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Abstract: An extension of the general fractional calculus (GFC) is proposed as a generalization of
the Riesz fractional calculus, which was suggested by Marsel Riesz in 1949. The proposed Riesz
form of GFC can be considered as an extension GFC from the positive real line and the Laplace
convolution to the m-dimensional Euclidean space and the Fourier convolution. To formulate the
general fractional calculus in the Riesz form, the Luchko approach to construction of the GFC, which
was suggested by Yuri Luchko in 2021, is used. The general fractional integrals and derivatives are
defined as convolution-type operators. In these definitions the Fourier convolution on m-dimensional
Euclidean space is used instead of the Laplace convolution on positive semi-axis. Some properties of
these general fractional operators are described. The general fractional analogs of first and second
fundamental theorems of fractional calculus are proved. The fractional calculus of the Riesz potential
and the fractional Laplacian of the Riesz form are special cases of proposed general fractional calculus
of the Riesz form.
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1. Introduction

Fractional calculus of integrals and derivatives of arbitrary order is an analogous to
standard mathematical calculus of integer-order integrals and derivatives [1–8]. Fractional
calculus is used to describe systems and processes with non-locality in space and time
(for example see books [9–18]), in which one can see the application of fractional calculus
in various fields of sciences from mechanics to economics. Handbooks [19,20] contain
descriptions of the application of fractional calculus in 25 different areas of physics.

The operators of fractional calculus have different interpretations [21–30], which in-
clude the following: (GI) Interpretations in terms of geometry [31–38], (PhI) Interpretations
in terms of physics [25–30,35–38], (EcI) Interpretations in terms of economics [39,40], (PrI)
Interpretations in terms of probability theory [41–45], and (InI) Interpretations in terms of
information theory [46,47].

The fractional calculus is usually used to describe systems and processes with non-
locality of the power-law type. To describe different forms of nonlocalities, a general
fractional calculus should be formulated. Note that in order for some general operators
to form a general fractional calculus, they must satisfy some fractional analogues of the
first and second fundamental theorems of standard calculus [48]. These theorems allow us
to interpret general fractional operators as some analogues of integrals and derivatives of
integer order [49]. It should be noted that these theorems lead to the fact that at least one of
the two operator kernels, which describe the respectively a general integral and a general
derivative, should be singular [50,51].

The general fractional calculus actually arose in Sonin’s work published in 1884 [52]
(see also [53,54]). However, the name “general fractional calculus” began to be used
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starting from the work of Kochubei in 2011 [55]. In the last decade, the general fractional
calculus has been actively developed and applied in various fields of science [56–75]. The
important form of the general fractional calculus was proposed by Luchko in works of
2021–2022 [76–85]. Different applications of the Luchko general fractional calculus has been
considered in works [86–94].

Problems and trends in the development and application of the general fractional
calculus were described in work [95]. One of the problems is the extension of the general
fractional calculus to the entire real axis and the entire m-dimensional Euclidean space. An
extension of Luchko type of GFC on multi-dimensional case is proposed in [87], where
a general fractional vector calculus is considered. However, this GFC was proposed for
the regions from the set Rm

+ = {(x1, . . . , xm) : xj ≥ 0 for all j = 1 . . . m}. The entire
m-dimensional Euclidean space is not considered in [87].

One of the important types of fractional calculus in multi-dimensional Euclidean
spaces is the theory proposed by Marcel Riesz. The Riesz fractional derivatives and
potentials were first suggested in works [96,97] (see also [1,98]). Note that important
interpretation of the Riesz fractional Laplacianis noted in paper [98]. These operators also
are considered in different works (see [1,4,99–118]). Note that the Riesz fractional derivative
are connected with the Liouville fractional derivatives (for example, see Section 12 in [1] for
R). The Riesz derivative is also related to Grünwald–Letnikov fractional derivatives (Section
20 in [1]), and the Marchaud fractional derivative (Section 5.4 in [1]). The Riesz fractional
derivative can be connected with the Caputo fractional derivatives (see Equations 2.4.6
and 2.4.7 of [4]). The Grünwald–Letnikov–Riesz derivative of this type is considered and
applied in [119–122].

This article proposes the construction of an extension of the Riesz fractional calculus
to a wide class of operator kernels. In this extension GFC, the m-dimensional Euclidean
space and the Fourier convolution are used instead of the positive real line and the Laplace
convolution. In the formulation of the GFC in the Riesz form, the Luchko approach to con-
struction of the GFC, which was proposed in [76–85], is used. Therefore this extension can
be considered as an extension of the Luchko’s general fractional calculus for m-dimensional
Euclidean spaces. The sets of pairs of operator kernels for general fractional operators in
the Riesz form are defined. The spaces of functions, for which the proposed operators exist,
are also defined. Some basic properties of the proposed Riesz general fractional integrals
and the Riesz general fractional operators are described. The first and second fundamental
theorems of general fractional calculus in the Riesz form are proved. The well-known
fractional calculus of the Riesz potential and the fractional Laplacian of the Riesz form are
special cases of proposed general fractional calculus of the Riesz form.

It should be note that there are many different definitions of fractional Laplacian [123–125].
In this case, the fractional derivatives of the Riesz form are usually interpreted as a fractional
Laplacian. The fractional integrals of the Riesz form are usually interpreted as a fractional
Riesz potential. In the framework of these interpretations, the general fractional derivatives
and integrals of the Riesz form can be interpreted as a general fractional Laplacian and
general fractional Riesz potential.

The content of the article is following. In Section 2, the Fourier convolution and its
properties are described as preliminaries. In Section 3, sets of functions and kernel pairs
are defined. In Section 4, general fractional integrals, general fractional derivatives of the
Caputo type and Riemann–Liouville types are defined in the framework of the GFC in the
Riesz form. In Section 5, semi-group properties of GF integration of the Riesz form are
proved. In Section 6, action of the Laplacian on GF integrals of the Riesz form is described.
In Section 7, first amd second fundamental theorems of GFC in Riesz form are proved. A
brief conclusion is given in Section 8.
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2. Preliminaries: Fourier Convolution and Its Properties

For m-dimensional Euclidean space Rm, the distance between points P(x1, . . . , xm)
and Q(y1, . . . , ym) is described by the equation

rPQ = rQP = |x − y| =

√√√√ m

∑
j=1

(xj − yj)2 (1)

that can be considered as the length of the vector

rQP = − rPQ = x − y, (2)

where x(x1, . . . , xm) and y(y1, . . . , ym).
The Riesz fractional integrals (the Riesz potential) and its generalization can be defined

by using the Fourier convolution (see Section 25.3 in [1], pp. 494–495). Therefore, definition
of this convolution and some well-known properties will be given below.

Let f (x) and g(x) belong to the space L1(Rm). The Fourier convolution is defined by
the equation

( f ∗ g)(x) =

ˆ
Rm

g(x − y) f (y) dmy =

ˆ
Rm

f (x − y) g(y) dmy. (3)

The Fourier convolution exists only if functions f (x) and g(x) decay sufficiently
rapidly at infinity. Conditions for the existence of the convolution can include different
conditions on the functions, since a blow-up in g(x) at infinity can be compensated by
sufficiently rapid decay in f (x) at infinity.

For example, convolution (3) of f (x) and g(x) exists, if f (x) and g(x) are Lebesgue
integrable in L1(Rm). TIn this case, the Fourier convolution ( f ∗ g)(x) is also integrable
(for example, see Theorem 1.3 in [126], p. 3).

As another example, one can consider f (x) ∈ L1(Rm) and g(x) ∈ Lp(Rm), where
1 ≤ p ≤ ∞. In this case, ( f ∗ g)(x) ∈ Lp(Rm) and the following inequality is satisfied

‖( f ∗ g)(x)‖p ≤ ‖ f (x)‖1 ‖g(x)‖p. (4)

For the case p = 1, inequality (4) gives that the space L1(Rm) is a Banach algebra under the
convolution.

In the general case, the Young’s inequality for convolution [127] states the following
property of the Fourier convolution. If f (x) ∈ Lp(Rm) and g(x) ∈ Lq(Rm), where
1 ≤ p, q, r ≤ ∞, then ( f ∗ g)(x) ∈ Lr(Rm) and the following inequality is satisfied

‖( f ∗ g)(x)‖r ≤ ‖ f (x)‖p ‖g(x)‖q, (5)

where
1
p
+

1
q

=
1
r
+ 1. (6)

The Fourier convolution can be defined such that the associativity property is satisfied

( f ∗ (g ∗ h))(x) = (( f ∗ g) ∗ h)(x). (7)

Note that one can to define the Fourier convolution of a function with a generalized
function (distribution). The Fourier convolution of two generalized functions (distributions)
can also be defined. Let f (x) be a function with compact support and g(x) a generalized
function (distribution). Then ( f ∗ g)(x) is a smooth function defined by equation analogous
to Equation (3), [1]. For a wide class of functions, for which the Fourier convolution is
performed, one can consider convolution of these functions with the Dirac delta function
δ(x) in the form
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( f ∗ δ)(x) = f (x). (8)

For distributions f (x) and g(x) the convolution is defined by the equation

( f ∗ g) = ( f (x) × g(y), ϕ(x + y), (9)

where× is direct product, ϕ is a function that belongs to the space of infinitely differentiable
finite functions. Equation (9) is valid if at least one of f (x) and g(x) has compact support.

3. Sets of Functions and Kernel Pairs

Let us first define sets of functions on the Euclidean space Rm.

Definition 1. Let a function f (x) on the space Rm can be represented in the form

f (x) = |x|a A(x), (10)

where a > − m and A(x) ∈ C(Rm).
Then the set of such functions will be denoted by the symbol C−m(Rm).

The set C−m(Rm) is an analog (m-dimensional analog) of the set C−1(0, ∞) that is used
in the general fractional calculus in the Luchko form [76,77,80,81], which was formulated
for the positive semi-axis.

Definition 2. Let p ∈ N0 and let a function f (x) on the space Rm satisfy the condition

(−∆)p f (x) ∈ C−m(Rm), (11)

where ∆ is the Laplace operator

∆ =
m

∑
j=1

∂2

∂x2
j

. (12)

Then, the set of such functions is denoted as C2p
−m(Rm).

Definition 3. Let p ∈ N0 and let a function f (x) satisfy the conditions:
(1) (−∆)p f (x) ∈ L1(Rm),
(2) (−∆)p f (x) ∈ C−m(Rm).
Then, the set of such functions is denoted as C2p

−m(Rm).

Let us now define sets of pairs of operator kernels for operators on the Euclidean
space Rm.

Definition 4. Let pair of two functions M(x) = M(|x|) ∈ L1(Rm), and K(x) = K(|x|) ∈
L1(Rm) satisfy the following conditions.

(1) The functions M(|x|) and K(|x|) belong to the set C−m(Rm).
(2) The Fourier convolution of these functions has the form

(M ∗ K)(|x|) = M2−m(|x|), (13)

where for m 6= 2,

M2−m(|x|) =
|x|2−m

Hm(2)
=

1

4 πm/2 Γ
(

m− 2
2

)
|x|2−m. (14)

Then, the set of such pairs is denoted as Rm.
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As an example of kernel pair (M, K) that belongs to the set Rm, one can consider the
functions

M(|x|) = Mα−m(|x|) =
|x|α−m

Hm(α)
, (15)

K(|x|) = M2−α−m(|x|) =
|x|2−α−m

Hm(2− α)
, (16)

where

Hm(α) =
πm/2 2α Γ

(α

2

)
Γ
(

m− α

2

) (17)

with 0 < α < m and 0 < 2 − α < m.

Definition 5. Let a pair of functions M(x) = M(|x|) ∈ L1(Rm), and K(x) = K(|x|) ∈
L1(Rm) satisfy the following conditions.

(1) The functions M(|x|) and K(|x|) belong to the set C−m(Rm).
(2) The Fourier convolution of these functions has the form

(M ∗ K)(|x|) = M2p−m(|x|). (18)

Then, the set of such functions is denoted as Rm
2p.

The set Rm
2p can be interpreted as an analog of the Luchko set Ln that is proposed in

works [76,77,80,81] for the GFC on (0, ∞).
As an example of kernel pair (M, K) that belongs to the set Rm

2p, one can consider the
functions

M(|x|) = Mα−m(|x|) =
|x|α−m

Hm(α)
, (19)

K(|x|) = M2p−α−m(|x|) =
|x|2p−α−m

Hm(2p− α)
, (20)

where 0 < α < m and 0 < 2 p − α < m, the function Hm(α) is defined by Equation (17).
The convolution of kernels (19) and (20) is proved in [97] by the following transformations

(M ∗ K)(|x|) = (Mα−m ∗ M2p−α−m)(|x|) = Mα+(2p−α)−m(|x|) = M2p−m(|x|). (21)

As another example of a kernel pair (M, K) one can consider the following

M(|x|) = (M2p−m ∗ MG)(|x|), (22)

K(|x|) = KG(|x|), (23)

where

(MG ∗ KG)(|x|) = δm(|x|) (24)

with m-dimensional Dirac delta function δm. Condition (24) means that MG = S and
KG = S−1, where S is a distributions (generalized function), which has have an inverse
element S−1 for the Fourier convolution. It is known that some generalized functions
(distributions) S have an inverse S−1 with respect to the convolution, for which the equation

(S ∗ S−1)(|x|) = δm(|x|) (25)
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is satisfied in the generalized sense. For distributions MG(|x|) and KG(|x|) the convolution
is defined by the equation

(MG ∗ KG) = (MG(|x|) × KG(|y|), ϕ(x + y)), (26)

where × is direct product, ϕ is a function belonging to the space of infinitely differentiable
finite functions. Equation (26) is valid if at least one of MG(|x|) and KG(|x|) has compact
support. Note that the set of invertible generalized functions (distributions) is an abelian
group the Fourier convolution.

4. General Fractional Operators of Riesz Form

Let us now define general fractional operators of Riesz form that are interpreted as
general fractional integrals (GFIs) and general fractional derivatives (GFDs).

Below are the definitions are generalizations of the well-known Riesz operators [97]
(the Riesz fractional integral and the Riesz fractional derivatives) from the case of operator
kernels of the power-law types to operator kernels of general type (belonging to the set
Rm

2p). The definitions of the general fractional operators proposed below in a sense can be
considered as the expansion of the definitions of the general fractional integral and the
general fractional derivatives, which are proposed by Luchko for the [0, ∞) in [76], for the
m-dimensional Euclidean space Rm. In this consideration, the first-order derivative in the
GFD of the Luchko form of GFC is replaced by standard Laplace operator.

Definition 6. Let kernel pair (M, K) belong to the set Rm
2p.

Then the general fractional integral of the Riesz form is defined by the equation

(I(M) f )(x) = (M ∗ f )(x) =

ˆ
Rm

M(|x − y|) f (y) dmy, (27)

where f (x) ∈ C0
−m(Rm), i.e., f (x) ∈ L1(Rm) such that f (x) ∈ C−m(Rm).

Definition 7. Let kernel pair (M, K) belong to the set Rm
2p.

Then the Riesz general fractional derivative of the Caputo (C) type is defined by the equation

(D∗(K) f )(x) = (K ∗ (−∆)p f )(x) =

ˆ
Rm

K(|x − y|) (−∆)p f (y) dmy, (28)

where f (x) ∈ C
2p
−m(Rm), i.e., (−∆)p f (x) ∈ L1(Rm) such that (−∆)p f (x) ∈ C−m(Rm).

Definition 8. Let kernel pair (M, K) belong to the set Rm
2p.

Then the Riesz general fractional derivative of the Riemann–Liouville (RL) type (R-GFD-RL)
is defined by the equation

(D(K) f )(x) = (−∆)p (K ∗ f )(x) = (−∆)p
ˆ
Rm

K(|x − y|) f (y) dmy, (29)

where f (x) ∈ C0
−m(Rm), i.e., f (x) ∈ L1(Rm) such that f (x) ∈ C−m(Rm).

The Riesz GF derivative of the Caputo type can be written as

(D∗(K) f )(x) = (I(K) (−∆)p f )(x). (30)

The Riesz GF derivative of the RL type can be written as

(D(K) f )(x) = (−∆)p (I(K) f )(x). (31)
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Example 1. As an example of the Riesz GFI, one can consider the Riesz potential (Riesz fractional
integral) that is defined in [97] by the equation

(Iα f )(x) =

ˆ
Rm

Mα−m(|x − y|) f (y) dmy, (32)

where 0 < α < m, and the kernel Mα−m(|x|) can be written in the form

Mα−m(|x|) =
|x|α−m

Hm(α)
=

Γ
(

m− α

2

)
πm/2 2α Γ

(α

2

) |x|α−m. (33)

The parameter α is called the order of the fractional integral. The Riesz general fractional integral
with kernel (33) describes the well-known Riesz potential [1,4,97].

As an example of the Riesz GFD, one can consider the operator

(D∗(K) f )(x) =

ˆ
Rm

M2p−α−m(|x − y|) (−∆)p f (y) dmy, (34)

where 0 < α < m, 0 < 2p − α < m, and the kernel K(|x|) = M2p−α−m(|x|) is defined by
Equation (20).

Remark 1. In order for some general operators to form a general fractional calculus, they must sat-
isfy some fractional analogues of the first and second fundamental theorems of standard calculus [48].
These theorems allow us to interpret general fractional operators as some analogues of integrals
and derivatives of integer order [49]. Note that these fundamental theorems of GFC lead to the fact
that at least one of the two operator kernels, which describe the respectively a general integral and
a general derivative, should be singular [50,51]. It should be noted that standard Riesz fractional
derivative is called the fractional Laplacian of the Riesz form and it is defined by the hyper-singular
integral [1].

If an equation with some integral and differential operators can be presented as a differential
equation with a finite number of integer-order derivatives, then these operators cannot describe
nonlocality. This statement is based on the fact that integer-order derivatives are determined by
properties of differentiable functions only in an infinitely small neighborhood of the considered point.
For example, the GF derivatives of the Riesz form are local derivatives, if the kernel pair is defined by
Equations (19) and (20).

5. Semi-Group Properties of Riesz GF Integration

Let us describe semi-group property of the Riesz general fractional integrals.

Property 1 (Semi-group property of Riesz GFI). Let kernels M1 = M1(|x|) and M2 = M2(|x|)
belong to the space L1(Rm) and to the set C−m(Rm) such that the following condition is satisfied

(M1 ∗ M2)(x) ∈ C−m(Rm). (35)

Then, the semi-group property is satisfied for the Riesz general fractional integrals in the form

(I(M1)
I(M2)

f )(x) = (I(M1 ∗M2)
f )(x) (36)

for all x ∈ Rm, if the function f (x) belongs to the space Lq(Rm) with 1 ≤ q ≤ ∞.

Proof. It is well known that the convolution of the kernels M1 = M1(|x|) and M2 = M2(|x|)
belongs to the space L1(Rm), i.e.,

(M1 ∗ M2)(x) ∈ L1(Rm), (37)
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if functions M1 = M1(|x|) and M2 = M2(|x|) belong to the space L1(Rm).
The semi-group property (36) follows directly from the associativity property of the

Fourier convolution and definition of Riesz GFI

(I(M1)
IM2 f )(x) = (I(M1)

(M2 ∗ f ))(x) = (M1 ∗ (M2 ∗ f ))(x) =

((M1 ∗ M2) ∗ f )(x) = (I(M1 ∗M2)
f )(x). (38)

Condition (35) means that the Riesz GF integral (I(M1 ∗M2)
f )(x) exists, if, for example, f (x)

belongs to the space Lq(Rm) with 1 ≤ q ≤ ∞.

As an example of the semi-group property (36), one can consider the semi-group
property for the Riesz potentials. In this case, the kernels has the form

M1 = M1(|x|) = Mα−m(|x|), M2 = M2(|x|) = Mβ−m(|x|) (39)

and, property (36) is presented by the equation

(Iα Iβ f )(x) = (Iα+β f )(x) (40)

with 0 < α < m, and 0 < β < m, where the condition (35), is satisfied if the inequality

0 < α + β < m, (41)

holds (see [97], p. 20).

6. Action of Laplacian on Riesz GF Integrals

Let us consider an action of the Laplacian on the Riesz GF integrals. First consider the
action of the Laplacian on the Newtonian potential, which can be considered as the Riesz
GFI with the kernel M = M2−m(|x|).

It is well-known that the Newtonian potential

ϕ(x) = (I2 f )(x) =

ˆ
Rm

|x − y|2−m

Hm(2)
f (y) dmy. (42)

is the solution of the equation
∆ ϕ(x) = − f (x). (43)

As a result, the substitution of function (42) into Equation (43) gives that the following
property

∆ (I2 f )(x) = − f (x) (44)

is satisfied for all x ∈ Rm. Using the notations of Riesz GFI, Equation (44) can be presented
in the form

∆ (IM2−m f )(x) = − f (x). (45)

Using the semi-group property of the Riesz GFI in the form

IM2p−m = I2p = (I2)p = (IM2−m)
p, (46)

one can see that Equation (45) gives

(−∆)p (IM2p−m f )(x) = f (x), (47)

where p ∈ N0 and 2p < m.
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Remark 2. Note that Equation (45) means that the operator I2 = I(M2−m) is the inverse of the
operator (−∆) (see [97], p. 21), where for m 6= 2 the integral I2 = I(M2−m) is described by
the equation

(I2 f )(x) =

ˆ
Rm

|x − y|2−m

Hm(2)
f (y) dmy, (48)

where

Hm(2) =
4 πm/2

Γ
(

m− 2
2

) . (49)

Let us prove the following property that describes the action of the Laplacians on the
Riesz GFIs.

Property 2 (Action of Laplacian on Riesz GFI). Let kernel M2p−m(|x|) and M(|x|) belong to
the space L1(Rm) and to the set C−m(Rm) such that the following condition is satisfied

(M2p−m ∗ M)(x) ∈ C−m(Rm). (50)

Then, the action of the Laplacian (Laplace operator) on the Riesz general fractional integral is
described by the equation

(−∆)p (I(M2p−m ∗M) f )(x) = (I(M) f )(x). (51)

As a special case p = 1, Equation (51) has the form

∆ (I(M2−m ∗M) f )(x) = − (I(M) f )(x). (52)

Proof. The proof of property (52) follows directly from the semi-group property of the
Riesz general fractional integrals (36) in the form

∆ (I(M2−m ∗M) f )(x) = ∆ (I(M2−m) I(M) f )(x) =

(∆ I(M2−m) (I(M) f ))(x) = ∆ (I2 (I(M) f ))(x) = ∆ (I2 g)(x) (53)

with g(x) = (I(M) f )(x). Using property (44), Equation (53) gives equality (52).
Using the semi-group property of the Riesz GFI in the form

I(M2p−m)∗M) = I2p I(M) = (I2)p I(M), (54)

the successive repetitions of applying Equation (53) gives equality (51).

As an example of Equation (52) of Property 2, one can consider the action of the
Laplacian on the Riesz potential that is described by the equation

∆ (Iα+2 f )(x) = − (Iα f )(x). (55)

In paper [97], it was proved that the Riesz potential

ϕ(x) = (Iα f )(x) = (I(Mα−m) f )(x) =

ˆ
Rm

|x − y|α−m

Hm(α)
f (y) dmy (56)

is the solution of the equation

(D(K) ϕ)(x) = − f (x), (57)

where K(x) = M2p−α−m(x) and p ∈ N0, 0 ≤ p < m.
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Remark 3. The limiting case of a zero-order Riesz fractional integral (the Riesz potential) is
described by the equation (see Equation (16) in [97], p. 23) in the form

(I0 f )(x) = lim
α→0+

(Iα f )(x) = f (x). (58)

Using Equation (58), one can see that

lim
α→0+

∆ (Iα+2 f )(x) = − lim
α→0+

(Iα f )(x), (59)

gives
∆ (I2 f )(x) = − (I0 f )(x) = − f (x). (60)

7. Fundamental Theorems of GFC in Riesz Form

Let us define a set of functions that is used in the first fundamental theorem of the
GFC in the Riesz form.

Definition 9. Let a function K = K(|x|) belong to the set C−m(Rm), and let a function f (x) can
be represented in the form

f (x) = (I(K) ϕ)(x) (61)

for all x ∈ R, where ϕ(x) ∈ C−m(Rm).
Then, the set of such functions f (x) is denoted as C−m,(K)(Rm).

Theorem 1 (First Fundamental Theorem for Riesz GFD of RLtype). Let (M, K) be a pair of
the kernels from the set R2p.

The Riesz GFD of the Riemann–Liouville type is a left inverse operator to the Riesz GFI and
the equation

(D(K) I(M) f )(x) = f (x) (62)

holds for all x ∈ R, if the function f (x) belongs to the space C−m(Rm).

Proof. To prove Equation (62), the definition of the Riesz GFD of the Riemann–Liouville
type can be written in the form

(D(K) g)(x) = ((−∆)p I(K) g)(x), (63)

where one can use g(x) = (I(M) f )(x). Then, the left side of Equation (62) takes the form

(D(K) I(M) f )(x) = ((−∆)p I(K) I(M) f )(x) = f (x). (64)

Using that the Riesz GFI can be represented through the Fourier convolution and the fact
that the pair (M, K) belongs to the set R2p, one can get

(D(K) I(M) f )(x) = (−∆)p (K ∗ M ∗ f )(x) = (−∆)p (M2p−m ∗ f )(x) =

(−∆)p (I(M2p−m) f )(x) = ((−∆)p I2p f )(x) = f (x), (65)

where the equality

(∆ I2 h)(x) = − h(x)

is used p times.

Theorem 2 (First Fundamental Theorem for Riesz GFD of Caputo type). Let (M, K) be a
pair of the kernels from the set R2p.
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The Riesz GFD of the Caputo type is a left inverse operator to the Riesz GFI and the equation

(D∗(K) I(M) f )(x) = f (x) (66)

holds for all x ∈ R, if the function f (x) belongs to the set C−m,(K)(Rm).

Proof. To prove Equation (66), the definition of the Riesz GFD of the Caputo type can be
written in the form

(D∗(K) g)(x) = (I(K) (−∆)p g)(x), (67)

where one can use g(x) = (I(M) f )(x). Using the fact that f (x) belongs to the set
C−m,(K)(Rm), where

f (x) = (I(K) ϕ)(x), (68)

one can represent the function g(x) in the form

g(x) = (I(M) f )(x) = (I(M) I(K) ϕ)(x) = (M ∗ K ∗ ϕ)(x). (69)

Using the fact that the pair (M, K) belongs to the set R2p, i.e., (M ∗ K) = M2p−m one
can get

g(x) = (M2p−m ∗ ϕ)(x) = (I(M2p−m) ϕ)(x) = (I2p ϕ)(x). (70)

Then, using Equation (70), Equation (67) takes the form

(D∗(K) g)(x) = (I(K) (−∆)p I2p ϕ)(x) = (I(K) ϕ)(x) = f (x), (71)

where the equality(∆ I2 h)(x) = − h(x) is used p times and Equation (68) is taken into
account.

Theorem 3 (Second Fundamental Theorem for Riesz GFD of RL type). Let (M, K) be a pair
of the kernels from the set R2p.

The Riesz GFD of the Riemann–Liouville type is a right inverse operator to the Riesz GFI and
the equation

(I(M) D(K) f )(x) = f (x) (72)

holds for all x ∈ R, if the function f (x) belongs to the space C−m,(M)(Rm).

Proof. To prove Equation (72), the definition of the Riesz GFD of the Riemann–Liouville
type can be written in the form

(D(K) f )(x) = (−∆)p (I(K) f )(x). (73)

Using the fact that f (x) belongs to the set C−m,(M)(Rm), where

f (x) = (I(M) ϕ)(x), (74)

and the representation of the Riesz GFI as the Fourier convolution, the Riesz GFD (73) can
be represented in the form

(D(K) f )(x) = (−∆)p (I(K) I(M) ϕ)(x) = (−∆)p (K ∗ M ∗ ϕ)(x). (75)

Then, using the fact that the pair (M, K) belongs to the set R2p, Equation (75) gives
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(D(K) f )(x) = (−∆)p (K ∗ M ∗ ϕ)(x) = (−∆)p (M2p−m ∗ ϕ)(x) =

(−∆)p (I(M2p−m) ϕ)(x) = (−∆)p (I2p ϕ)(x) = ϕ(x), (76)

where the equality (∆ I2 h)(x) = − h(x) is used p times for hk = (I2(p−k)ϕ), k = 1, . . . , p.
Using Equation (76), the left side of Equation (72) takes the form

(I(M) D(K) f )(x) = (I(M) ϕ)(x) = f (x), (77)

where Equation (74) is taken into account.

Remark 4. Using Equation (12) in [97], p. 21, in the form

∆
|x|α+2−m

Hm(α + 2)
= − |x|

α−m

Hm(α)
, (78)

which can be written as

∆ Mα+2−m(x) = −Mα−m(x), (79)

and applying p times the Green’s equation (see [97], p. 23) in the form
ˆ
Rm

f (y)∆ g(y) dmy =

ˆ
Rm

g(y)∆ f (y) dmy, (80)

the following equation is proved in [97] one can get

(Iα f )(x) = (−1)p (Iα+2p (−∆)p f )(x), (81)

where p ∈ N. Here it is assumed the following conditions: (A) the function f (x) has continuous
derivatives of any order k ≤ 2p; (B) the function f (x) and its derivatives behave at infinity in such
a way that the integrals are absolutely convergent and that the integrations by parts are satisfied.

Using Equation (81), one can have the analytic extension of the operator (Iα f )(x) for any
value of α > − 2p.

Let us give a formulation of the second fundamental theorem of the Riesz GF calculus.

Theorem 4 (Second Fundamental Theorem for Riesz GFD of C type). Let (M, K) be a pair
of the kernels from the set R2p.

The Riesz GFD of the Caputo type is a right inverse operator to the Riesz GFI and the equation

(I(M) D∗(K) f )(x) = f (x) (82)

holds for all x ∈ R, if the function f (x) belongs to the set C2p
−m,(K)(R

m) and conditions of Remark 4
are satisfied for f (x).

Proof. To prove Equation (82), one should use the definition of the Riesz GFD of the Caputo
type has the form

(D∗(K) f )(x) = (I(K) (−∆)p f )(x). (83)

Then, using Equation (83) and the representation of the Riesz GFI as the Fourier convolution,
the left side of Equation (82) takes the form

(I(M) D∗(K) f )(x) = (I(M) I(K) (−∆)p f )(x) = (M ∗ K ∗ ((−∆)p f ))(x). (84)
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Then, using the fact that the pair (M, K) belongs to the set R2p, Equation (84) gives

(I(M) D∗(K) f )(x) = (M2p−m ∗ ((−∆)p f ))(x) = (I(M2p−m) (−∆)p f )(x) = (I2p (−∆)p f )(x). (85)

Using Equation (17) in [97], p. 23, with α = 0+ in the form

(Iα+2p (−∆)p f )(x) = (Iα f )(x) (α → 0+) (86)

for functions f (x) that satisfy the conditions of Remark 4. As a result, Equation (85) gives
Equation (82).

Remark 5. The assumptions about the properties of functions f (x) and its derivatives, which are
used in Remark 4, were put forward for the entire space Rm. Equations become more complicated, if
one can admit certain (m− 1)-surfaces of discontinuity (see [97], p. 24). Let us restrict ourselves
to the case where f (x) is identically zero outside a closed surface S, sufficiently regular, while the
function f (x) and the derivatives thereof intervene are continuous in the closed domain bounded by
this surface, without canceling out on the surface, in general.

Using the Riesz fractional integral that is defined as

(Iα f )(x) =

ˆ
Ω

|x − y|α−m

Hm(α)
f (y) dmy, (87)

and the Green’s equation, one can get (see Equation (20) in [97], p. 24) the equation

(Iα f )(x) = (Iα+2p (−∆)p f )(x) +

p

∑
k=1

ˆ
S

((
(−∆)k−2 f

)
(y)

dMα+2k−m(|x − y|)
dn

− d(−∆)k−1 f (y)
dn

Mα+2k−m(|x − y|)
)

dS, (88)

where

Mα+2k−m(|x|) =
|x|α+2k−m

Hm(α + 2k)
, (89)

and n is the normal to the point y(y1, . . . ym) of S directed towards the interior of this surface, and
dS the surface element around the point Q(y1, . . . ym).

As a special case of Equation (88) one can consider the limit α→ 0+, to get

(I2p (−∆)p f )(x) = f (x)−

p

∑
k=1

ˆ
s

((
(−∆)k−2 f

)
(y)

dM2k−m(|x − y|)
dn

− d(−∆)k−1 f (y)
dn

M2k−m(|x − y|)
)

dS. (90)

Taking into account Remark 5, the second fundamental theorem for Riesz GFD of
Caputo type can be formulated in the following more general form.

Theorem 5 (Second Fundamental Theorem for Riesz GFD of C type in general form). Let
(M, K) be a pair of the kernels from the set R2p.

Let function f (x) belongs to the space C2p
−m,(K)(R

m) and let f (x) be identically zero outside a
closed surface S, sufficiently regular, while the function f (x) and the derivatives thereof intervene
are continuous in the closed domain bounded by this surface.

Then, the action of the Riesz GFD of the Caputo type on the Riesz GFI is described by
the equation
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(I(M) D∗(K) f )(x) =

f (x) −
p

∑
k=1

ˆ
s

((
(−∆)k−2 f

)
(y)

dM2k−m(|x − y|)
dn

− d(−∆)k−1 f (y)
dn

M2k−m(|x − y|)
)

dS (91)

holds for all x ∈ R.

Proof. To prove Equation (91), one can use the proof of Theorem 4 and repeat the trans-
formation from Equation (83) to Equation (85). Then, using Equation (85) in the form

(I(M) D∗(K) f )(x) = (I2p (−∆)p f )(x), (92)

where one should be used Equation (90) of Remark 5 to get equality (91).

8. Conclusions

An extension of the general fractional calculus in Luchko’s form to the multi-dimensional
case was first proposed in [87]. Then, this calculus was applied to construct nonlocal physi-
cal models in [90–92,94] and nonlocal probability theory [93]. However, this extension did
not use the entire multi-dimensional Euclidean space Rm.

In this paper, an extension of the general fractional calculus, which takes into account
the entire multi-dimensional Euclidean space Rm, is proposed. The suggested extension
of the GFC is in fact a generalization of the well-known fractional Riesz calculus [1,97,98]
from power-type operator kernels to a wider class of operator kernels. The proposed
multi-dimensional form of GFC can also be considered as an extension GFC from positive
real line, which is used in [76–85], and the Laplace convolution to the entire m-dimensional
Euclidean space and the Fourier convolution.

Let us briefly list the main results of this work.
(a) The general fractional integrals and derivatives are defined as convolution type

operators. In these definitions the Fourier convolution on m-dimensional Euclidean space
is used instead of the Laplace convolution on positive semi-axis. These operators are called
the Riesz general fractional operators.

(b) The sets of operator kernels for general fractional operators in the Riesz form are de-
scribed. The spaces of functions, for which the proposed operators exist, are also described.

(c) Some basic properties of the proposed Riesz general fractional integrals and the
Riesz general fractional operators are considered.

(d) The general fractional analogs of first and second fundamental theorems of calculus
are proved for the general fractional operators.

(e) The fractional calculus of the Riesz potential and the Riesz fractional Laplacian are
special cases of proposed general fractional calculus in the Riesz form.

Let us describe some possibility of future research in the framework of the proposed
approach to building a general fractional calculus of the Riesz type and possible generaliza-
tions of the proposed multi-dimensional general fractional calculus.

(M1) It is important, the derive the series representations of kernels that belongs to the
set, which will be analogous of the Sonin representations proposed in [52,53] and described
by Equations (21)–(23) in Luchko papers [76,77].

(M2) It is important to get various examples of the operator pairs that belongs to the
set Rm

2p, which can be considered as analogs of the examples of the operator kernels that are
given in Table 1 in [90], page 6 and [91], p.15. (see also [93], pp. 22–23, [92], p. 6, [94], p. 11).

(M3) It should be noted that Riesz proposed a fractional calculus not only for the
Euclidean space, but also for the Minkowski space, which is actively used in relativistic
physics. Therefore it is important to extend the proposed general fractional operators of
the Riesz form from the Euclidean space, but also for the Minkowski space by using results
of the Riesz paper [97] and the propose work.
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(M4) The proposed GF derivatives of the Riesz form can be interpreted as GF Lapla-
cians of the Riesz form. The GF integrals of the Riesz form can be interpreted as GF Riesz
potentials. It is interesting to derive an exact discretization of the general fractional Lapla-
cian of the Riesz form by using the approach, which is is proposed in [128]. This exact
discrete GF Laplacian can be considered as an extension of the exact discretization of the
Riesz fractional Laplacian proposed in [129]. Note that exact finite differences of integer
and fractional orders are proposed in [128–130] are a generalization in some sense of the
Mickens non-standard finite differences (see papers [131–133] and bookd [134–136]). Note
that exact finite differences of integer order satisfy the same characteristic algebraic identi-
ties and properties as derivatives of integer order. Note that non-standard finite difference
are used for fractional-order differential equations [137]. The exact fractional differences
can be considered as an exact discrete analog of the fractional-order operators of the Riesz
type, which are connected by the transform operation preserving algebraic structure. Note
the exact discretization of the Riesz fractional Laplacian in proposed in [129]. One can
assume that exact general fractional differences can also defined as discrete analogs of the
proposed general fractional operators of the Riesz form.

(M5) A lattice analog of fractional calculus in the Riesz form is proposed in papers [113–115].
This lattice fractional calculus can also be generalized from power-type operator kernels to
a wider class of operator kernels by used the proposed multi-dimensional general fractional
calculus. This lattice GFC calculus can be important in application to physical lattice models
with long-range interactions, including the lattice models in quantum field theory [120].

Let us describe briefly some important elements for future research in applications of
the proposed approach to formulate nonlocal physical models by using general fractional
calculus of the Riesz type. Note that the proposed GF derivatives of the Riesz form can
be interpreted as GF Laplacians of the Riesz form. The GF integrals of the Riesz form can
be interpreted as GF Riesz potentials. These interpretations of the proposed GF operators
largely dictate their possible applications in physics and mechanics.

(P1) The proposed GF derivatives of the Riesz form (the GF Laplacians of the Riesz form)
can be used to generalize results proposed in papers for fractional gravity theory [117,138,139]
and general nonlocal gravity theory [92].

(P2) The proposed GF derivatives of the Riesz form (the GF Laplacians of the Riesz
form) can be used to generalize results proposed in papers [140–142], to describe electrody-
namics of plasma-like media [143–145] and spatial dispersion in crystal optics [146–148].
Nonlocal models of such media can be considered as a special form of general nonlocal
electrodynamics [91].

(P3) The GF Laplacians of the Riesz form (GF derivatives of the Riesz form) can
be used to describe wide class of nonlocality in the framework of fractional gradient
elasticity models of media with spatial dispersion. The models with GF Laplacian will be
generalizations of the fractional gradient elasticity models that are the first time proposed
proposed in [149,150] (see aalso [151,152]. These models an also be considered in the
framework of the general nonlocal comtinuum mechan that is proposed in [90].

(P4) The GF Laplacians of the Riesz form can be useful to describe chaotic systems
with long-range interaction [153,154].

(P5) The proposed general fractional derivatives (GF Laplacians) of the Riesz form can
be used to generalized the fractional Schrodinger equation, which are described by Laskin
in [155,156] (see also important comments in [157–159]). The general form of operator
kenlals can be also important in nonlocal quantum field theory [120].
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