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Abstract: Within low-light imaging environment, the insufficient reflected light from objects often
results in unsatisfactory images with degradations of low contrast, noise artifacts, or color distortion.
The captured low-light images usually lead to poor visual perception quality for color deficient
or normal observers. To address the above problems, we propose an end-to-end low-light image
enhancement network by combining transformer and CNN (convolutional neural network) to restore
the normal light images. Specifically, the proposed enhancement network is designed into a U-shape
structure with several functional fusion blocks. Each fusion block includes a transformer stem and a
CNN stem, and those two stems collaborate to accurately extract the local and global features. In
this way, the transformer stem is responsible for efficiently learning global semantic information
and capturing long-term dependencies, while the CNN stem is good at learning local features and
focusing on detailed features. Thus, the proposed enhancement network can accurately capture
the comprehensive semantic information of low-light images, which significantly contribute to
recover normal light images. The proposed method is compared with the current popular algorithms
quantitatively and qualitatively. Subjectively, our method significantly improves the image brightness,
suppresses the image noise, and maintains the texture details and color information. For objective
metrics such as peak signal-to-noise ratio (PSNR), structural similarity (SSIM), image perceptual
similarity (LPIPS), DeltaE, and NIQE, our method improves the optimal values by 1.73 dB, 0.05, 0.043,
0.7939, and 0.6906, respectively, compared with other methods. The experimental results show that
our proposed method can effectively solve the problems of underexposure, noise interference, and
color inconsistency in micro-optical images, and has certain application value.

Keywords: image processing; deep learning; low-light image enhancement; self-attention mechanism

MSC: 68T07

1. Introduction

Images captured in low-light environment usually result in a series of image degra-
dation problems, such as low contrast, poor visibility, noise pollution, or color distortion.
These degradation problems prominently reduce the image perception quality and poten-
tially hamper the subsequent image processing tasks, e.g., image segmentation [1], target
recognition [2], video surveillance [3] and anomaly detection [4]. Although the image
brightness can be improved partly by extending exposure time, undesired noise is likely
to be amplified on the optical sensors. Therefore, it is significant to develop effective
enhancement methods for low-light images to raise their perception quality as taken in
normal lighting conditions.

In the past decades, various low-light image enhancement methods have been pro-
posed based on specific mathematical models, such as the histogram equalization method

Mathematics 2023, 11, 1657. https://doi.org/10.3390/math11071657 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11071657
https://doi.org/10.3390/math11071657
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0265-1785
https://doi.org/10.3390/math11071657
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11071657?type=check_update&version=1


Mathematics 2023, 11, 1657 2 of 14

and Retinex method, etc. In reality, various artifacts often appear in those enhanced images,
e.g., too much noise [5], blurring, or false colors. Recently, due to the strong representation
capability of CNN, many CNN-based models have been proposed to enhance the low-light
image. However, most CNN-based approaches have difficulties in learning global semantic
information, resulting in that some unsatisfied artifacts such as uneven brightness or color
distortion usually exist in those models. As shown in Figure 1, the images (b) and (c) are
the enhanced results of the histogram equalization method and the CNN-based method,
respectively. It can be clearly seen that these two enhanced images are not satisfactory. The
enhancement results of LIME method obviously have the problems of chromatic aberration,
low brightness, and slight noise. The enhancement results of RetinexNet method also have
obvious problems of chromatic aberration and low brightness, and the whole image is
accompanied by strong noise. While in Figure 1d of the image enhanced by our proposed
method, it looks natural, with no false colors or noise. Generally, by referring the above
works, we observe that two major challenges still exist in the task of low-light image en-
hancement: (I) How to adaptively enhance the image brightness of different exposure areas
at uneven illumination condition; (II) how to suppress the image noise while maintaining
the consistency of color textures.
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Figure 1. Results from various methods on an image from the LOL dataset. (a) The input images;
(b) the results of LIME [6]; (c) the results of RetinexNet [7]; (d) the results of ours. It is obvious that
the existing method has serious noise and does not enhance the image brightness correctly.

To address the challenges above, it is useful to obtain accurate local and global fea-
tures of low-light images. The low-light image enhancement task involves not only the
refinement of image brightness and color recovery, but also the suppression of image noise.
From the image denoising task, we can determine the noise location by obtaining the global
correlation of the image, thus learning that it is crucial to obtain the global features of the
image. In the image recovery process, we need to use local features to retain important
detail information of the image. Generally, the global features and local features are the
key for adaptively enhancing image brightness at uneven illumination condition. For
these reasons, this paper will discuss how to fully acquire global and local features of
low-light images.

Many CNN-based enhancing models learn the global features by increasing the recep-
tive field of the convolution kernel. The receptive field increasing is usually implemented
by means of adding more layers of the CNN network or applying down-sampling multiple
times. In reality, adding layers inevitably introduces more network parameters, while
employing multiple down-sampling frequently results in the loss of image details. Inspired
by the great success of transformer [8] in the field of natural language processing (NLP)
and computer vision (CV), we apply the transformer for global feature extraction to com-
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pensate the shortcomings of CNN. Basically, the transformer is quite different from the
convolution operation of CNN during feature extraction. The CNN convolution focuses on
extracting the local relationship between the center point and its surrounding pixels, while
the transformer utilizes multi-head self-attention and forward propagation network, which
is beneficial for extracting long-term dependencies.

Since transformer and CNN have their own advantages for extracting features, in this
paper, we propose an end-to-end enhancement network combining transformer and CNN to
address the challenges above. Essentially, the goal of our proposed enhancement network is to
effectively extract image local and global features, which is significant to boost image brightness
for different image regions and suppress noise or chromatic aberrations. Within the proposed
enhancement network, we creatively build a fusion block by combining the advantages of
transformer and CNN to obtain the features simultaneously. The CNN stem mainly extracts the
local detailed feature information of the image by utilizing convolutions, while the transformer
stem focuses on learning to global semantic information by self-attention mechanism.

As shown in Figure 2, the structure of the proposed enhance network is similar to a U-
Net consisting of a group of symmetric fusion blocks with skip connections. On the left, the
fusion blocks combined with down-sampling are utilized to extract the semantic features
from the low-light image. On the right, the fusion blocks combined with up-sampling are
used to recover the normal light image from semantic features. In parallel, skip connections
are utilized to minimize the loss of spatial information due to down-sampling. In summary,
contributions of this paper are described as follows:

1. We propose an end-to-end low-light image enhancement network by combining the
transformer and CNN. Both the local and the global features are accurately learned
for light enhancement within this network, where the CNN effectively extracts local
features and the transformer precisely learns the long-range dependencies.

2. We creatively applied the transformer model to the low-light image enhancement task, and
built a U-shaped low-light network with fusion blocks including transformer and CNN.

3. Our proposed method is evaluated on the LOL dataset, and the experimental results
demonstrate that the proposed network outperforms the other state-of-the-art (SOTA)
models in qualitative and quantitative comparisons.
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2. Related Work

Various works on low-light image enhancement can be described in detail below.

2.1. Conventional Low-Light Image Enhancement Methods

The conventional low-light image enhancement methods are roughly divided into
histogram equalization-based methods and illumination-based methods. The histogram
equalization [9] method directly adjusts the spatial distribution of the image brightness
histogram to improve the image contrast. Ibrahim et al. [10] and Wang et al. [11] modified
the histogram equalization method by adding a brightness threshold to improve the image
brightness. Overall, the mentioned histogram methods are simple to operate, but it is not
possible to ensure that all areas of the image can be improved without taking into account
the spatial information of the image manually. Chen et al. [12] proposed a local histogram
equalization method to adaptively solve the problem of image spatial distribution, and
divided the image into blocks for brightness enhancement. This method performs fast and
can enhance the image details well except for the block effects.

Illumination-based methods are mainly based on Retinex theory, which decomposes
images into illumination components and reflection components. Jobson et al. [13] proposed
the Multi-Scale Retinex (MSR) algorithm, which utilized Gaussian filtering at different
scales to perform illumination decomposition on images, and then the brightness enhance-
ment is implemented on the illumination components. Wang et al. [14] added a logarithmic
bilateral conversion based on the Retinex theory to make the obtained illumination com-
ponents closer to natural colors. Li et al. [15] proposed a more robust Retinex algorithm
to enhance low-light images by adding noise processing. These methods are effective in
illumination adjustment and noise elimination. However, the parameters in the model
need to be set artificially, thus it is difficult to adaptively handle the variety of images or
some images with strong noise.

2.2. Intelligent Low-Light Image Enhancement Methods

In recent years, along with the rapid development of artificial intelligence theory,
learning-based low-light image enhancement methods have been consistently introduced.
Lore et al. [16] proposed a deep auto-encoder network named LLNet for contrast enhance-
ment and noise removal. Wei et al. [7] proposed a neural network named RetinexNet, which
employed two sub-networks to decompose low-light images and adjust the illumination
components. Zhang et al. [17] proposed the KinD network to optimize the [7] method
by adding a restoration network to denoise the reflection components. Chen et al. [18]
developed the SID network to directly perform low-light image enhancement on raw sensor
data. Wang et al. [19] construed an illumination estimation network named DeepUPE,
which adopted an end-to-end form to learn the image-light mapping relationship to predict
the smooth light mapping. Jiang et al. [20] proposed the unsupervised adversarial network
named EnlightenGAN, which utilized a global-local discriminator and a self-regularized
attention mechanism to process the synthetic as well as the real-world images. Ma et al. [21]
propose a self-correcting shared-weight illumination learning module for low-light image
enhancement, which substantially reduces the large inference cost under the cascade mech-
anism and greatly reduces the computational effort of the network model. Although, the
method based on deep learning can offset the previous methods to a certain extent and
achieve better visual results for most low-light images. However, the above methods still
do not produce satisfactory visual quality for low-light images.

3. Proposed Method

We proposed a low-light image enhancement network by fusing transformer with
CNN to reconstruct a high-quality noise-free color image. The enhancement of the low-light
image can be defined as:

Ih = F(Ii, σ) (1)



Mathematics 2023, 11, 1657 5 of 14

where Ii is a low-light image input, Ih stands for the enhanced image, F means the low-light
image enhancement network, and σ represents the parameters involved.

3.1. Network Framework

As shown in Figure 2, our proposed end-to-end enhancement network takes a low-
light image as input and obtains an enhanced high-quality color image. The network is
designed into U-shape which consists of a patch embedding module, a cascade of fusion
blocks, and a patch expanding module. First, the patch embedding module is utilized to
convert the input image into the patch embedding codes. And then, the patch embedding
codes are sent to the fusion blocks arranged symmetrically with skip connection. Each
fusion block with a Swin Transformer stem and a CNN stem inside will further extract the
deep features from the previous one. Meanwhile, the down-sampling and up-sampling are
utilized to adjust the resolution of calculated features from each fusion block. Finally, the
patch expanding module is used to modify high-resolution feature dimensions by feature
mapping and to output enhanced results.

3.2. Fusion Block

As shown in the bottom of Figure 2, each fusion block consists of a Swin Transformer
stem and a CNN stem connected in parallel. The transformer stem is utilized to learn
global semantic information and capture long-term dependencies, while the CNN stem is
capable of efficiently extracting local features and emphasizing detailed features such as
image color and texture. We describe these two stems in detail as below.

3.2.1. Swin Transformer Stem

As shown in the right bottom of Figure 2, the Swin Transformer stem includes a
Normalization layer (Norm), a Windows-based Multi-head Self-Attention layer (W-MSA),
a Shifted Window based Multi-head Self-Attention layer (SW-MSA), and a Feed-forward
Neural Network layer (FNN). The Norm layer mainly serves to perform batch regulariza-
tion and normalize the input data, for the purpose of ensuring the regularity of the data
distribution in the input layer. In order to reduce the self-attention calculation complexity,
the input image is usually divided into different window regions, and the self-attention
calculations are performed in the smaller window regions. At the same time, the contents
of the window are changed by circular displacement to ensure the interaction of global
information. W-MSA and SW-MSA represent self-attention calculation within different
window regions, while the self-attention [8] calculation can be defined as:

Attention(Q, K, V) = So f tMax(
QKT
√

d
+ B)V (2)

where Q means the query matrix, K is the key matrix, V represents the values matrix,
d stands for the dimension of the query matrix or key matrix, and B is the position matrix.

3.2.2. CNN Stem

As shown in the left bottom of Figure 2, the CNN stem consists of several convolutional
layers and activation functions. The relationship between the input pixel and its neighbors
can be obtained through the convolution operation. The neural network efficiently extracts
the local features of the image and accurately preserves the details of the image by the
inherent bias of the convolution operation.

As shown in the Figure 3, the global features obtained by Swin Transformer stem and
the local features by CNN stem are concatenated in the channel dimension, and then the
number of channel dimensions is adjusted by using the fully connected layer, and the ReLU
activation function increases its nonlinearity.
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3.3. Loss Function

A combined loss function was constructed to accurately recover the image brightness
and colors with low noises. This loss function mainly consists of L1 loss function [22],
structural similarity (SSIM) loss function [23], and perceptual loss function [24] as follows:

Ltotal = (1− λs − λp)L1 + λsLssim + λpLperc (3)

where L1 represents the pixel-level parametric loss, Lssim stands for the structural similarity
loss, Lperc means the perceptual loss, while λs and λp are two adjusting coefficients.

3.3.1. Pixel-Level Parametric Loss

The L1 loss is better to reduce the difference between the predicted image and the real
image by calculating the average distance pixel by pixel. Therefore, we adopted L1 loss to
optimize our model, as follows:

L1 =
√
‖ Igt − Ih ‖2 +`(` = 10−6) (4)

where Igt represents the real image, Ih stands for the predicted image, ` is a non-zero constant.

3.3.2. Structural Similarity Loss

The structural similarity loss function measured the structural loss of real and pre-
dicted images in three aspects: brightness, contrast, and image structure, which contributes
to recovering the structure and local details of images, as follows:

Lssim = 1− 1
N ∑

img
(

2µxµy + C1

µx2 + µy2 + C1
·

2σxy + C2

σ2
x + σ2

y + C2
) (5)

where µ and σ2 represent the image mean and variance, respectively, C1, C2 are two constants.

3.3.3. Perceptual Loss

The perceptual loss mainly constrains the perceptual difference between the real image
and the predicted image, for maintaining the image perception, veracity of details, and
semantic fidelity, as follows:

Lperc(Igt, Ih) =
1

Cj HjWj
‖ ϕ(Igt)− ϕ(Ih) ‖1 (6)

where Igt represents the real image, Ih stands for the predicted image, Hj and Wj are the
height and width of the j layer feature map, respectively, Cj is the channel, ϕ() is the feature
maps obtained in the pre-trained VGG16 model.
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4. Experiments

In this section, we perform experiments on a public low-light image dataset to evaluate
our proposed method. First, we introduced the dataset, implementation details, and
evaluation criteria. Then, we compared the proposed method with the state-of-the-art
methods in a public low-light image test set. Finally, we performed a series of ablation
experiments to verify the effectiveness of the proposed fusion block in the network.

4.1. Experimental Setup
4.1.1. Datasets

We choose LOL dataset provided by Wei et al. [7] to evaluate our method. The LOL
dataset includes 789 low-light image pairs captured in real extreme dark environments by
varying the exposure time of the camera to obtain image data pairs with noise, where the
first 689 pairs are utilized to train the network model, and the last 100 pairs are used for
testing. In addition, to ensure the generalization performance of the proposed network
model, we add 900 synthetic low-light image pairs during network training.

4.1.2. Implementation Details

We implemented our network in Pytorch [25] and trained it for 1000 epochs on an
Nvidia GTX2080 GPU with 64 GB of memory. During training, the batch size is set 4 and
the learning rate is 0.0001, which is optimized by the ADAM optimizer.

4.1.3. Evaluation Criteria

To quantitatively evaluate the low-light image enhancement performance of different
methods, we have chosen to evaluate with and without reference evaluation metrics,
respectively. The reference evaluation metrics include PSNR [26], SSIM [23], LPIPS [27],
DeltaE [28], and DeltaE2000 [29], and the no-reference evaluation metrics are NIQE [30].
The PSNR evaluation metric focuses on measuring the fidelity similarity between images,
with higher values indicating more similarity between the two images. The SSIM evaluation
metric measures the similarity between two images in terms of brightness, contrast, and
structure, and higher values indicate more similarity between the two images. The LPIPS
evaluation metric mainly evaluates the perceptual distance between image features, and
lower values indicate more similarity between the two images. The DeltaE and DeltaE2000
evaluation metrics mainly calculate the color difference between image pixels, and the
lower the value means the smaller the color difference between the two images. The NIQE
is a non-reference evaluation metric, which mainly measures the difference in multivariate
distribution of images and is closer to the human vision system.

4.2. Comparison with Other Methods

To verify the effectiveness of our proposed method, we compare our proposed
method with several state-of-the-art (SOTA) methods. The selected SOTA methods
include LIME [6], MBLLEN [31], RetinexNet [7], KinD [17], GLADNet [32], SIE [33], and
Zero-DCE [34]. To ensure the fairness of the experiments, all methods are tested in the
same experimental environment.

4.2.1. Qualitative Comparison

We first compare the visual performance of our enhanced low-light images with con-
trasting methods on the LOL test set. As shown in Figure 4, we selected four representative
images on the LOL test set [13] for qualitative comparison, and the enhancement results
of our proposed method are visually significantly better than the other methods. The
visualization results of RetinexNet and Zero-DCE methods were the worst, and Zero-DCE
method could not fully enhance the image brightness, and the enhancement results also
had insufficient brightness in some areas. RetinexNet method was better than Zero-DCE
method in image brightness enhancement, but the enhanced image amplified the noise,
which seriously affected the image quality. The GLADNet, SIE, and MBLLEN methods
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have significantly improved the enhancement effect compared to the previous two methods,
and all of them can correctly improve the brightness of the image without noise amplifica-
tion. However, for detail restoration, the GLADNet, SIE, and MBLLEN methods all suffer
from color distortion, and the GLADNet method has an overall yellowish enhancement
result, making the image look unnatural overall. Although the enhancement results of the
SIE and MBLLEN methods are better than the former in terms of image color, however,
the image color is oversaturated and appears to be inconsistent with the reference image
color. In LIME and KinD, the enhanced image is a bit brighter, while some slight noise
and color distortion remain. Compared with these SOTA methods, our proposed method
demonstrates a better restoration of images acquired in extreme darkness, with two major
improvements as follows. First, our method is able to suppress noise better and recover
more details with texture information. Second, our method can correctly and adaptively
enhance the image brightness with good generalization. The reconstructed image demon-
strates high quality in terms of correct natural color and high fidelity. In summary, our
proposed method not only accurately enhances the brightness of most image areas even
captured at uneven illumination conditions, but also achieves excellent performance in
image details reconstruction and noise suppression.

In addition, we also conducted subjective evaluation on five public datasets of MEF [35],
LIME [6], DICM [36], VV [37], and NPE [14], and selected representative image visualiza-
tion results on each dataset, as shown in Figure 5. The main difference between these five
datasets and the LOL dataset is that the original low-light images have a certain brightness
and are not taken in extreme darkness, with the main drawback being the underexposure
of local areas of the images. From Figure 5, we could find that the MBLLEN and GLADNet
methods have some shortcomings in enhancing the image brightness, and the enhancement
results of both methods still have underexposed areas, but basically they can recover the
image color correctly and suppress the image noise well. The RetinexNet and SIE methods
are better than the previous two methods in enhancing the image brightness, but they do
not suppress the noise well and do not repair the color features correctly, resulting in the
overall image with a serious color distortion. The enhancement results of KinD, LIME, and
Zeroc-DCE methods are better than the above four methods, and the enhanced images
do not have extremely serious defects in brightness enhancement, noise suppression, and
insurance color consistency problems. The enhancement effect of each method has a differ-
ent focus, and there are also small defects in different aspects. The defects of each method
are described as follows. When the KinD method is used to enhance the images of trees,
grasses, ponds, etc., there is color distortion in the enhancement results, which shows that
the generalization ability of the KinD model has some room for improvement, as shown in
Figure 5 of the enhancement effect of KinD. The enhancement effect of the LIME method
is seen to have achieved better results in terms of image brightness and color, but when
the image is enlarged, there is a slight layer of noise in the enhanced image as a whole,
thus showing that the LIME method has certain disadvantages in noise suppression. The
Zero-DCE method achieves better results compared to the above comparison methods in
all aspects of image enhancement, but there is a slight overexposure problem, as shown
in Figure 5. Compared with the above algorithms, our proposed method achieves better
results in all aspects.
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In summary, the effect of our proposed method achieves better visual results both in the
LOL dataset and in the MEF, LIME, DICM, VV, and NPE public datasets, demonstrating the
advantages of our proposed method in image brightness enhancement, noise suppression,
color recovery, and preservation of image structure texture.
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4.2.2. Quantitative Comparison

In this paper, the objective metrics PSNR, SSIM, LPIPS, DeltaE, DeltaE2000, and NIQE
are selected for evaluation. As shown in Table 1, our proposed method achieves the best
results in all three metrics. Compared with the optimal values of other methods, the
improvements of PSNR, SSIM, LPIPS, DeltaE, and NIQE are 1.73 dB, 0.05, 0.043, 0.7939, and
0.6906 respectively. Overall, the quantitative as well as the qualitative experiment results
show that our proposed method outperforms all those compared SOTA methods.
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Table 1. Objective evaluation indicators for different methods.

Method MBLLEN RetinexNet KinD GLADNet LIME SIE Zero-DCE Ours

PSNR (dB) 17.73 16.46 19.95 19.50 17.25 17.13 18.53 21.68
SSIM 0.706 0.494 0.813 0.756 0.562 0.731 0.659 0.863
LPIPS 0.250 0.441 0.138 0.240 0.283 0.259 0.234 0.095
DeltaE 18.0333 16.0340 10.8781 11.7905 10.1873 13.4434 15.3983 10.0842

DeltaE2000 23.0806 19.7853 15.8863 16.1066 12.4602 18.4470 21.6841 14.6195
NIQE 5.3745 7.0342 4.8470 4.7715 5.2755 5.4065 4.9446 4.0809

4.3. Ablation Study

The ablation experiments are performed on the LOL dataset to verify the effectiveness
of the fusion blocks proposed in this paper, with the optimal network structure obtained.
The quantitative results are shown in Table 2, and Figure 6 demonstrates the visual compar-
ison results of different network structures within our method. It is clear that our proposed
method achieves the best results in both objective and subjective metrics. Details of the
ablation experiment are described below.

Table 2. Objective evaluation indicators for different methods.

Backbone Swin Transformer
Stem CNN Stem ViT Transformer

Stem
Fusion
Blocks PSNR (dB) SSIM LPIPS NIQE

√ √
20.30 0.854 0.107 4.0778√ √ √

7 18.51 0.713 0.240 4.7611√ √ √
5 20.24 0.851 0.115 4.2105√ √ √
7 21.68 0.863 0.095 4.0809
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4.3.1. Effectiveness of Fusion Block

To demonstrate the effectiveness of our proposed fusion block, we compare it with the
pure Swin Transformer model. To ensure fairness of the comparison, we used the same
network depth as well as the experimental parameter settings, and only reduced the CNN
stem. As shown in Figure 6 and Table 2, our proposed method increases 1.38 dB, 0.009, and
0.012 in PSNR, SSIM, and LPIPS objective metrics, respectively. Thus, compared with the
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pure Swin Transformer model, the experiment result fully demonstrates the effectiveness
of our proposed fusion block.

4.3.2. Effectiveness of Different Network Structures

As shown in Figure 6 and Table 2, we have also performed ablation experiments on
the performance of different network structures. First, the selection of transformer stem is
tested and analyzed in PSNR, SSIM, and LPIPS. We select two frequently used transformers
for comparison which are ViT Transformer stem [38] and Swin Transformer stem [39]. It
can be seen that the network with Swin Transformer stem performs better than that with
ViT Transformer stem. Then, different numbers of fusion blocks are set within the proposed
network. As shown in Table 2, all three objective metrics improve significantly when the
number of fusion blocks increases from 5 to 7.

5. Conclusions

In this paper, we aim to achieve the task of adaptive brightness enhancement and
noise suppression for low-light images. For this goal, we propose an end-to-end low-
light image enhancement network by combining transformer and CNN to achieve the
reconstruction of luminance information of low-light images. The established network
model takes advantage of the feature extraction of transformer mechanism to construct
long dependencies between features and extract image semantic features more fully and
extensively. Meanwhile, the CNN branch uses convolutional operations, which can acquire
local features in more detail and fully preserve image texture and color features, possessing
better image recovery effects. Finally, we compare subjectively and objectively the process-
ing effect of this method with the current popular algorithms for low-light images through
a large number of experiments, and the results show that this method achieves a better
enhancement effect and basically solves the problems of brightness enhancement, noise
suppression, and color detail recovery of low-light images, but there is still some room for
improvement. In the future work, we will further improve the model in this paper to make
it have better generalization performance.
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