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Abstract: In this paper, we investigate solitary wave solutions of the nonlinear electrical transmission
line by using the Jacobi elliptic function and the auxiliary equation methods. We obtain Jacobi elliptic
function solutions as well as kink, bright, dark, and W-shaped solitons as a result. For specific values
of the Jacobi elliptic modulus, we depict bright, dark, and W-shaped soliton solutions as suitable
parameters of the structure. Using the auxiliary equation method gives the combined bright–bright
and dark–dark optical solitons in optical fibers. One result emerges from this analysis: the potential
parameters and free parameters of the method can be employed to degenerate W-shaped bright and
dark solitons. The acquired results are general and can be used for many applications in nonlinear
dynamic systems.
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1. Introduction

In recent years, there has been a significant increase in research into the precise
traveling wave solution in a variety of domains, including fluids, plasma, solid-state,
biological, and chemical systems [1]. Only a few systems, aside from these fields, allow for
simple experimental observations. Nonlinear electrical transmission lines (NETLs) [2–4]
are good illustrations of practical methods to examine how the nonlinear excitations behave
within the nonlinear medium in physics.

Perhaps the most straightforward one-dimensional experimental equipment for ob-
serving and researching the characteristics and propagation of nonlinear waves is a set
of NETLs [5]. They are an effective way to simulate a variety of physical phenomena,
including plasma waves, optical bistability with respect to solitons, and potential issues
with quantum mechanics [6–8]. Since groundbreaking work on a simulation line of the inte-
grable Toda lattice was completed [9,10], they have attracted significant interest. Research
has been done on a few fundamental nonlinear system properties, including shock wave
properties [11–13], solitary wave generation and soliton interaction [14,15], recurrence
phenomena [16], and lattice properties [17,18].

However, engineering and contemporary electronic systems for harmonic creation [19],
pulse shaping [20], and pulse compression directly benefit from the NETLs [21]. Addition-
ally, as will be seen below, NETLs are discrete systems, which are generalized versions of
continuum systems [22–24]. Nonlinear differential-difference equations control them. Since
the original work of Fermi et al. [25,26] in the 1950s, the study of nonlinear differential-
difference equations has garnered a lot of attention.
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In both mathematics and physics, a soliton is a solution to a large class of weakly
nonlinear differential-difference equations. Solitons can take on many different shapes,
including kink, pulse, envelope, brilliant, breather, dark, and many others. They are crucial
components of many physical systems [27–35]. Particularly, solitons are needed to explain
events in biology, astrophysics, optics (optical fiber), and hydrodynamics. Experiments with
NETLs can show that solitons exist in a setting where these two properties are necessary
for them to be nonlinear and dispersive. Researchers that study NETLs are driven by this
very fact.

Many methods, including Hirota’s bilinear [36], the Backlund transformation [37], the
Darboux transformation [38] and others [39–48] have been used to address the traveling
wave solutions of nonlinear evolution equations. In this work, we aim to investigate
analytical solutions of the (2 + 1)-dimension nonlinear electrical transmission line where the
voltage of the dependence relation with a polynomial expression is used. We use the JEF
and the auxiliary equation method to depict the behavior of the W-shaped bright soliton
and other soliton solutions.

2. Model Description

The main purpose of this work is to point out the exact traveling wave of a discrete
NETL in the (2 + 1)-dimension by using the Jacobi elliptic function method (JEM) [49,50].
The (2 + 1)-dimension NETL is given by [51]

∂2

∂t2 (V − αV2 + βV3)− u2
0

(
δ2

1
∂2V
∂x2 +

δ4
1

12
∂4V
∂x4

)
−ω2

0

(
δ2

2
∂2V
∂y2 +

δ4
2

12
∂4V
∂y4

)
= 0. (1)

It is worth mentioning that, the nonlinearity of the model originates from the varactors.
Many coupled versions of the nonlinear LC0 are used in the network of the electrical
transmission line model. The nonlinear capacitance used in this model is the voltage
dependence relation with the polynomial form: C(Vn,m) = C0(1− 2αVn,m + 3βVn,m) [51].

The parameters α and β are, respectively, the nonlinear coefficients that determine the
electric charge stored in the capacitors, while δ1, δ2, u2

0 = 1
L1C0

, and ω2
0 = 1

L2C0
are constants.

The quantity V(x, y, t) characterizes the voltage in the transmission lines. The physical
details of the derivation of Equation (1) are given in [51–54]. It is worth mentioning that
Equation (1) was used in [51]. They obtained Jacobi elliptic function (JEF) solutions, rational
solutions, and soliton solutions.

The project is structured as follows: Section 2 employs the JEFM. In Section 3, we
examine W-shaped bright and dark solitons in the structure using the auxiliary equation
method (AEM). The task is finished in the final segment.

3. Exact Traveling Wave in NETL

To point out exact traveling wave in the structure, we assume δ1 = δ2 = δ, and
ξ = k(x + y − ϑ0t) with V(x, y, t) = V(ξ). Next, Equation (1) can be considered in the
following form [51]

[
ϑ2

0 − (u2
0 + ω2

0)δ
]d2V

dξ2 + v2
0

(
β

d2V3

dξ2 − α
d2V2

dξ2

)
− k2 δ4

12

(
u2

0 + ω2
0

)d4V
dξ4 = 0. (2)

After two integrations of Equation (2) and by assuming that the integration constants
are equal to zero, it is revealed that

[
ϑ2

0 − (u2
0 + ω2

0)δ
]
V + ϑ2

0

(
βV3 − αV2

)
− k2 δ4

12

(
u2

0 −ω2
0

)d2V
dξ2 = 0. (3)

We employ two cases depending on the parameters of the NODE Equation (5). The first
hypothesis is used to point out the JEFM and the second one is used for the AEM.
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3.1. Jacobi Elliptic Function Solutions (JEFs)

We employ the balance principle method between the highest-order derivative Vξξ

and the higher nonlinear term V3 of Equation (3). N = 1 is obtained and, consequently, the
general form of the solution reads

V(ξ) = B0 + B1φ(ξ), (4)

where Bj(j = 0, 1) are unknown parameters to be determined, and φ(ξ) satisfies the
following equation [25]:

∂φ(ξ)

∂ξ
=
√

λ0 + λ1φ(ξ) + λ2φ2(ξ) + λ3φ3(ξ) + λ4φ4(ξ), (5)

with λj(j = 1, 2, 3, 4) being the unknown parameters to determine.
For JEFs, we consider the following assumption λ1 = λ3 = 0. We insert Equations (4)

and (5) into Equation (2). After some algebraic manipulation with the help of MAPLE 18,
we obtain:

• B0 = α
3β , B1 = B1, λ0 = λ0, λ2 = − 8748α2β3(u2

0+w2
0)

3

k2ϑ6
0(2 α2−9 β)

4 , C4 =
39,366β5B2

1(u2
0+w2

0)
3

k2ϑ6
0(2 α2−9 β)

4 , k = k,

δ = − 1
9

ϑ2
0(2α2−9 β)
β (u2

0+w2
0)

.

The constraint relation is β 6= 2
9 α2, while the corresponding JEFs are given under the

following consideration

• If λ0 = 1, λ2 = −(m2 + 1) and λ4 = m2,

V11(x, y, t) =
α

3β
+ B1sn(ξ, m), (6)

V12(x, y, t) =
α

3β
+ B1ns(ξ, m), (7)

V13(x, y, t) =
α

3β
+ B1cd(ξ, m), (8)

V14(x, y, t) =
α

3β
+ B1dc(ξ, m), (9)

• If λ0 = m2, λ2 = −m2 − 1 and λ4 = 1, gives

V21(x, y, t) =
α

3β
+ B1dn(ξ, m), (10)

• If λ0 = 1−m2, λ2 = 2m2 − 1 and λ4 = −m2, gives

V31(x, y, t) =
α

3β
+ B1cn(ξ, m), (11)

• If λ0 = λ4 = 1
4 and λ2 = (1−2m2)

2 , gives

V41(x, y, t) =
α

3β
+

B1sn(ξ, m)

1± cn(ξ, m)
, (12)

with ξ = k(x + y − ϑ0t) and m being the modulus of the JEF, 0 ≤ m ≤ 1. For specific
conditions on the parameters of the nonlinear differential equation (NODE) Equation (4),
we obtain four JEFs. To exhibit the behavior of the dark and bright solitons, we assume that
m→ 1 and Equation (6) degenerate for the dark soliton solution. In Figure 1a,b, we point
out the evolution of the dark soliton with the variation in the potential parameter α. We fix
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the value of the potential parameter to α = 0.12V−1, and the spatiotemporal dark soliton
is shown in Figure 2a. In Figure 1b–d, we increase the values of the potential parameter
sufficiently, and we observe the evolution of the dark soliton, which spreads from left to
right. As we did for Equation (4), we assume that m→ 1, and Equation (5) turn into a bright
soliton solution. In Figure 2a–d, we depict the evolution of the bright and W-SP at different
values of the potential parameter β. In Figure 2a,b, we show that the potential parameter
can induce the bright soliton which tends to have the shape of the W-SP. Additionally,
we increase the strength of the potential parameter to β = 0.35V−1 and β = 0.45V−1,
respectively. The evolution of the W-SP can be observed in Figure 3c,d. To examine the W-
SP in the structure, we consider sufficiently strong values of the potential parameter and set
y = 0.3. In Figure 3a–d, we display the evolution of the W-SP in the NELT. Now using the
rational solution, Equation (12) and assuming that the modulus of the JEFs is m = 1, we can
point out the evolution of the kink like-soliton at different positions of y with a stable shape
(see Figure 4a,b). When the (β) value of the potential parameter increases, we observe that
the W-shaped amplitude increases. One result is that the potential parameters are sources
of energy in the structure. These results suggest that a huge amount of information could
be carried when the electrical transmission lines are used. It is equally worth mentioning
that the obtained outcomes can be used for telecommunication tools designed to produce
the electrical signal during lengthy communication.

Figure 1. Spatiotemporal evolution of the dark soliton Equation (6) with variation in the poten-
tial parameter α. (a–d) are, respectively, the values of the potential parameter. (a) α = 0.12V−1,
(b) α = 0.22V−1, (c) α = 0.12V−1, (d) α = 0.34V−1. The parameters used are ϑ0 = 0.2, β = 0.019V−1,
and B1 = 0.02.
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Figure 2. (a,b) Spatiotemporal evolution of the bright soliton and (c,d) W-SP with variation in the
potential parameter α. (a–d) are, respectively, the values of the potential α = 0.22V−1, B1 = 0.02, y = 0.

Figure 3. W-shaped evolution with variation in the potential parameter α. (a–d) are, respectively,
the values of the potential parameter. (a,b) α = 0.3V−1, (c,d) α = 0.35V−1. The parameters used are
ϑ0 = 0.2, β = 0.019V−1, B1 = 0.02, y = 0.2.
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Figure 4. Spatio-temporal evolution of the Kink like-soliton with variation in the potential parameter
β at different positions y. (a–d) are, respectively, the values of the parameter y (a) y = 0.1, (b) y = 0.3,
(c) y = 0.4 and (d) y = 0.5. The parameters used are ϑ0 = 0.2, β = 0.019V−1, B1 = 0.02, α = 0.22V−1.

3.2. Soliton Solutions

As we have used the balance principle above N = 1, for soliton solutions, we use the
general form of the solution in the following equation:

V(ξ) = B0 +
B1φ(ξ)

1 + φ2(ξ)
+

B2
(
1− φ2(ξ)

)
1 + φ2(ξ)

. (13)

We now assume that

• λ1 = 0, λ3 = 0.

and Equation (5) reads

∂φ(ξ)

∂ξ
=
√

λ0 + λ2φ2(ξ) + λ4φ4(ξ). (14)

By inserting Equations (13) and (14) in Equation (3), we obtain the following after
setting the coefficients of (φ(ξ))j, (j = 0, 1, 2, 3, 4, 5, 6) to zero:

• Result 1:

B0 = −B2, B1 = 0, B2 = B2, λ2 = −
162
(
u2

0 + w2
0
)3
(3βB2 + 2 α)B2

ϑ6
0k2
(
6βB2

2 + 4αB2 + 3
)4 ,

λ4 = −
324
(
u2

0 + w2
0
)3
(3β B2 + α)B2

ϑ6
0k2
(
6β B2

2 + 4αB2 + 3
)4 , δ =

1
3

ϑ2
0
(
6βB2

2 + 4αB2 + 3
)

u2
0 + w2

0
, k = k,

(15)

with the constraint relation 6β B2
2 + 4αB2 + 3 6= 0, and B2 6= 0.
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Consequently, the general of the solution gives

V(ξ) = −B2 +
B2

(
1− (φ`(ξ))

2
)

1 + (φ`(ξ))
2 , ` = 1, . . . , 4. (16)

• Result 2:

B0 = B0, B1 = 0, B2 =
3B0(−2βB0 + α)

α
,

λ2 = −
6B0(−6 β B0 + α)(−2 β B0 + α)(−3βB0 + 2 α)α6(u0

2 + w2
0
)3

ϑ6
0k2
(
−36β3B4

0 + 48 α β2B3
0 − 22 α2β B2

0 + 4 α3B0 − α2
)4 ,

λ4 = −
12B0α7(−2 β B0 + α)(−3 β B0 + α)

(
u2

0 + w2
0
)3

ϑ6
0k2
(
−36 β3B0

4 + 48 α β2B0
3 − 22 α2β B2

0 + 4 α3B0 − α2
)4 ,

δ = −
(
−36 β3B4

0 + 48 α β2B3
0 − 22 α2β B2

0 + 4 α3B0 − α2)ϑ2
0

α2
(
u2

0 + w2
0
) , k = k,

(17)

with the constraint relation −36 β3B0
4 + 48 α β2B0

3 − 22 α2β B2
0 + 4 α3B0 − α2 6= 0.

Consequently, the corresponding general form of the solution gives

V(ξ) = B0 +
3B0(−2βB0 + α)

(
1− (φ`(ξ))

2
)

α
(

1 + (φ`(ξ))
2
) , ` = 1, . . . . . . , 4. (18)

The corresponding exact traveling wave solutions of the NLET are given by the
following cases:

• Case 1: λ2 > 0, λ4 < 0, and p > 0, q > 0, and a bright and singular soliton is
obtained

φ±1 (ξ) = ±

√
− pqλ2

λ4
sechpq

(√
λ2ξ
)

, (19)

and

φ±2 (ξ) = ±

√
pqλ2

λ4
cschpq

(√
λ2ξ
)

. (20)

• Case 2: λ2 < 0, λ4 > 0, and λ4 6= 0, p > 0, q > 0, and we obtained periodic and
singular solutions

φ±3 (ξ) = ±

√
− pqλ2

λ4
secpq

(√
−λ2ξ

)
, (21)

and

φ±4 (ξ) = ±

√
− pqλ2

λ4
cscpq

(√
−λ2ξ

)
. (22)

To examine the behavior of the NETL on the solitonic waves, we insert Equation (19)
into Equation (18) and use Equation (17). We obtain

V2.2.1(ξ) = B0 +
3B0(−2βB0 + α)

(
1− (φ1(ξ))

2
)

α
(

1 + (φ1(ξ))
2
) . (23)

For λ0 = 1
4

λ2
2

λ4
it is obtained

• Result 3:
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B0 = B0, B1 = B1 = 2

√
B0(−3βB0 + 2α)

3β
,

B2 =

√
−3B0(−3βB0 + 2α)

3β
, λ2 = −

8748α2β3(u2
0 + w2

0
)3

ϑ6
0k(2α2 − 9β)

4 ,

λ4 =
1458β4(u2

0 + w2
0
)3
(

18
√

3B2B2
0 β2 − 54B3

0 β2 − 12
√

3B2B0αβ + 54B2
0αβ +

√
3B2α2 − 12B0α2

)
B2

6B0(−3βB0 + 2α)k2(2α2 − 9β)
4 ,

δ = −
ϑ0

2(2α2 − 9β
)

9β
(
u2

0 + w2
0
) , k = k,

(24)

with the constraint condition (−3βB0 + 2α)k2(2α2 − 9β
)4 6= 0.

Thus, the general form of the solution gives

V(ξ) = B0 +
B1φ`(ξ)

1 + φ2
` (ξ)

+
B2
(
1− φ2

` (ξ)
)

1 + φ2
` (ξ)

, ` = 5, . . . , 14. (25)

Consequently,

• Case 4: If λ2 > 0, λ4 < 0, and we obtain trigonometric function solutions in the form

φ±5 (ξ) = ±1
2

√
2λ2

λ4
tanpq

(
1
2

√
2λ2ξ

)
, (26)

φ±6 (ξ) = ±1
2

√
2λ2

λ4
cotpq

(
1
2

√
2λ2ξ

)
, (27)

φ±7 (ξ) = ±1
2

√
2λ2

λ4

(
tanpq

(√
2λ2ξ

)
±√pq secpq

(√
2λ2ξ

))
, (28)

φ±8 (ξ) = ±1
2

√
2λ2

λ4

(
cotpq

(√
2λ2ξ

)
±√pq cscpq

(√
2λ2ξ

))
, (29)

φ±9 (ξ) = ±1
4

√
2λ2

λ4

(
tanpq

(√
λ2

8
ξ

)
±√pq cotpq

(√
λ2

8
ξ

))
, (30)

• Case 5: If λ2 < 0, λ4 > 0, we obtain dark, singular and combined soliton solutions in
the structure as

φ±10(ξ) = ±
1
2

√
−2λ2

λ4
tanhpq

(
1
2

√
−2λ2ξ

)
, (31)

φ±11(ξ) = ±
1
2

√
−2λ2

λ4
cothpq

(
1
2

√
−2λ2ξ

)
, (32)

φ±12(ξ) = ±
1
2

√
−2λ2

λ4

(
tanhpq

(√
−2λ2ξ

)
± i
√

pqsechpq

(√
−2λ2ξ

))
, (33)

φ±13(ξ) = ±
1
2

√
−2λ2

λ4

(
cothpq

(√
−2λ2ξ

)
±√pqcschpq

(√
−2λ2ξ

))
, (34)

φ±14(ξ) = ±
1
4

√
−2λ2

λ4

(
tanhpq

(√
−λ2

8
ξ

)
±√pq cothpq

(√
−λ2

8
ξ

))
, (35)

with p and q constants greater than zero, which are called deformation parameters.
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sechpq(ξ) =
2

peξ+qe−ξ , cschpq(ξ) =
2

peξ−qe−ξ , secpq(ξ) =
2

peiξ+qe−iξ ,

cscpq(ξ) =
2i

peiξ−qe−iξ , tanhpq(ξ) =
peξ−qe−ξ

peξ+qe−ξ , cothpq(ξ) =
peξ+qe−ξ

peξ−qe−ξ ,

tanpq(ξ) = −i peiξ−qe−iξ

peiξ+qe−iξ and cotpq(ξ) = i peiξ+qe−iξ

peiξ−qe−iξ .

In Figure 5a,b, we display the spatiotemporal evolution of the W-SS with variation in
the potential parameters. From Figure 5a, we keep the parameter β = 0.012V−1 fixed and
set α = 0.19V−1 and α = 0.29V−1, respectively. We show that its amplitude increases to
1.5. Additionally, we fix the potential parameter α = 0.2V−1 and increase the value of the
potential parameter β = 0.019V−1, which shows that the W-formed has increased to reach
1. By increasing the value of the potential parameter β = 0.02V−1, the W-shaped is well
formed and maintains its fixed amplitude, as shown in Figure 5d.

Now, we insert Equation (31) into Equation (25) with Equation (24) and the following
is obtained:

V2.3.4(ξ) = B0 +
B1φ5(ξ)

1 + φ2
5(ξ)

+
B2
(
1− φ2

5(ξ)
)

1 + φ2
5(ξ)

. (36)

In Figure 6a,b, we show the evolution of the W-SS for suitable parameters of the NELT.
It is shown that, for λ2 < 0 and λ4 > 0, the W-shaped emerges in the structure with a
higher amplitude than in the case of λ2 > 0 and λ4 < 0. With the same conditions, in
Figure 7a–d, we show the W-shaped profile with the effects of the NELT parameters. One
can observe that the potential parameters and the parameters of the auxiliary equation are
all important in the system and they are behaving as sources of energy.

Figure 5. W-SS with variation in the potential parameters α and β. (a,b) are, respectively, the values
of the parameter α, while (c,d) denotes the potential parameter β. (a) α = 0.19V−1, (b) α = 0.29V−1,
(c) β = 0.019V−1 and (d) β = 0.02V−1. The parameters used are p = q = 1, ϑ0 = 0.1, B0 = −0.02,
λ2 = 10.5, λ4 = −0.012.
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Figure 6. W-SS with the effects of the NELT parameters. (a,b) are, respectively, the 2D and 3D W-SP.
The parameters used are p = q = 1, ϑ0 = 0.1, y = 0, B0 = −0.02, B1 = 0.1, B2 = −4.02, λ2 = −0.5,
λ4 = 0.2, α = 0.1V−1, β = 0.019V−1.

Figure 7. W-SS with the effects of the NELT parameters. The parameters used are p = q = 1,
ϑ0 = 0.1, y = 0.42, B0 = −0.02, B1 = −0.1, B2 = −4.02, ϑ = 0.21, λ2 = −0.45, λ4 = 0.02,
α = 0.1V−1, β = 0.019V−1.
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4. Conclusions

In this work, we used the JEF and auxiliary equation methods to construct the exact
traveling waves soliton propagating along a nonlinear electrical transmission line. We
used the transformation hypothesis to acquire the NODE. It is assumed that λ1 = 0 and
λ3 = 0 lead to a family of Jacobi elliptic function solutions being obtained. Thereafter,
we apply a new form of the general solution to point out bright, dark, W-shaped soliton,
combined trigonometric solutions and combined complex solutions, and a singular soliton
also emerges under certain conditions on the auxiliary equation parameters. One can
observe that the outcomes of this work cover a wide class of soliton solutions. Without
a doubt, these solutions will be helpful for solitary wave theory and data transport in
telecommunication systems.
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