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Abstract: Neuronal models have remained an important area of research in computer science.
The dendritic neuron model (DNM) is a novel neuronal model in recent years. Previous stud-
ies have focused on training DNM using more appropriate algorithms. This paper proposes an
improvement to DNM based on the activity of excitation and proposes three new models. Each
of the three improved models are designed to mimic the excitation and inhibition activity of neu-
rons. The improved model proposed in this paper is shown to be effective in the experimental part.
All three models and original DNM have their own strengths, so it can be considered that the new
model proposed in this paper well enriches the diversity of neuronal models and contributes to future
research on networks models.
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1. Introduction

Over the past two centuries, researchers have significantly advanced our knowledge
of neurons, particularly regarding their morphological structures and underlying principles
of action. Neurons can generally be divided into two components: cell bodies and neurites.
While some neurons, such as Purkinje neurons, have dendrites and axons separated within
the neurites [1], others, such as LP neurons in the crab stomach, only have axons and
neurites [2]. Neurites that only receive signals are called dendrites, while those that
both receive and send signals are simply referred to as neurites. Neurons are further
categorized into different zones, including receptive, trigger, conducting, and output
areas [3,4]. When a signal is transmitted to a neuron, it passes through the receptive
zone, where it is received in a stepped graded electrogenesis. In the trigger zone, the
axon initial segment integrates electrical signals to determine whether to generate a nerve
impulse. The conducting zone consists of axons that transmit nerve impulses as a stepped
electrical signal to the output zone, which transmits substances or releases electricity to
affect the next neuron [5–8]. As cells in the central nervous system (CNS), neurons receive
and transmit electrochemical signals through neurotransmitters. They are anatomically
designed to facilitate the reception and diffusion of information [9], with axons sending
signals and dendrites receiving signals from other neurons. Neurons can also be classified
as either excitatory or inhibitory, depending on the type of signal they release, which
can depolarize or hyperpolarize their target neurons. Neurotransmitters mediate the
propagation of electrical signals and produce excitatory or inhibitory responses in the
postsynaptic membrane [10]. Prior to the current century, the reticular nervous system was
the prevailing understanding of the nervous system, with the impulse signal representing
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the perception of information transmitted by individual neurons. As our knowledge of
basic biology continues to evolve, so too does our understanding of artificial neural systems.

Recently, artificial neural networks (ANNs) have become increasingly popular across
various fields, opening the door to deep learning. ANNs are known for their ease of use
and ability to produce excellent results, making them suitable for almost any practical appli-
cation [11]. Most mainstream deep learning models are based on multilayer parameterized
McCulloch–Pitts neurons, known as neural networks [12]. Representative models include
convolutional neural networks, recurrent networks, and deep residual networks [13–15].
However, the success of these models heavily relies on their complex structure, leading to
issues such as difficulties in hyperparameter tuning, the need for large amounts of labeled
training data, excessive model complexity, and low interpretability due to their black-box
nature. To address these issues, sophisticated learning techniques have been proposed
to improve performance. Alternative algebraic and non-neural network models, such as
Bayesian deep learning, fuzzy deep learning, and generalized learning, have also been
considered [16–18]. However, these models do not consider the basic principle of deep
neural networks, i.e., the powerful information processing of individual neurons. Instead,
they usually rely on theoretical statistics or other tricky learning mechanisms to improve
model performance [19]. This approach does not imitate the biological nervous system but
rather involves a data-driven matrix operation to solve the problem. The problem with
the data-driven approach is that it requires a large amount of training data and a longer
training period. This is different from how humans learn, as they do not require the same
amount of training as machines to gain similar experience [20]. Therefore, further research
has focused on refining bionic models to address these issues, taking inspiration from the
biological nervous system.

Recently, there have been significant developments in the design of artificial neurons,
resulting in numerous successful examples. Several spiking neuron models have been
proposed that are inspired by the temporal information processing capacity of neurons [21].
These spiking neuron models have been incorporated into deep learning as spiking neural
networks (SNNs), which have shown great potential in dealing with complex recognition
and prediction tasks due to their rich temporal dynamics [22]. In addition, novel neuron
models, such as the FitzHugh–Nagumo neuron model, which considers the spiking and
bursting behaviors of a neuron, and the inter-layer collision neuron model, inspired by
physical elastic collision scenes, have also been developed [23,24]. These third-generation
neuronal models are still in the research field and are less well known outside academia, as
they have not yet been commercially converted [25]. They are based on biological studies
of neuronal signals limited to impulse signals, and today, they are the hottest areas of
research. Engineers are continuously optimizing these third-generation neural network
models in search of their application value [26]. Although convolutional neural networks
are currently in a period of high application, the third generation of neural networks, such
as SNN, may be used in the future to solve practical problems and replace the second
generation of neural networks. From a research standpoint, neuron models that more
closely mimic biology are expected to replace spiking neuron models as the mainstream of
research in the future.

The dendritic neural model (DNM) is a mathematical model that mimics dendritic
neurons found in the biological nervous system. These dendritic neurons have demon-
strated independent information processing capabilities and are well suited for training
in combination with evolutionary learning [27]. The DNM contains synaptic, dendritic,
membrane, and cell body layers in one model [28,29]. Input data are analyzed by multiple
dendrites and subsequently decided by accumulation within the cell whether to output
or not. Compared to other models, DNM is closer to real neurons in terms of structure
and has detailed cellular components. From the perspective of individual neurons, the
DNM is simple and nonlinear, consuming fewer computational resources and being less
prone to overfitting. Many studies have demonstrated the success of DNM in wind farm
layout optimization, financial forecasting, and protein model prediction [30–32]. These
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examples show that the bionic neuron model is not inferior to traditional deep learning and
reinforcement learning models in terms of the optimal solution. DNM is still in the early
stages of research, and it is unrealistic to group them into networks at this stage. Although
there are many research attempts to network DNM, its accuracy and reliability are actually
lower than the mainstream machine learning methods at present [33,34]. Therefore, tools,
such as evolutionary algorithms, are necessary to iteratively train and evolve a set of infor-
mation in a single neuron [35,36]. Since evolutionary algorithms are inherently equipped to
handle several optimization problems, there is a wealth of research in this area. Among the
known evolutionary algorithms, there are metaheuristic algorithms (MHAs) inspired by
real phenomena and heuristic algorithms that adapt to the problem through improvements
of the MHAs. Researchers typically use different heuristic algorithms to train DNMs, as
these algorithms are more powerful in terms of performance and better suited for training.
In summary, DNM is a promising approach for mimicking the biological nervous system
in neural network research. Future research may focus on developing more accurate and
reliable DNM network models and exploring new heuristic algorithms to further optimize
DNM performance.

The DNM morphological mimicry is incomplete because the principle of action of
neurons is not limited to electrical signal impulses but also involves the action of neurotrans-
mitters. Generally, in artificial neuron models, neurotransmitters are included in synaptic
weights. In the case of DNMs, the use of cumulative multiplication to retain features can
lead to stagnation when faced with problems involving many features. Therefore, new
neurotransmitters are needed to stimulate neurons and keep them functioning effectively.
However, few researchers have improved the model itself in past studies [37]. In this paper,
we propose to use neurotransmitters that can bind to receptors and produce stimulant-like
effects to improve DNM. Neurotransmitters can be classified into small molecules and
neuropeptides. Small molecule neurotransmitters are synthesized locally within axon
terminals, while neuropeptides are much larger and synthesized in the cell body [38,39].
Presynaptic neurons are responsible for synthesizing and packaging neurotransmitters
into synaptic vesicles, which are released into the synaptic cleft by cytosolic action at the
presynaptic neuron terminal. Neurotransmitter molecules diffuse and bind to specific
receptors on the postsynaptic neuron or effector cells, altering the conformation of channel
proteins and activating the second messenger system. This leads to the potentiation or
metabolism of the postsynaptic neuron and induces certain effects. Neurotransmitters
consist of various chemicals, such as amino acids, neuropeptides, and purines. The most
common neurotransmitter in the brain and spinal cord is glutamate, which is found in
over 90% of excitatory synapses. Gamma-aminobutyric acid, the second most common
neurotransmitter in the brain, is found in over 90% of inhibitory synapses and does not use
glutamate. All of these neurotransmitters play an important role in the balance of excitation
and inhibition. Therefore, the use of a new neurotransmitter in DNM that follows the com-
plexity of the problem itself and increases the dosage is able to improve the optimization
ability of the model to some extent.

This paper proposes three improvements to DNM based on the activity of excitation
and inhibition. The new neurotransmitter effects were added to the original DNM. Since
the receptors at the synapse do not have a function other than receiving neurotransmitters,
they do not need to be represented on the new model. Therefore, adding its action directly
to the end of the dendrites, the front of the cell body, allows for a complete mimicry of
neurotransmitter action in neurons under the most concise model. We named the DNM
that incorporates the receptor function as DNM-R, since the processing of input signals by
DNM results in weaker feedback when faced with stronger input stimuli. Specifically, the
signal that passes through the dendrite contains only 70% of the intensity to the output, so
it can be considered to mimic the inhibitory effect of neurons. On the other hand, a model
that exhibits excitatory behavior and the opposite properties of DNM is named DNM-P.
Finally, the same design as the new neurotransmitter used on DNM-R is added to DNM-P.
The new neuronal model formed is named DNM-RP. It is important to note that the new
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model proposed in this paper is not always superior in terms of performance, nor is it
intended to completely replace DNM. The idea is that different neurons have their unique
problems to solve. To achieve a one-size-fits-all optimization model, a diverse range of
neurons is needed to form a network consisting of multiple neurons. The three models
proposed in this paper can provide some new neuronal improvement ideas for future
neural networks to enrich their diversity.

This work aims to make the following contributions:

• We add a new neurotransmitter acting on the cell body to DNM;
• The new model proposed in this paper, validated by a large number of tests, proves to

be more effective than the original model;
• In the experiments, a new model trained with an original, unoptimized algorithm

achieves performance comparable to that of the most powerful algorithm optimized
for DNM training. Then it can be assumed that if the new model is used for training,
better performance can be achieved in the optimization process.

Section 2 of this paper introduces the techniques being used and contains points of
improvement to the model. Section 3 focuses on the comparative analysis of the data and
contains some visualization of the image analysis. Section 4 contains some discussion of
the new model proposed in this paper, including its advantages and disadvantages, time
complexity analysis, and stability analysis. Finally, we give a summary of how the new
model is applied and the plans for future improvements.

2. Methodology
2.1. Evolutionary Algorithms

The field of evolutionary algorithms has a long history of development, and even the
earliest mathematical methods that include iteration and fitting have connotations that fit
the definition of evolutionary algorithms. However, today, evolutionary algorithms usually
refer to MHAs and heuristic algorithms. MHAs, as a method well known to algorithm
researchers, are used in many optimization areas. The most famous of them are parti-
cle swarm optimization (PSO) [40], genetic algorithm (GA) [41] and artificial bee colony
algorithm (ABC) [42]. The use of these algorithms is often seen in areas such as recommen-
dation systems for video sites, distribution optimization for engineering construction, etc.
A feature of MHAs is that different inspired algorithms have different characteristics and
are good at optimizing different problems. Therefore, different inspired algorithms used for
DNM training can have large gaps in the same problem. Heuristic algorithms, especially
those that have been used in competitions for the strongest algorithms, show more con-
sistent results overall when used to train DNM. These powerful performance algorithms
balance the advantages and disadvantages of MHAs well, so researchers have often used
such algorithms for improvement in some past training studies of DNM. Among the most
representative algorithms are success-history based parameter adaptation for differential
evolution (SHADE) [43] and self-adaptive spherical search (SASS) [44,45].

2.2. Dendritic Neural Model

In this paper, we study the DNM, and the DNM as an object consists of four cellular
organs, thus serving as the input, determination and output. The first to be enabled is the
synaptic layer, which consists of a sigmoid function with the formula

Yi,j =
1

1 + e−k·(wi,j ·xi−qi,j)
(1)

where i and j are the input index and synaptic layer index. wi,j and qi,j are the parameters
evolved by the training of the DNM. xi obtained by normalizing the problem test data. k is a
positive constant. There are four kinds of connection states when wi,j and qi,j have different
values, including the direct, reverse, Constant-1 and Constant-0 connections, as follows:
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• 0 < qi,j < wi,j , which results in a direct connection. If xi > θi,j, the output Yi,j tends
toward 1; otherwise, it tends to be 0. In other words, regardless of the inputs, the
synaptic outputs will approximate the inputs.

• wi,j < qi,j < 0, which leads to a reverse connection. If xi > θi,j, the output Yi,j tends
toward 0. In contrast, when xi ≤ θi,j occurs, the output Yi,j is approximately 1. In other
words, regardless of the inputs, the synaptic output will receive reverse signals of
the inputs.

• wi,j < 0 < qi,j and 0 < wi,j < qi,j , which represent Constant-0 connections. In these cases,
regardless of any values of the inputs, the outputs are always approximately 0.

• qi,j < 0 < wi,j and qi,j < wi,j < 0, which indicate Constant-1 connections. In two cases,
the corresponding output always tends to be 1.

where θi,j is a threshold of a synaptic layer, which can be calculated by

θi,j =
qi,j

wi,j
(2)

After a synaptic computation with branch number M, the results are first multiplied by
each of them to become the result of M values. The formula for cumulative multiplication
can be expressed as

Zj =
i

∏
i=1

Yi,j (3)

Then these results are summed into one output. In the process of cumulative multipli-
cation, any branch that contains an output of 0 will get 0 when it goes through cumulative
multiplication. This phenomenon is known as the branch reduction process. The formula
for accumulation can be expressed as

V =
j

∑
j=1

Zj (4)

Finally, this result is judged in the cell body by solving another sigmoid function,
which outputs a pulsed electrical signal from 0 to 1, and activation conditions are obtained
by stimulating soma Osoma. The formula for the cell body is

H =
1

1 + e−k·(V−Osoma)
(5)

The training process of DNM can be represented by Figure 1. The “pruning” function
available in DNM is shown in the figure, where the number is the result of wi,j · xi − qi,j
in Equation (1), generally a value between −1 and 1 (few algorithms can obtain a value
higher than 1). When outputting information from dendrites, dendrites that contain signal
“0” in the synapse will be pruned. In the case of dendrites with successful output, all results
with “1” output can be ignored because the synaptic solution is calculated by cumulative
multiplication. The essence is that this group of synapses do not obtain results for this
training and could not be used to stimulate Soma to make judgments about the problem.
In the most extreme case, the number of dendrites is reduced to 1 so that only one set of
signals is input to Soma, while in most cases, multiple sets of signals are input to Soma.

Figure 2 shows the topological architecture of DNM. DNM itself is a one-way com-
munication method that mixes all information together. This makes it lack the ability to
judge features when faced with high-dimensional problems. Combining with evolutionary
algorithms, which are good at solving black-box problems, can precisely alleviate this
drawback. The output of DNM is compared with the results in the training set to obtain
the error. The optimal solution is obtained by reducing the error in an iterative manner.
This is how a single DNM can be trained using an evolutionary algorithm, and the learning
rate can also be controlled by setting a lower error limit, thereby avoiding the overfitting
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phenomenon. Because of the iterative capability of the evolutionary algorithm itself, the
one-way propagation design of DNM becomes a model with back propagation capability.
This also means that it has some learning capability and its accuracy increases with the
number of iterations [46,47].

Figure 1. Training process of DNM.

Figure 2. The topological architecture of DNM.

2.3. Proposed New Model

The use of the sigmoid function in DNM is not a real biological study of the signal
processing of neurons but a compromise to obtain a close approximation to the impulse
electrical signal and to preserve the continuous features. Of course, this is also since the
mathematical resolution of individual neurons at work is not yet resolved. Under the
influence of the two-layer sigmoid function, the data structure presented by the DNM
approximates the inhibition in neurons, which allows it to achieve close functionality.
Although the action of DNM can be changed to excitation by changing the external circuit
channel, it exhibits an inhibitory effect. One of the new approach proposed in this paper is
an alternative way of stimulating neurons obtained by improving the DNM, i.e., excitation.
Its two underlying sigmoid functions can be expressed as

Yi,j =
1

1 + ek·(wi,j ·xi−qi,j)
(6)

H =
1

1 + ek·(V−Osoma)
(7)
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Another improvement proposed in this paper is based on the neurotransmitter-
inspired mimicry of nerve impulse signals with DNM, which mimics the process of neuro-
transmitter generation and action. The formula can be expressed as follows:

b = b(D− 1
2

)− αc (8)

Zj = b ·
i

∏
i=1

Yi,j (9)

where b is the value designed to detect the complexity of the problem, and the more
complex the problem, the larger the value of b. α is a factor related to the number of
problem types. Since b improves the results of dendritic output, its effect is similar to that of
a stimulant. However, this also leads to the possibility that neurons may also be activated
to targets that should not otherwise respond, so a suitable, adaptive function can achieve a
more reasonable effect from the neurotransmitter.

Moreover, D is the dimension size generated during training, which is positively
related to the number of branches M and can be expressed as

D = 2 ·M · J (10)

where J is the dimensional size of the problem itself.
The action of the neurotransmitters does not affect the training process of DNM but

changes its topology. Figure 3 shows the topology of DNM-R and DNM-RP. One of the
changes is the addition of a new node R in the process from Y to Soma. DNM-P has the
exact same topology as DNM. None of the improvements changed the training process of
DNM. The realization method of the four models including the original DNM is

• DNM uses Equations (1), (3)–(5);
• DNM-R uses Equations (1), (4), (5) and (8)–(10) ;
• DNM-P uses Equations (3), (4), (6) and (7);
• DNM-RP uses Equations (4) and (6)–(10).

Figure 3. The topological architecture of DNM-R and DNM-RP.

Figure 4, from left to right, shows the single sigmoid function diagram of DNM, DNM-
P, DNM-R, and DNM-RP. DNM and DNM-P show completely opposite properties in the
mathematical distribution. That means the original inhibition is shown to be excitation
on DNM-P. DNM-R and DNM-RP have a higher slope of the vertical axis relative to
the horizontal axis when compared to DNM and DNM-P, implying more sensitivity in
processing information. Similar to the comparison of DNM and DNM-P, DNM-R and
DNM-RP show opposite mathematical distributions.
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3. Results

In the experimental validation process, we choose ten classification problems from
the UCI dataset for testing. These test sets are not up to date, but still have optimization
potential, so they are ideal for use as validation models with large effects. All results are
based on a personal computer with Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz and 16G
RAM. Table 1 shows the parameter setting of all algorithms in training DNMs. To enhance
the sensitivity of parameters to features, such as k vs. qs, it is essential to adjust them
according to the problem at hand. This is because the original data may contain disparity
between digits, which can vary across different problems. While increasing the value of
M can improve accuracy, reducing it can simplify the iterative process, particularly for
more challenging problems, where achieving better results is difficult. The values of the
parameters listed in Table 1 were obtained through repeated experiments and represent a
more balanced approach for each problem.

Table 1. Parameter setting.

Fun M qs k

SpectEW 20.0 0.1 5.0
KrVsKpEW 20.0 0.1 5.0

Vote 10.0 0.3 15.0
Heart 20.0 0.3 10.0

Ionosphere 3.0 0.5 5.0
BreastEW 3.0 0.5 5.0

CongressEW 3.0 0.1 20.0
Australia 5.0 0.3 20.0
German 10.0 0.3 10.0

Tic-tac-toe 10.0 0.9 5.0
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All three improvements will be compared with the original DNM. In order to make the
experimental results more accurate, five algorithms commonly used for training DNM were
selected for the experimental procedure. The W/T/L means the amount of win/tie/loss
for the current model compared to the DNM results. The bold data represent the best
results for the current problem among all four models. Rank stands for the ranking results
obtained through the Friedman Rank. Mean is the average result under thirty runs, and Std
is the variance of these thirty results. The value of the result represents the accuracy rate,
and the result is 1.0 when the accuracy rate is 100%. In order to show the effectiveness of
the improvements, we drew box diagrams for analysis and presentation of the results of the
five algorithms for five different problems taken from the five algorithms. When analyzing
the results of training four models for each algorithm, their respective advantages and
disadvantages are discussed, but this is not absolute since the degree of fitness varies
between algorithms and different models. This paper proposes the improvement of DNM
as a means of providing some ideas for improvement rather than as a complete solution.

3.1. Result of BBO

Biogeography-based optimization (BBO) is a swarm intelligence optimization algo-
rithm proposed by Prof. Simon in 2008 [48]. Inspired by biogeography, the design of the
migration operator and the variation operator mimics the migration and variation processes
of species between biogeographic habitats, respectively. Table 2 shows the results of BBO
in training. From the results, all three improvements led to changes in performance, with
DNM-R and DNM-RP showing the most significant improvement. On average, DNM-R
demonstrated a 3% improvement in accuracy, while DNM-RP showed an average improve-
ment of 1.6%. However, DNM-P exhibited an average accuracy decrease of −1%, possibly
due to the model’s search space not being suitable for BBO, leading to local optima or
overfitting. The classification problem is a practical problem, and the comparison of using
the optimal result in the comparison also has some significance. Table 3 shows the best
result of the algorithm in thirty runs. The best solution ranking is also the highest for
DNM-RP. This means that if DNM-RP is used as the trained model, better results than
DNM can be obtained. Figure 5 shows the receiver operating characteristic curve (ROC) of
BBO in problem “Heart”. It means all four models tested on this problem showed their
classification results to be valid, but the accuracy of the three improved models was higher.
It is arguable that the improved model is more competitive and reliable than DNM for BBO.
Figure 6 shows the box diagram of BBO in problem “Heart”, and the median accuracy of
all three new models was better than that of the original model. In the figure, DNM and
DNM-P behave close to each other and DNM-R and DNM-RP behave close to each other.
This implies that the new neurotransmitter proposed in this paper plays an important role
under the problem. Therefore, if BBO is employed as the training algorithm, DNM-R or
DNM-RP should be preferred as the training model for the study. In practical applications,
DNM-RP should be utilized as a tool since it exhibits better performance in terms of both
average and best results.

Table 2. Experimental result of BBO.

Fun

BBO

DNM DNM-R DNM-P DNM-RP

Mean Std Mean Std Mean Std Mean Std

SpectEW 0.7989 0.0285 0.7561 0.0333 0.6194 0.0171 0.6863 0.0439
KrVsKpEW 0.7449 0.0590 0.8852 0.0327 0.8109 0.0779 0.8972 0.0390

Vote 0.9219 0.0295 0.9256 0.0172 0.9161 0.0419 0.9181 0.0207
Heart 0.8547 0.0245 0.9246 0.0150 0.8992 0.0198 0.9257 0.0109

Ionosphere 0.9329 0.0382 0.9459 0.0368 0.7876 0.0137 0.8925 0.0471
BreastEW 0.9110 0.0163 0.9427 0.0174 0.8702 0.0243 0.9480 0.0117

CongressEW 0.9518 0.0229 0.9536 0.0144 0.9497 0.0225 0.9567 0.0141
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Table 2. Cont.

Fun

BBO

DNM DNM-R DNM-P DNM-RP

Mean Std Mean Std Mean Std Mean Std

Australia 0.8428 0.0232 0.8522 0.0118 0.8501 0.0353 0.8543 0.0094
German 0.7030 0.0769 0.7390 0.0167 0.7474 0.0204 0.7357 0.0207

Tic-tac-toe 0.7422 0.0255 0.7747 0.0489 0.8089 0.0198 0.7718 0.0203

W/T/L -/-/- 9/0/1 5/0/5 7/0/3

Table 3. Best result of BBO.

Fun
BBO

DNM DNM-R DNM-P DNM-RP

SpectEW 0.8449 0.6898 0.6898 0.7594
KrVsKpEW 0.8271 0.9163 0.9163 0.9421

Vote 0.9500 0.9500 0.9500 0.9417
Heart 0.9360 0.9293 0.9293 0.9428

Ionosphere 0.9470 0.8013 0.8013 0.9536
BreastEW 0.9471 0.9176 0.9176 0.9706

CongressEW 0.9769 0.9692 0.9692 0.9846
Australia 0.8744 0.8792 0.8792 0.8744
German 0.7733 0.7833 0.7833 0.7633

Tic-tac-toe 0.8094 0.8355 0.8355 0.8172

Rank 2.55 2.65 2.65 2.15

Figure 5. Accuracy obtained by BBO.
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Figure 6. Box diagram of BBO.

3.2. Result of SASS

SASS is an adaptive spherical search (SS) algorithm, which was proposed to solve
the bound-constrained non-linear global optimization problem in 2019. Table 4 shows
the experimental result of SASS. From there, it is difficult for different models to achieve
advantages on all problems for high-performing algorithms. For the problems “Heart”
and “Ionosphere”, DNM-R showed a notable improvement in mean accuracy of over 1%,
indicating significant progress. Similarly, DNM-P demonstrated remarkable performance
improvement of more than 5% for “KrVsKpEW” and “Tic-tac-toe”. For DNM-RP, its role is
regressive. Compared to the boost in BBO, the results shown under SASS training prove
that the degree of fitness varies between algorithms and different models is important, and
then a richer variety of models has a better chance to solve realistic problems. In Table 5,
while comparing the best results of SASS, it is clearer to see that a single model does not
have the full advantage. Although the DNM ranked highest under the overall ranking,
it obtained the best results in only half of the problems; the other models still have their
advantages. Figure 7 shows the ROC of SASS in problem “BreastEW”, DNM-RP has the
most stable performance among them. Since different models have problems in which
they excel, it can be assumed that our improvements are necessary. Figure 8 shows the
box diagram of SASS in problem “BreastEW”, and the median accuracy of DNM-RP was
better than that of others. It is evident that training DNM using this algorithm leads to
a large number of extreme solutions, indicating the need to repeat DNM training with
this algorithm multiple times in practical applications, resulting in significant waste of
computational resources and time. However, if DNM-R is used as the trained model, it can
be applied quickly after a short training period, thus compensating for the work performed
before using a more accurate solution. Therefore, for training with SASS, we prefer to
use DNM-R.
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Table 4. Experimental result of SASS.

Fun

SASS

DNM DNM-R DNM-P DNM-RP

Mean Std Mean Std Mean Std Mean Std

SpectEW 0.8046 0.0276 0.7228 0.0409 0.6895 0.0333 0.7250 0.0405
KrVsKpEW 0.7924 0.0233 0.8485 0.0310 0.8899 0.0539 0.7819 0.0492

Vote 0.9306 0.0177 0.9250 0.0180 0.9339 0.0135 0.9308 0.0114
Heart 0.8536 0.0375 0.9505 0.0111 0.9345 0.0139 0.9365 0.0112

Ionosphere 0.9419 0.0028 0.9620 0.0130 0.7947 0.0000 0.9075 0.0328
BreastEW 0.8841 0.0875 0.9184 0.0178 0.8888 0.0508 0.9565 0.0092

CongressEW 0.9659 0.0121 0.9556 0.0108 0.9551 0.0064 0.9531 0.0118
Australia 0.8552 0.0069 0.8536 0.0139 0.8556 0.0079 0.8575 0.0109
German 0.7602 0.0081 0.7453 0.0153 0.7588 0.0077 0.7428 0.0118

Tic-tac-toe 0.7726 0.0364 0.8249 0.0274 0.8419 0.0173 0.7614 0.0156

W/T/L -/-/- 5/0/5 6/0/4 4/0/6

Table 5. Best result of SASS.

Fun
SASS

DNM DNM-R DNM-P DNM-RP

SpectEW 0.8342 0.7861 0.7701 0.7861
KrVsKpEW 0.8271 0.9061 0.9163 0.9366

Vote 0.9583 0.9500 0.9500 0.9583
Heart 0.9630 0.9697 0.9562 0.9596

Ionosphere 0.9470 0.9801 0.7947 0.9536
BreastEW 0.9529 0.9471 0.9353 0.9706

CongressEW 0.9769 0.9769 0.9692 0.9692
Australia 0.8889 0.8792 0.8696 0.8792
German 0.7767 0.7767 0.7733 0.7600

Tic-tac-toe 0.8773 0.8956 0.8773 0.7990

Rank 2.00 2.05 3.45 2.50

3.3. Result of CJADE

Chaotic local search-based differential evolution algorithms for optimization (CJADE)
is an advanced algorithm that uses chaotic local search [49]. Due to the strong convergence
ability common in differential evolutionary algorithms (DEs) as well as the weak explo-
ration ability, its extremes often appear in DNM training. Because CJADE emphasizes local
search, its risk of falling into a local optimum is also greatly increased (good results will be
better, and poor results will be worse). Tables 6 and 7 show the average results and the best
results of CJADE training. The new models somewhat optimize the search structure for
most problems, thus producing fewer extreme values and more stable results. Therefore,
in the training of CJADE, the results of all three new models are better than DNM. In the
experiments conducted using CJADE, it was observed that the problem “SpectEW” consis-
tently achieved the best results when trained with the first three algorithms using DNM.
This suggests that DNM is well suited for solving this problem, and it may not be advisable
to use the new model for similar problems. The comparison of the best results shows that
DNM-R and DNM-RP with the new neurotransmitter is a more suitable model compared
with DNM. This certainly validates the validity of this design once again. The results
of DNM are clearly invalid for the question “Ionosphere”, while DNM-R and DNM-RP
improve the accuracy to over 90%, which is a huge improvement compared to the 18%
accuracy of DNM. Compared to DNM, DNM-RP improves accuracy by an average of 10%,
DNM-R improves accuracy by an average of 10.5%, and DNM-P improves accuracy by
only 1.8%. Figure 9 shows the ROC of CJADE in problem “Ionosphere”. Among them,
the results of DNM and DNM-P showed that their training was useless, and DNM-RP,
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although improved, was still useless. Only the training of DNM-R showed full validity.
Figure 10 shows the box diagram of CJADE in problem “Ionosphere”, and the median
accuracy of all three new models was better than that of the original model. Due to its
higher median and extremely high stability, DNM-P is considered to be the preferable
option for this problem. However, given that the combined performance of DNM-P is not
impressive, it would be best to use DNM-RP when dealing with a new and unresolved
problem. Since DNM and DNM-RP are identical in the best results of problem “SpectEW”,
and the average ranking of DNM-RP is better than that of DNM and the comparison of
repeated experiments is better than that of DNM, there is no problem in using DNM-RP
instead of DNM.

Figure 7. Accuracy obtained by SASS.

Table 6. Experimental result of CJADE.

Fun

CJADE

DNM DNM-R DNM-P DNM-RP

Mean Std Mean Std Mean Std Mean Std

SpectEW 0.8421 0.0722 0.6674 0.1471 0.3055 0.2056 0.7062 0.1297
KrVsKpEW 0.4789 0.0286 0.6313 0.0912 0.5293 0.0088 0.5770 0.0618

Vote 0.7736 0.1261 0.8083 0.1235 0.7208 0.1847 0.7864 0.1840
Heart 0.6880 0.0929 0.8093 0.0539 0.7378 0.1055 0.8102 0.0607

Ionosphere 0.1788 0.0000 0.7152 0.2001 0.8221 0.0048 0.6786 0.2348
BreastEW 0.6353 0.0000 0.6263 0.0494 0.3647 0.0000 0.6024 0.2264

CongressEW 0.7928 0.1464 0.8603 0.1213 0.7308 0.2529 0.8223 0.2043
Australia 0.6837 0.1769 0.7969 0.0870 0.7369 0.1296 0.7649 0.1298
German 0.3512 0.0982 0.6699 0.0949 0.7302 0.0115 0.7248 0.0175

Tic-tac-toe 0.5920 0.1077 0.6411 0.0929 0.6763 0.0342 0.6121 0.1211

W/T/L -/-/- 8/0/2 6/0/4 8/0/2
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Figure 8. Box diagram of SASS.

Figure 9. Accuracy obtained by CJADE.
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Table 7. Best result of CJADE.

Fun
CJADE

DNM DNM-R DNM-P DNM-RP

SpectEW 0.9198 0.8396 0.7112 0.9198
KrVsKpEW 0.5915 0.8013 0.5743 0.7183

Vote 0.9500 0.9333 0.9333 0.9417
Heart 0.8418 0.8620 0.8316 0.8519

Ionosphere 0.1788 0.9073 0.8477 0.9073
BreastEW 0.6353 0.6353 0.3647 0.9647

CongressEW 0.9692 0.9692 0.9615 0.9692
Australia 0.8599 0.8551 0.8551 0.8599
German 0.6200 0.7600 0.7500 0.7533

Tic-tac-toe 0.6945 0.7911 0.7650 0.7441

Rank 2.65 2.00 3.50 1.85

Figure 10. Box diagram of CJADE.

3.4. Result of SCJADE

SCJADE is an improvement based on CJADE [50], and its improvement in chaotic
local search has further enhanced the algorithm exploitation capability. The performance
demonstrated by this most biased exploitation algorithm on neuron training is also of
reference value because it may exhibit more extreme results, such as higher best accuracy
and worse lowest accuracy. With this type of algorithm, there is an opportunity to explore
results that cannot be obtained with other algorithms for a problem. Tables 8 and 9 show
the average results and the best results of SCJADE training. The results show a high degree
of similarity to CJADE, and it can be concluded that upgrading the exploitation capability
of the algorithm does not lead to significant improvements when training DNMs to solve
classification problems. However, in the ranking of the best results, all the improved
models achieved a better ranking than DNM. More exploitation algorithms are more
capable of training neurons to obtain better best results. Compared to DNM, DNM-RP
improves accuracy by an average of 9.7%, DNM-R improves accuracy by an average of
10.8%, and DNM-P improves accuracy by only 1.6%. Compared to CJADE, there is less
accuracy improvement when training with SCJADE. Figure 11 shows the ROC of SCJADE
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in problem “CongressEW”. The graph likewise shows that training on the DNM-R is the
best, which is also the same as for CJADE. Figure 12 shows the box diagram of SCJADE
in problem “CongressEW”; the median accuracy of DNM-RP is better than that of others.
When it comes to training with SCJADE, we highly recommend using DNM-R and DNM-
RP models with new neurotransmitters, as they showed the best performance. Based on the
training outcomes of CJADE and SCJADE, we conclude that using this class of algorithms to
train neurons is not a good option since they both significantly underperformed compared
to BBO and SASS.

Table 8. Experimental result of SCJADE.

Fun

SCJADE

DNM DNM-R DNM-P DNM-RP

Mean Std Mean Std Mean Std Mean Std

SpectEW 0.8911 0.0481 0.6586 0.1988 0.3230 0.2163 0.6676 0.0907
KrVsKpEW 0.4834 0.0423 0.6029 0.0755 0.5310 0.0196 0.5736 0.0517

Vote 0.8211 0.1148 0.8025 0.1251 0.7156 0.1961 0.7828 0.1867
Heart 0.7352 0.0859 0.7838 0.0905 0.7609 0.0822 0.8178 0.0421

Ionosphere 0.1788 0.0000 0.7912 0.1362 0.8212 0.0000 0.7055 0.1857
BreastEW 0.6400 0.0258 0.6429 0.0419 0.3647 0.0000 0.6284 0.2440

CongressEW 0.8215 0.1440 0.8767 0.1251 0.6928 0.2681 0.8769 0.1606
Australia 0.6519 0.1459 0.7926 0.1149 0.7444 0.1578 0.7762 0.1140
German 0.3582 0.1111 0.6729 0.0991 0.7297 0.0152 0.7260 0.0189

Tic-tac-toe 0.6191 0.0907 0.6731 0.0318 0.6791 0.0302 0.6374 0.0814

W/T/L -/-/- 8/0/2 6/0/4 7/0/3

Figure 11. Accuracy obtained by SCJADE.
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Table 9. Best result of SCJADE.

Fun
SCJADE

DNM DNM-R DNM-P DNM-RP

SpectEW 0.9198 0.8877 0.7807 0.8021
KrVsKpEW 0.6995 0.7465 0.6346 0.6854

Vote 0.9417 0.9083 0.9417 0.9500
Heart 0.8552 0.8620 0.8687 0.8620

Ionosphere 0.1788 0.9470 0.8212 0.8940
BreastEW 0.7765 0.8647 0.3647 0.9412

CongressEW 0.9615 0.9692 0.9615 0.9692
Australia 0.8647 0.8647 0.9412 0.8744
German 0.7167 0.7633 0.7500 0.7567

Tic-tac-toe 0.6945 0.7363 0.7493 0.7102

Rank 3.15 2.05 2.70 2.10

Figure 12. Box diagram of SCJADE.

3.5. Result of SHADE

SHADE has a better balance in the search process compared to the improvements of
CJADE for DE. In the past with DNM training, it could always achieve the best results as
well. Tables 10 and 11 show the average results and the best results of SHADE training.
The results also show that none of the three improved models can achieve an advantage for
the full problem when trained with a more powerful algorithm, such as SHADE. Instead,
improvements in some specific problems proved to be valuable for model improvements.
Overall, DNM-R exhibits accuracy comparable to DNM, with a slight overall improvement.
On the other hand, DNM-RP shows a slightly lower accuracy rate compared to DNM.
When analyzed in conjunction with the results of DNM-P, this can be attributed to the
unfavorable effect of neuronal excitation improvement on SHADE training. However, this
does not prove that our improvement is meaningless because DNM-P and DNM-RP have
the best accuracy in some problems, such as “KrVsKpEW” and “BreastEW”. Figure 13
shows the ROC of SHADE in problem “Australia”. The images show that all four models
have some effect on the training of this problem. Figure 14 shows the box diagram of
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SHADE in problem “Australia”, and the median accuracy of DNM-RP was better than
that of others. Although the best result of DNM is clearly better than the other three
models, such extreme values require more computational resources to be obtained, so it can
better save computational resources when using DNM-RP. Therefore, the trade-off between
models becomes difficult when using SHADE as the training algorithm. In terms of results,
a more balanced outcome can be achieved using DNM or DNM-R, which is beneficial for
dealing with unknown problems. For problems that require higher accuracy, we suggest
training all four models to obtain the best results.

Table 10. Experimental result of SHADE.

Fun

SHADE

DNM DNM-R DNM-P DNM-RP

Mean Std Mean Std Mean Std Mean Std

SpectEW 0.7954 0.0271 0.7376 0.0467 0.6827 0.0274 0.7469 0.0317
KrVsKpEW 0.7959 0.0273 0.8374 0.0172 0.9114 0.0267 0.7785 0.0312

Vote 0.9272 0.0133 0.9261 0.0151 0.9375 0.0087 0.9319 0.0133
Heart 0.8689 0.0119 0.8845 0.0094 0.8727 0.0133 0.8835 0.0066

Ionosphere 0.9408 0.0017 0.9587 0.0123 0.7945 0.0012 0.9110 0.0211
BreastEW 0.9125 0.0401 0.9155 0.0125 0.8914 0.0106 0.9522 0.0124

CongressEW 0.9587 0.0113 0.9621 0.0097 0.9556 0.0114 0.9559 0.0083
Australia 0.8488 0.0074 0.8457 0.0087 0.8556 0.0093 0.8580 0.0093
German 0.7540 0.0152 0.7474 0.0132 0.7449 0.0102 0.7490 0.0111

Tic-tac-toe 0.7676 0.0323 0.7503 0.0222 0.7776 0.0343 0.7101 0.0255

W/T/L -/-/- 5/0/5 5/0/5 4/0/6

Figure 13. Accuracy obtained by SHADE.
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Table 11. Best result of SHADE.

Fun
SHADE

DNM DNM-R DNM-P DNM-RP

SpectEW 0.8342 0.8289 0.7273 0.8021
KrVsKpEW 0.8216 0.8646 0.9163 0.8599

Vote 0.9500 0.9500 0.9583 0.9500
Heart 0.9125 0.9024 0.8990 0.8956

Ionosphere 0.9470 0.9801 0.7947 0.9470
BreastEW 0.9353 0.9412 0.9176 0.9706

CongressEW 0.9769 0.9769 0.9769 0.9692
Australia 0.8792 0.8696 0.8744 0.8744
German 0.7667 0.7733 0.7633 0.7733

Tic-tac-toe 0.8251 0.8042 0.8277 0.7702

Rank 2.25 2.25 2.65 2.85

DNM DNM-P DNM-R DNM-RP

Model

0.82

0.83

0.84

0.85

0.86

0.87

0.88

A
cc

u
ra

cy

Australia

Figure 14. Box diagram of SHADE.

4. Discussion

After analyzing the results of the five algorithms in four models, it is known that the
new model proposed in this paper is effective and valuable. However, we still need further
analysis of the four models to explore whether they are inseparable. In this section, we will
train with SHADE as the only algorithm for a fair analysis of the results. Table 12 shows
the average running times of every problem. The running times of all four models are very
close to each other. Therefore, it can be considered that the computational speed of all four
models in this paper depends on the training algorithm rather than the models themselves.
From the data, it is evident that the training time for DNM is very short, taking only five
hours to train thirty runs for each of the ten problems. Even if all four models are trained
continuously, the time and computational resources spent are acceptable. Therefore, it
is feasible to use all four models for training when solving problems with high accuracy
requirements and low time requirements. However, for problems with low accuracy
requirements and high time requirements, a model with a better chance of achieving a
feasible solution should be chosen. After analyzing all the data, the models suitable for each
problem are summarized for the ten classification problems used in this paper. Table 13
shows the conclusion of it. When using SHADE as a training algorithm, we recommend
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using DNM-R as a single neuron model because it achieved the best performance in three
of the ten problems. Although DNM-P also achieved the best results in the three problems,
its performance on the inferior problems was too far away compared to DNM and therefore
is not recommended. However, if computational and time resources are not an issue, we
suggest using all models as training objects, as this could lead to the optimal solution.
Due to the fast training speed of DNM, we highly recommend solving the problem in this
manner. When training a single neuron using algorithms other than SHADE, it is more
likely to achieve good results by using DNM-RP. This holds true for algorithms such as
BBO, SASS, CJADE, and SCJADE. Among the results of all the algorithms, only the problem
“SpectEW” is definitely selected for DNM. In the absence of an algorithm for training, the
use of DNM-RP is likely to lead to a feasible solution.

Table 12. Run time of SHADE.

CPU Time(S)

Fun DNM DNM-R DNM-P DNM-RP

Ionosphere 16.0 15.2 14.8 15.4
Australia 27.0 27.6 27.3 27.4

KrVsKpEW 425.0 419.3 420.9 418.6
BreastEW 25.8 25.0 25.2 24.8
German 96.4 94.0 94.0 94.5

Heart 34.6 34.7 34.5 34.7
CongressEW 14.6 14.4 14.5 14.4

SpectEW 16.3 15.9 16.0 15.9
Tic-tac-toe 38.9 38.9 38.8 38.9

Vote 18.1 17.9 18.1 17.9

total 712.7 703.1 703.9 702.6

Table 13. Recommended models of SHADE.

Fun SHADE

SpectEW DNM
KrVsKpEW DNM-P

Vote DNM-P
Heart DNM-R

Ionosphere DNM-R
BreastEW DNM-RP

CongressEW DNM-R
Australia DNM-RP
German DNM

Tic-tac-toe DNM-P

5. Conclusions

The three new models proposed in this paper were developed based on the activity
of excitation and inhibition. Its effectiveness is demonstrated by extensive experimental
data of the five algorithms. Although DNM-RP has the best overall performance in the
results, it still has the problem of performing worse compared to DNM. The discussion of
all four models reveals that they each have their own strengths, as do the different neuronal
cells in the human central nervous system. Although a single neuron has some processing
power, training a neuron to classify problems with not a large number of features shows a
bottleneck in its performance. The five algorithms chosen in this paper to train four models
rarely achieved more than 95% accuracy in all ten problems. Therefore, this paper argues
that the proposal of more kinds of rich neuronal models is beneficial for the development of
the field. Meanwhile, the network composition of more different neuronal models will be
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more capable of improving the ability of computers to simulate human thinking. The three
new models proposed in this paper will also try to be used to optimize areas where DNM
was used in the past. At the same time, the networking of these four models will be carried
out together.
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