water level as modeled in Section 3 (red continuous line). For a better
visualization, we focus on the first 20 entries of the sample under analysis. These graphs
show how the gap completion preserves the water level readings and the extra break points
introduced by this algorithm, with the consequent anticipation/retardation of the crossing
of the thresholds when compared with the original data. The crossing of every appropriate
threshold(s) and the delayed effect of the activation and deactivation of the pumps after
each threshold crossing on the water level can also be observed. The outcome is that the
response of the system is always coherent with its operating mode.

Figure 12. The water level for the first 20 entries of the sample, as given in the data set and by its
correction using the modeling established in Section 3.

5. Conclusions

The algorithm defined in Section 2 allows for the extraction of the correct values of
the status time series at every 5-min step, correcting the existing errors on the original data
set. Although one of the objectives of this work, these figures alone do not provide the
water management company the information needed on the number of active pumps on a
continuous level. For example, if a pump was activated at 12:04:30 and deactivated one
minute later, the status would be 1 for a time step, falsely implying that the pump worked
for 5 min; if the same situation occurred at 12:03:00, the status would not reach the value 1
on the adjacent time steps, and it would be inferred that the pump had always been off.
Both situations represent significant errors. With the algorithm described in Section 3, we
were able to tackle this problem, providing a means to extract the desired information: the
moment when each pump was activated or deactivated. As shown in Section 4, even for
a small sample of the data set, the corrections, both on the status time series and on the
amount, are not negligible.

As for future perspectives, this work could provide more accurate results if the data
for the incoming water in the tank is taken into consideration. As of today, the water
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management company only has daily data for this variable, which of course is not useful
for the intended estimate. Another aspect that could be looked upon is the specificity of
each pump. By evaluating the water lifting capacity of each pump, we could build a model
that not only provides lifting profiles closer to reality, but also incorporates in the model
possible differences between the pumps.
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