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Abstract: A practical solution to the power allocation problem in ultra-dense small cell networks can
be achieved by using deep reinforcement learning (DRL) methods. Unlike traditional algorithms,
DRL methods are capable of achieving low latency and operating without the need for global real-
time channel state information (CSI). Based on the actor–critic framework, we propose a policy
optimization of the power allocation algorithm (POPA) for small cell networks in this paper. The
POPA adopts the proximal policy optimization (PPO) algorithm to update the policy, which has
been shown to have stable exploration and convergence effects in our simulations. Thanks to our
proposed actor–critic architecture with distributed execution and centralized exploration training, the
POPA can meet real-time requirements and has multi-dimensional scalability. Through simulations,
we demonstrate that the POPA outperforms existing methods in terms of spectral efficiency. Our
findings suggest that the POPA can be of practical value for power allocation in small cell networks.

Keywords: power allocation; deep reinforcement learning; actor–critic

MSC: 94-10

1. Introduction

As one of the key ways to achieve next-generation communication networks, ultra-
dense small cell networks (UDSCNs) can increase network capacity and coverage, and
reduce energy consumption. However, UDSCNs have serious interference problems due
to complicated environments. Interference control and resource allocation for UDSCNs
are current hot research topics, including user association, spectrum resource allocation,
and power control. To improve the overall spectral efficiency of the system, real-time
power allocation for UDSCNs is an NP-hard problem. Traditional algorithms (such as
fractional programming (FP) [1] and the weighted minimum mean squared error (WMMSE)
algorithm [2]) are effective but require global CSI; they have very high computational
complexity, which is not feasible in practice.

For power allocation problems, deep Q-learning (DQL)-based algorithms [3], such
as [4,5], are only suitable for discrete action spaces and have low accuracy. Reinforcement
learning optimization algorithms based on the deterministic policy gradient (DDPG) [6],
such as [7], are an improvement of DQL for continuous action spaces. References [8,9] use
centralized training and distributed execution frameworks, and [10] designed a multiple-
actor-shared-critic method to synchronize the actor-network parameters between local and
central controllers, which effectively solves the latency problem and has good scalability
and realistic feasibility. However, the DDPG algorithm uses action noise for the action
space exploration and the convergence is usually not stable due to the dependence on many
hyperparameters [11]. For a specific environment, it needs to do a lot of work for tuning
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and is difficult to be directly used in another environment, i.e., the fixed hyperparameters
can only have a noticeable effect in a specific environment.

The focus of this study is to present a detailed investigation of the mathematical
principles involved in power allocation and propose a new algorithm that we believe could
be of practical value. In this paper, we propose a deep reinforcement learning optimization
framework based on actor–critic architecture for power allocation in UDSCNs, named the
policy optimization of the power allocation (POPA) algorithm, which helps to achieve high
performance, is scalable, and can be used for various resource allocation problems. In our
proposed POPA scheme, the proximal policy optimization (PPO) algorithm [12] is used for
power allocation in small cell networks to mitigate interference, improve overall capacity,
and meet QoS requirements. The main contributions are summarized as follows:

1. Based on the actor–critic framework, we propose a novel policy optimization algo-
rithm for power allocation (POPA) in small cell networks with distributed execution
and centralized exploration training, which is suitable for continuous action spaces
and can reduce the computational complexity and storage of SBSs, and ensure that
SBSs can obtain power policy in real time.

2. The actor–critic-based policy optimization framework proposed in this paper can
work effectively without the need for real-time global CSI; the training convergence
effects of networks are fast with high robustness.

3. The optimization framework proposed in this paper is scalable, not only for increasing
or decreasing the number of base stations in an environment, but also for deployment
in different environments and other wireless networks without adjusting most of the
hyperparameters.

The rest of this paper is organized as follows. We provide the system model and
the formulation of the power allocation problem in Section 2. We describe the proximal
policy optimization algorithm in Section 3 and the proposed power allocation algorithm in
Section 4. The simulation results are presented in Section 5. Conclusions and discussion
are given in Section 6.

2. System Model and Problem Formulation

In this paper, we consider a typical network structure with the power allocation
problem, consisting of n areas with an SBS in the center of each area serving the user
equipment (UE), as shown in Figure 1. The system model considers downlink interference,
the SBSs share the same spectrum among themselves, and the UE is equipped with a single
antenna. The SBSs are connected via backhaul links to a centralized controller with high
computational and storage capacity.

Figure 1. Ultra-dense small cell network environment.

2.1. Channel Model

Let N = {1, 2, . . . , n} be the set of area indices; the indices of SBSs and UEs are the
same as the area to which they belong. The channel gain gt

ij, i, j ∈ N from SBSi to UEj in
time slot t consists of large-scale fading βt

ij and small-scale fading ht
ij:

gt
ij = βt

ij|ht
ij|2 (1)
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where large-scale fading accounts for path loss and shadow fading and does not vary over
long time slots. The small-scale fading is a first-order complex Gauss–Markov process
according to Jakes’ channel model [13]:

ht
ij = ρht−1

ij +
√

1− ρ2δt
ij (2)

The variables h0
ij and δt

ij are independently and identically distributed complex Gaus-
sian random variables with unit variance, i.e., they follow CN (0, 1). The correlation factor
ρ = J0(2π fdTs), where J0(·) is the first class zero-order Bessel function, fd is the maximum
Doppler frequency, and Ts is the period of the time-slotted system.

2.2. Problem Formulation

The signal-to-interference-plus-noise ratio (SINR) of the link from SBSi to UEi in time
slot t is a function of the power allocation policy Pt = {pt

1, pt
2, . . . , pt

n}:

SINRt
i =

gt
ii p

t
i

∑j∈N,j 6=i gt
ji p

t
j + σ2 (3)

where σ2 is the variance of additive Gaussian white noise (AGWN).
The spectral efficiency of SBSi in time slot t is

Ct
i (Pt) = log2(1 + SINRt

i) (4)

and the total spectral efficiency of the system is

Ct(Pt) = ∑
i∈N

Ct
i (Pt) (5)

With the limit of the power range of each SBS, the optimization problem is

max
Pt

Ct(Pt)

s.t.0 ≤ pt
i ≤ pmax, ∀i ∈ N

(6)

where pmax is the maximum power of the SBSs. The optimization problem is non-convex
and NP-hard [14], and each SBS must receive the power allocation scheme at the beginning
of each time slot t. Model-based optimization algorithms, such as FP and WMMSE, have
extremely high computational complexity and require real-time global CSI, which is not
feasible in practice.

3. Proximal Policy Optimization Algorithm
3.1. Overview of Deep Reinforcement Learning

The agent and environment are key elements of reinforcement learning. The agent
observes the environment and decides on an action to take at each step of the interaction.
The environment changes when the agent acts upon it and may also change on its own.
The outcome of the agent’s action on the environment is a reward, which measures the
positive or negative effect of the agent’s action on the environment. DRL [15] combines
deep learning and reinforcement learning to adapt to complex environments and achieve
better results.

Most current deep reinforcement learning-based power allocation algorithms for
wireless networks use DQL and DDPG [6] algorithms, which belong to the Q-learning
branch. They require training to obtain an approximation of the action value function,
which indirectly optimizes the agent’s performance. They are mostly off-policy, meaning
that data from any time during training can be used at each update, regardless of how
the agent chooses the action when acquiring the data. Various Q-learning-based policy
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optimization algorithms optimize the parameters of the policy directly by gradient ascent
on the performance optimization objective, and are on-policy, using only the data collected
during the last operations. The core idea of the policy gradient algorithm is to increase the
probability of actions that bring more rewards and decrease the probability of actions that
bring fewer rewards until the best policy is reached.

Q-learning-based algorithms can only indirectly optimize agent performance by train-
ing a value network. It is also noteworthy that the state of the wireless network environment
is generally not strongly correlated with the choice of action, i.e., user movement, changes
in channel state, etc., are largely unrelated to power allocation. This rapidly changing and
complicated environment often makes it difficult to estimate the action value function, and
old historical training data is not guaranteed to optimize the training. It is worth noting that
the DDPG algorithm is an algorithm that combines Q-learning with policy optimization
by obtaining actions through a deterministic policy network and can be regarded as a
DQL algorithm that operates in the continuous action space and relies on the action value
function in its core. As DDPG is an off-policy method, exploration noise can cause sudden
failures in unstable environments [11,16]. In comparison, the main advantage of policy
optimization methods is that they optimize directly for the optimization objective and are
usually more stable and reliable [17].

3.2. Proximal Policy Optimization Algorithm

The proximal policy optimization (PPO) algorithm [12] is designed to optimize the
policy network as much as possible while using the current data in a short period of time,
reducing the complexity of the operation, and it ensures that each policy update has a
relatively small deviation from the previous one. The PPO algorithm strikes a balance
between pattern complexity, ease of implementation, and tuning.

The PPO consists of an actor network and a critic network. The input of the actor
network in time slot t is st, which is the state of the environment, and the output is the
power allocation policy. The input of the critic network is the same as the actor network and
the output value V(st) is an estimate of the cumulative reward Rt for the last T time slots.
The cumulative reward is used for the training of the critic network, which is computed as

Rt = rt + γrt+1 + γ2rt+2 + . . . + pow(γ, T − t + 1)rT−1 (7)

where γ is the discount factor and rt is the reward of the current action.
The advantage function represents the performance of the current action relative

to the old policy average. Actions must be executed in an environment of T time slots
(usually very short) using the old actor-network parameters for each policy update step.
The data during each period are collected to compute the estimate of the policy advantage
function. The advantage function is estimated using the widely used method proposed
in [18], which is

At = χt + (γλ)χt+1 + (γλ)2χt+2 + . . . + pow(γλ, T − t + 1)χT−1 (8)

where χt = rt + γV(st+1)−V(st) is the action advantage value in time slot t and λ is the
generalized advantage estimation parameter.

The PPO algorithm calculates the gradient of the policy gradient objective LPPO(θ)
and uses a gradient ascent algorithm for policy optimization. In this paper, we use the
policy gradient objective of the clip variants [12]:

LPPO(θ) = Et[min(ϕt(θ)At, clip(ϕt(θ), 1− ε, 1 + ε)At)] (9)

where
clip(ϕt(θ), 1− ε, 1 + ε) = min(max(ϕt(θ), 1− ε), 1 + ε)) (10)
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and

ϕ(θ) =
πθ(at|st)

πθold(at|st)
(11)

where at is the action for the environment in time slot t, πθ(at|st) is the probability of
obtaining action at from the current actor network, and πθold(at|st) is the probability of
obtaining the same action from the old actor network.

An alternative form of the policy gradient objective is

LPPO(θ) = Et[min(ϕt(θ)At, f (ε)At)] (12)

where
f (ε) = {1+ε, A≥0

1−ε, A<0 (13)

The hyperparameter ε is typically 0.2 or 0.1, which limits the range of probability
ratios. The PPO algorithm ensures that each policy update is controlled within a certain
range by restricting the optimization objective, and the low complexity of the algorithm
can meet the conditions for use in environments with high real-time requirements.

4. The Proposed Power Allocation Algorithm
4.1. Framework Architecture

The policy optimization of the power allocation algorithm (POPA) proposed in this
paper is shown in Figure 2 with a distributed execution and centralized exploration training
architecture, which ensures that the SBSs can obtain the policy in real time. The computation
of the reward function is not required in the distributed execution phase, which reduces
the computational pressure on the SBSs. The POPA can achieve the global optimization
effect while each SBS only uses the local CSI.

Figure 2. Policy optimization of the power allocation (POPA) algorithm architecture.

Figure 3 is an illustration of the actor–critic in the POPA. The actor network is used as
a policy network for the PPO algorithm, where the input is state st of the environment and
the output is the power allocation policy. The centralized controller contains a data center
to store the historical data of the ultra-dense network and sets up a critic network for each
SBS and an actor network with the same parameters as the local actor network. For the
critic network, the input is state st of the environment and the output is the value estimate,
i.e., the cumulative reward value estimate V(st).

For the discrete action space, the output of the actor network is the probability of
each possible action. However, quantifying power as a discrete value would reduce the
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accuracy of the power allocation for the power allocation problem. In order to make
the actor network operate on the continuous action space, in this paper, the output of
the actor network is set to the mean mean and variance var of the two-parent normal
distribution of the truncated normal distribution mean. The lower and upper bounds of
this truncated normal distribution are 0 and 1, respectively, and the power allocation policy
is determined by multiplying the maximum power pmax of the SBS by the value chosen
from the distribution.

Figure 3. An illustration of the actor–critic in the POPA.

The SBS obtains the best action by the power allocation policy of the local actor
network at each time slot and acts in the environment before the next time slot starts to
achieve the effect of real-time power control, while transmitting the local state information
st (local data) to the centralized controller and storing it in the data center through the
backhaul link. After receiving the state information, the centralized controller obtains the
power allocation policy from the actor network and selects action at and its probability
according to the distribution of the policy. Then, it calculates the reward value rt based on
the global information to complete the action space exploration and stores it in the data
center for policy optimization. It is worth noting that the policy output by the actor implies
the probability of power allocation, and the local actor can directly choose the action with
the highest probability without random selection for the sake of action space exploration.
The calculation of the exploration reward value for the action space is done by the central
controller, which reduces the computational pressure on the local actor to ensure real-time
performance. This also allows the reward calculation to have global state information
without requiring cooperation between base stations.

The central controller performs PPO on the actor and critic networks based on the
data from the data center with a time step T as a period. It then transmits the parameters of
the actor network with the best reward effect to the corresponding local actor network for
soft updating of the parameters every Tu period. This ensures that the local actor-network
parameters are the same as the centralized training of the latest actor-network parameters,
and are the same as those of the centrally trained actor network.

4.2. Process of Proximal Policy Optimization

The central controller needs to perform pre-training preparation after each local data
acquisition and completion of action space exploration by feeding state st to the critic
network to obtain the cumulative reward value estimate V(st) and store it in the data center.
After obtaining the closest T data sets according to the time t, the controller performs
parameter training optimization for the actor network (itera) and the critic network (iterc).

For the actor network, the advantage function At is computed first; in each training
process, state st is fed into the latest actor network to obtain π(at|st), from which the
gradient of the PPO objective LPPO(θ) is computed; according to this gradient, the gradient
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ascent optimization algorithm is carried out. This paper uses the Adam optimizer [19]
for training.

For the critic network, the cumulative reward value Rt is first calculated and used as
the target value, and the estimated value V(st) is trained iterc times for the critic network
using the gradient descent algorithm to make its output close to the true cumulative
reward value.

4.3. Algorithm Design
4.3.1. State and Action Space

For practical feasibility, the algorithm proposed in this paper only uses the local CSI as
the environment state and does not require any information exchange between the SBSs.
The SBSs must receive the power allocation action at from actori before the arrival of the
time t. Therefore, state st

i consists of the information of the environment in time slot t− 1:

st
i = {pt−1

i , gt−1
ii , ∑

j∈N,j 6=i
gt−1

ji pt−1
j , It−1

i } (14)

where It
i is the set of interfering powers, consisting of the top c interfering powers, ordered

from highest to lowest according to the interfering power received by UE i. If the number
of interfering base stations is less than c, the empty spaces are filled with zero (padding).
Thus, state st

i consists of 3 + c elements. The action space is the power assigned to the SBSs
in time slot t:

at
i = {pt

i} (15)

4.3.2. Reward Function

After the local data are transferred to the central controller’s data center, the reward
for each agent can be calculated based on the global information:

rt
i =

Ct(Pt)

n
(16)

4.3.3. Action Selection Distribution

In this paper, a truncated normal distribution is used as the action selection distri-
bution, whose truncated allowed range is the power range [0, pmax] for each SBS, and
the power allocation action is selected according to this distribution. In time slot t, the
output of actori is the mean meant

i and variance vart
i of its bi-parental normal distribution.

The probability density function of its action selection distribution is as follows; when
0 ≤ x ≤ pmax:

pd f t
i(x) =

1√
vart

i

φ(
x−meant

i√
vart

i
)

Φ(
pmax−meant

i√
vart

i
)−Φ(

0−meant
i√

vart
i
)

(17)

where

φ(ξ) =
1√
2π

exp
(
−1

2
ξ2
)

(18)

is the probability density function of the standard normal distribution, and Φ(·) is its
cumulative distribution function. For the other cases, pd f t

i(x) = 0.

4.4. Framework Scalability

The framework proposed in this paper focuses on multidimensional scalability. Firstly,
the state and action space of each agent are the same, which is still applicable to multi-layer
heterogeneous networks, and the base stations of different layers can be uniformly indexed,
making it scalable in terms of network heterogeneity. Second, when the number of base
stations increases, similar to the scalability on the aspect of network heterogeneity, the
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corresponding actor–critical network can be expanded, and the framework can also be
applied by treating each user as an agent when base stations serve multiple users, which
allows scalability on the aspect of the number of base stations and users with only a few
modifications. Finally, for other similar environments, such as power allocation for cellular
networks, software-defined networks, and other wireless networks, the power allocation
algorithm of this policy optimization framework can be applied without much tuning,
which is scalable in terms of multiple environments. Compared with DQL- and DDPG-
based algorithms, the optimization of our proposed POPA is more stable and portable.

5. Simulation
5.1. Simulation Setup

Small cell networks with n SBSs were simulated. Unless otherwise stated, the param-
eters for the simulation are given in Table 1. For every SBS, the maximum power Pmax
is 30 dBm over the 10 MHz frequency band. In the simulation, we obtain the distance-
dependent path loss by 120.9 + 37.6 log10(d) (in dB) following the LTE standard, where d
is the SBS-to-UE distance in km. The AGWN power σ2 is −144 dBm and the log-normal
shadowing standard deviation is 8 dB. The SBS-to-SBS distance is set at 20 m, and we also
define an inner area within a radius of 3 m from each SBS, where no UE is allowed to be
placed. In addition to these parameters, we set the time-slotted system period Ts to 20 ms
and the maximum Doppler frequency fd to 10 Hz for all UEs.

As shown in Figure 4, we use the same architecture for the actor and critic networks,
which have one input layer, two hidden layers, and one output layer. The input layers of
both the actor and critic networks consist of 3 + c neurons, and both hidden layers contain
64 neurons. The difference lies in the fact that the output layer of the actor network has
two units that represent the mean and variance of the action selection distribution, while
the output layer of the critic network has only one neuron that represents the cumulative
reward value estimate. The activation function of the output layer is sigmoid, and the
rectified linear unit (ReLU) is adopted in the hidden layers. The output is linearly aligned
to the power range. The Adam algorithm [19] is adopted as the optimizer; the learning
rate for the actor network is lra and the critic network is lrc. By default, the actor and critic
networks are trained 50 times per 100 time slots, and networks that have the best average
episodic reward ever will be used for distributed execution.

Table 1. Simulation Parameters.

Parameters Values

n 16
c 5
ε 0.2
T 100
γ 0.99
λ 0.97

itera 50
iterc 50
lra 0.001
lrc 0.001
Tu 20 ms

hidden layers (64, 64)
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Figure 4. The actor and critic networks for the POPA.

5.2. Clip Range

The clip range ε in the POPA ensures that the actor network updates in a trust region
and has better convergence during training. Figure 5 shows the episodic average rewards
during training with different clip ranges. As shown in the results, a clip range that is
too large can result in uncontrolled policy updates and trap the actor network in local
optimization. On the other hand, a clip range that is too small may cause the actor network
to plateau without significant improvement. We chose a default clip range of 0.2, which
balances the convergence effect.

Figure 5. Episodic average rewards while training with different clip ranges.

5.3. Algorithm Comparison

The DDPG [6], ideal FP algorithm [1], random power, and maximum power are chosen
as benchmarks, and the results are shown in Figure 6. We compare the performance of
DDPG and PPO algorithms using identical settings, such as the same state and action
space, reward function, model, and training parameters as specified in the simulation setup.
Compared to random and maximum power approaches, DDPG demonstrates a significant
improvement in performance. However, it falls behind when compared to the POPA,
which is based on the PPO algorithm. The ideal FP algorithm has the best performance,
but it needs full real-time CSI and has extremely high computational complexity, which
is not feasible in practice. Our proposed POPA algorithm has shown good performance
while only requiring local CSI; the execution time for an SBS to obtain power allocation is
very short.
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Figure 6. Average spectral efficiency (bps/Hz) in 1000 time slots.

Figure 7 shows the average executions per second for each algorithm in our simulation
environment with an Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz, 16 GB RAM, and a
GeForce RTX 3060 LHR GPU. The POPA has an average execution time of 1.46 ms, which
means it can be executed approximately 684 times per second. In comparison, DDPG
has an average execution time of 1.43 ms, which means it can be executed approximately
657 times per second. The maximum and random power have average execution times of
1.24 ms and 1.28 ms, respectively, which means they can be executed approximately 909 and
869 times per second, respectively. However, the ideal FP takes 15.60 ms for the execution
and can be executed 64 times per second in the same condition. In our experiments, we
found that—compared to the maximum power allocation—for every additional 1% of
the execution time, the POPA can achieve about 1% improvement in spectral efficiency,
which is a significant improvement in communication systems, while DDPG can achieve a
0.46% improvement and ideal FP can only have a performance improvement of 0.03%. The
observation suggests that the POPA algorithm may outperform the other schemes in real
experiments or practical scenarios.

Figure 7. Comparison of the average executions per second.

6. Conclusions

In this paper, we propose a novel policy optimization of the power allocation algorithm
(POPA) for small cell networks based on an actor–critic framework. The POPA requires
only local CSI and low computational complexity, making it a practical solution for power
allocation in small cell networks. Based on simulations, the POPA outperforms benchmark
algorithms, such as DDPG, random power, and maximum power. Moreover, the POPA is
able to achieve the same level of performance with a much lower computational complexity;
only local CSI is required with a smaller amount of loss in terms of the network throughput
compared to the ideal FP algorithm. Specifically, the POPA has an average execution time of
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1.46 ms, which is close to the DDPG average execution time of 1.43 ms, and is comparable to
the maximum power and random power (1.24 ms and 1.28 ms, respectively). Additionally,
the POPA is approximately 91% faster than the ideal FP algorithm (15.60 ms).

We believe that our proposed algorithm has the potential to significantly improve
the performances of small cell networks and enable efficient and practical power alloca-
tion. Future work could explore the performance of the POPA in real-world experiments
and its potential for further optimization. Moreover, additional research could inves-
tigate the scalability and adaptability of the POPA in various network scenarios and
deployment scenarios.

In summary, the framework design of the POPA enables good performance and multi-
dimensional scalability, making it a promising solution for power allocation in small cell
networks. We hope that our research will inspire further investigations into the application
of the actor–critic frameworks and policy optimization algorithms in the field of wireless
communication networks.
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