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Abstract: The aim of this paper is to investigate effective and accurate dual analytic approximate
solutions, while taking into account thermal effects. The heat and mass transfer problem in a
viscous fluid flow are analytically explored by using the modified Optimal Homotopy Asymptotic
Method (OHAM). By using similarity transformations, the motion equations are reduced to a set
of nonlinear ordinary differential equations. Based on the numerical results, it was revealed that
there are dual analytic approximate solutions within the mass transfer problem. The variation of
the physical parameters (the Prandtl number and the temperature distribution parameter) over the
temperature profile is analytically explored and graphically depicted for the first approximate and
the corresponding dual solution, respectively. The advantage of the proposed method arises from
using only one iteration for obtaining the dual analytical solutions. The presented results are effective,
accurate and in good agreement with the corresponding numerical results with relevance for further
engineering applications of heat and mass transfer problems.

Keywords: Optimal Homotopy Asymptotic Method; boundary layer flow; viscous fluid flow; heat
transfer; exponential stretching sheet

MSC: 65L60; 76A10; 76D10; 76D05; 76M55

1. Introduction

Boundary layer behaviour over a moving continuous solid surface can be observed
in many important technological processes and involves thermal effects, which show the
characteristics of non-Newtonian fluids.

An important effect is viscous dissipation when the velocity gradient is high. The
analysis of the temperature field as modified by the generation or absorption of heat
in moving fluids is relevant for some physical problems, as presented by Sparrow and
Cess [1], Topper [2], and Khashi et al. [3]. Further, the contributions of the suction parameter,
Prandtl number, the heat source/sink parameter and the Eckert number to the heat transfer
characteristics are found to be quite significant in [4].

In recent years, many the analytical methods have attempted to provide the solutions
of different nonlinear models involving thermal effects.

Xu [5] analytically solved the mixed convection flow of a hybrid nanofluid in an
inclined channel with top wall-slip due to wall stripe and constant heat flux conditions.
Hayat et al. [6] analytically examined the melting phenomenon in the two-dimensional
(2D) flow of fourth-grade material over a stretching surface, while taking into account the
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existence of the Cattaneo–Christov (C-C) heat flux. The heat and mass transfer charac-
teristics for a self-similarity boundary layer of an exponentially stretching surface were
investigated by [7] using the Homotopy Analysis Method (HAM). This method is per-
formed by several researchers, such as Khan et al. [8], Khan et al. [9], Khan et al. [10],
Khan et al. [11], Zuhra et al. [12], Bilal et al. [13], and Shehzad et al. [14], who examine
the thermal effect. Alizadeh et al. [15] solved the transient flow and heat transfer of a
non-newtonian fluid (Casson fluid) between parallel disks in the presence of an external
magnetic field semi-analytically using Least Square Method. Huaxing et al. [16] combined
the effects of molecular and thermal diffusion processes by means of a generalized integral
transform technique (GITT).

Some methods provide numerical solutions, such as those of Nadeem et al. [17], Ab-
basi et al. [18], Xie et al. [19], Abdelaziz et al. [20], Muhammad et al. [21], Mabood et al. [22],
and Eid et al. [23], who numerically analyzed the flow and heat transfer resulting from an
exponentially decreased sheet of hybrid nanoparticles, using the Runge–Kutta–Fehlberg
method (RKF45) with the shooting technique. Boumaiza et al. [24] numerically investi-
gated the effects of variable thermal conductivity in mixed convection in the presence of
an external magnetic field using the Runge–Kutta–Fehlberg method (RKF) based on the
shooting technique, and analytically by using the differential transform method (DTM).
Gireesha et al. [25] numerically explored the thermal performance of a fully wet stretch-
ing/shrinking longitudinal fin with an exponential profile. Waini et al. [26] numerically
solved the magnetohydrodynamic (MHD) mixed convection flow by considering thermal
radiation. Tang et al. [27] applied some parallel finite element (FE) iterative methods for
stationary incompressible magnetohydrodynamics (MHD).

For the analysis of many physical phenomena, numerical schemes or analytical/
geometrical methods are applied in [28–35].

The Optimal Homotopy Asymptotic Method (OHAM) developed by Marinca
et al. [36–41], and successfully applied to solve nonlinear equations arising in heat trans-
fer [42–49], is used in the present paper to obtain effective and accurate dual analytic
approximate solutions while taking into account the thermal effects.

The advantages of this procedure in comparison with HAM include the independence
of small or large parameters, and the ease of optimally controlling the convergence of the
approximate solutions.

Based on the mathematical model development in [7], in the present work, the OHAM
technique is used to obtain effective and accurate dual analytic approximate solutions, while
taking into account the thermal effects. Therefore, the novelty of our work is represented
by the dual solutions of the mathematical model with the OHAM technique using only
one iteration in comparison with [7], where only one solution is presented with the HAM
method. Furthermore, ref. [7] did not elaborate on the possibility of dual solutions.

The paper is organized as follows: The Introduction is followed by a brief description
of the two-dimensional flow of an incompressible viscous fluid passing a continuous
stretching surface, taking into account the thermal effect. The steps of the OHAM technique
are presented in Section 3. Section 4 presents the heat and mass transfer problem by the
modified OHAM. Our results and some interesting behaviours of the effects of nonlinear
stretching on flow and heat transfer characteristics are discussed in Section 5. The paper
ends with conclusions.

2. Equations of Motion

In this section, the two-dimensional flow of an incompressible viscous fluid passes a
continuous stretching surface in the half-plane, y > 0, taking into account the thermal effect.
Additionally, the occurrence of the flow without suction/blowing and without partial slip
is explored.

The schematic of the physical model is presented in Figure 1.
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Figure 1. Schematic diagram of the physical model.

For the constant pressure at the boundary layer, the continuity, momentum and
temperature equations governing the fluid flow are given by [7]:

∂u
∂x + ∂v

∂y = 0,

ρ ·
(

u ∂u
∂x + v ∂u

∂y

)
= µ ∂2u

∂y2 ,
(1)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 . (2)

The physical initial/boundary conditions can be written in the following form [7]:

y = 0 : u = u0 · e
x
l , v = vw , T = T∞ + T0 · e

k·x
2l ,

y→ ∞ : u→ U∞ , T → T∞ .
(3)

By means of the similarity transformations,

η =
√

u0·ρ·l
2µ · y

l · e
(k·x)/(2l) , u = u0ex/l f ′(η),

v = − µ
ρl ·
√

u0·ρ·l
2µ · ex/(2l)[ f (η) + η · f ′(η)],

T = T∞ + T0 · e(k·x)/(2l)θ(η)

(4)

and by inserting Equation (4) into Equations (1)–(3), we obtain:

f ′′′ + f f ′′ − 2
(

f ′
)2

= 0, (5)

θ′′ + pr
(

f θ′ − k · f ′θ
)
= 0 . (6)
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with the initial/boundary conditions:

f (0) = 0 , f ′(0) = 1 , θ(0) = 1 ,

f ′ → 0 , θ → 0 for η → ∞,
(7)

where the prime denotes differentiation with respect to η.

3. The Modified Optimal Homotopy Asymptotic Method (OHAM)

The steps of the modified OHAM technique [36] are presented in detail below:

(i) The nonlinear differential equation has the following general form:

Lϕ

(
ϕ(η)

)
+Nϕ

(
ϕ(η)

)
= 0, (8)

under the boundary/initial conditions

Bϕ

(
ϕ(η),

dϕ(η)

dη

)
= 0, (9)

where Lϕ is an arbitrary linear operator, Nϕ is the corresponding nonlinear operator
and Bϕ is an operator describing the boundary conditions.

(ii) The homotopic relation is given by:

Hϕ

[
Lϕ

(
ϕ(η, p)

)
, H(η, Ci), Nϕ

(
ϕ(η, p)

)]
=

= Lϕ

(
ϕ0(η)

)
+ G0(η) + p

[
Lϕ

(
ϕ1(η, Ci)

)
− H(η, Ci)Nϕ

(
ϕ0(η)

)]
,

(10)

where G0(η) is a given continuous function, p ∈ [0, 1] is the embedding parameter
and H(η, Ci) 6= 0 is an auxiliary convergence–control function depending on the
variable η and of the convergence–control parameters C1, C2, . . . , Cs, and choosing
the unknown function ϕ(η) in the following form:

ϕ(η, p) = ϕ0(η) + pϕ1(η, Ci), (11)

and by equating the coefficients of p0 and p1, respectively, we obtain:

- the zeroth-order deformation problem

Lϕ

(
ϕ0(η)

)
+ G0(η) = 0, Bϕ

(
ϕ0(η),

dϕ0(η)

dη

)
= 0, (12)

- the first-order deformation problem

Lϕ

(
ϕ1(η, Ci)

)
= H(η, Ci)Nϕ

(
ϕ0(η)

)
,

Bϕ

(
ϕ1(η, Ci),

dϕ1(η,Ci)
dη

)
= 0, i = 1, 2, . . . , s.

(13)

(iii) ϕ0(η) could be obtained by solving the linear Equation (12).
(iv) In Equation (13), the expression Nϕ has the following general form:

Nϕ(ϕ0(η)) = ∑n
i=1 hi(η)gi(η), (14)

where n is a positive integer, and hi(η) and gi(η) are known elementary functions
that depend on ϕ0(η) and on Nϕ.
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The Equation (13) is a non-homogenous differential equation.
By means of the general theory of the differential equations, the computation of the
function ϕ1(η, Ci) has the following form:

ϕ1(η, Ci) = ∑m
i=1 Hi(η, hj(η), Cj)gi(η), j = 1, . . . , s, (15)

or
ϕ1(η, Ci) = ∑m

i=1 Hi(η, gj(η), Cj)hi(η), j = 1, . . . , s,

Bϕ

(
ϕ1(η, Ci),

dϕ1(η,Ci)
dη

)
= 0 ,

(16)

where m ∈ N∗ is an arbitrary number.
The above expressions of Hi(η, hj(η), Cj) contain linear combinations of the elemen-
tary functions hj, j = 1, . . . , s and the parameters Cj, j = 1, . . . , s.

(v) By means of Equation (11) for p = 1, the first-order analytical approximate solution of
Equations (8) and (9), namely the OHAM-solution, is:

ϕ(η, Ci) = ϕ(η, 1) = ϕ0(η) + ϕ1(η, Ci). (17)

The parameters C1, C2, . . . , Cs can be optimally identified by means of various methods,
such as the Galerkin method, the collocation method, the Kantorowich method, the least
square method or the weighted residual method.

Thus, the first-order approximate solution (17) is well-determined.

4. Heat and Mass Transfer Problem

Based on a previous paper [50], the dual approximate solutions f̄ (η) for Equation (5)
are established.

The skin-friction coefficient is f̄ ′′(0) = −1.2818085481 for the first solution and
f̄ ′′(0) = −1.2916563038 for the corresponding dual solution, respectively.

Using the same modified OHAM procedure, the approximate solutions, denoted by θ̄
of Equations (6) and (7) (for the unknown function θ), were obtained.

The expression of the linear operator Lθ(η) could be:

Lθ(η) = θ′′ + K1θ′, (18)

where K1 > 0 is an unknown parameter at this moment.
From Equation (6), the nonlinear operator Nθ corresponding to the unknown function

θ becomes:

Nθ(η) = −K1θ′ + pr
(

f θ′ − k · f ′θ
)
. (19)

There are a number of possibilities to choose from for the known function G0(η),
including the following:

G0(η) = (a0 + a1η + a2η2) · e−K2η , (20)

or
G0(η) = (a0 + a1η + a2η2 + a3η3) · e−K2η ,

or
G0(η) = (a0 + a1η) · e−K2η + (b0 + b1η + b2η2) · e−2·K2η ,

or
G0(η) = (a0 + a1η + a2η2) · e−K2η + (b0 + b1η + b2η2) · e−K3η ,

and so on.
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4.1. The Zeroth-Order Deformation Problem

Choosing for G(η) the expression given by Equation (20), Equation (12) becomes:

θ′′0 + K1θ′0 + (a0 + a1η + a2η2) · e−K2η = 0, θ0(0) = 1, θ0(∞) = 0 (21)

with the solution

θ0(η) = (1− b0)e−K1η + (b0 + b1η + b2η2) · e−K2η , (22)

where b0, b1, b2 depend on a0, a1, a2, K1, K2 and will be optimally identified.

4.2. The First-Order Deformation Problem

Taking into account the function θ0(η) (22), the nonlinear operator Nθ0(η) from Equa-
tion (19) is:

Nθ0(η) = m0e−K1η + m1e−(K+K1)η+

+(n0 + n1η + n2η2) · e−K2η + (p0 + p1η + p2η2) · e−(K+K2)η ,
(23)

where the unknown convergence-control parameters m0, m1, n0, n1, n2, p0, p1, p2, K1, K2
will be optimally identified and they depend on b0, b1, b2, K (K = −1.1041868797, for the
first solution and K = −3.2611576654, for the corresponding dual solution, respectively [50])
and the physical parameters pr, k, respectively.

The comparison between the Equations (14) and (23) yields:

h∗1(η) = m0, g∗1(η) = e−K1η ,

h∗2(η) = m1, g∗2(η) = e−(K+K1)η ,

h∗3(η) = n0 + n1η + n2η2, g∗3(η) = e−K2η ,

h∗4(η) = p0 + p1η + p2η2, g∗4(η) = e−(K+K2)η .

(24)

For the first-order deformation problem given by Equation (13), the first approximation
θ1(η, Di), from Equation (15), becomes:

θ1(η, Di) = H∗1 (η, Di)e−K1η + H∗2 (η, Di)e−(K+K1)η+

+H∗3 (η, Di)e−K2η + H∗4 (η, Di)e−(K+K2)η ,
(25)

where Di are the unknown real numbers and the unknown auxiliary functions H∗1 (η, Di),
. . . , H∗4 (η, Di) could be written in the form:

H∗1 (η, Di) = D0η, H∗2 (η, Di) = D7, H∗3 (η, Di) = D1 + D2η + D3η2,

H∗4 (η, Di) = D4 + D5η + D6η2,
(26)

where D7 = −D1 − D4.
Substituting Equation (26) into Equation (25) one can obtain:

θ1(η, Di) = D0ηe−K1η + D7e−(K+K1)η+

+(D1 + D2η + D3η2)e−K2η + (D4 + D5η + D6η2)e−(K+K2)η .
(27)
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4.3. The First-Order Analytical Approximate Solution θ̄

From Equations (22) and (27) the first-order approximate solution given by Equation (17)
is obtained:

θ̄(η, Di) = θ0(η) + θ1(η, Di) = (1− b0 + D0η)e−K1η + D7e−(K+K1)η+

+
[
b0 + D1 + (b1 + D2)η + (b2 + D3)η

2]e−K2η + (D4 + D5η + D6η2)e−(K+K2)η .
(28)

5. Results and Discussion

The accuracy of the obtained results is shown by comparison of the above obtained
approximate solutions with the corresponding numerical integration results, computed by
means of the shooting method combined with the fourth-order Runge-Kutta method using
Wolfram Mathematica 9.0 software. The goal of this section is to compute the convergence-
control parameters K1, K2, b0, b1, b2 and Di, which appear in Equation (28), by the least
square method for different values of the known parameters k and pr.

For fixed value of the parameter k and different values of the Prandtl number pr, four
approximate solutions θ̄(η) for temperature obtained from Equation (28), are presented be-
low:

(a1) the parameter k = 0.25, the Prandtl number pr = 0.5.

The first-order approximate solution is:

θ̄(η) = 6.4270002120 · e−0.5270407713·η + (1 + 1.0977591304 · η) · e−1.6312276511·η+
+(−0.4903842473− 0.8677675300 · η − 0.0655183831 · η2) · e−1.7700844051·η+
+(−5.6792005322− 0.5323882885 · η − 0.0584055951 · η2) · e−0.6658975254·η+
+(−0.2574154323− 0.1860126005 · η − 0.0354344370 · η2) · e−1.7700844051·η

(29)

and the corresponding dual approximate solution becomes:

θ̄(η) = 0.4203972946 · e−0.1531387065·η + (1 + 0.0224661936 · η) · e−1.2573255862·η+
+(−0.1188278766− 0.1003865016 · η − 0.0318369145 · η2) · e−3.1410563458·η+
+(−0.8375405893− 0.3581935944 · η − 0.0048598683 · η2) · e−1.5705281729·η+
+(0.5359711713− 0.0282283101 · η + 0.0012582354 · η2) · e−0.4663412931·η .

(30)

Other cases (a2–a6) for different values of the physical parameters k and pr are treated
in Appendix A.

Tables 1 and 2 provides a comparison between the OHAM approximate solutions θ̄OHAM
(temperature) given by Equations (29), (A1) and (A3) for the first solution, and the corresponding
dual approximate solutions θ̄OHAM (temperature) given by Equations (30), (A2) and (A4), and
numerical results for k = 0.15 for different values of the Prandtl number pr.

In Tables 3 and 4, respectively, the effect of the mass transfer coefficient θ′(0) ob-
tained from Equations (29), (A1), (A3) and (A5) for both approximate solutions θ̄(η) and
corresponding numerical values are presented.

In the case of the approximate solution θ̄(η) given by Equation (28), the residual from
Equation (6) becomes:

Rθ̄(η) = θ̄′′(η) + pr ·
(

f̄ (η)θ̄′(η)− k · f̄ ′(η)θ̄(η)
)
. (31)

The numerical values of the integral of the square residual given by Equation (31) are
shown in Table 5.
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Table 1. Comparison between the first-order approximate solutions θ given by Equations (29), (A1)
and (A3) and the corresponding numerical results for k = 0.25 and different values of the Prandtl
parameter pr (absolute errors: εθ = |θnumerical − θ̄OHAM|).

pr = 0.5 pr = 1 pr = 2.5

η θnumerical θnumerical θnumerical

0 1 1 1.
7/10 0.7489771062 0.6049297342 0.3645655020
7/5 0.5542053824 0.3451592660 0.1026555405
14/5 0.2979176957 0.1031937444 0.0055540922
7/2 0.2175152070 0.0553624933 0.0011533541
21/5 0.1586233161 0.0295455695 0.0002005939
28/5 0.0842151436 0.0083554452 −0.000042451
7 0.0446648315 0.0023547811 −0.000052955

θ̄OHAM θ̄OHAM θ̄OHAM

η given by Equation (29) given by Equation (A1) given by Equation (A3)

0 1 1 1
7/10 0.7489754987 0.6049296367 0.3645643475
7/5 0.5542074180 0.3451592418 0.1026577273
14/5 0.2979183855 0.1031938730 0.0055556103
7/2 0.2175209607 0.0553624331 0.0011544802
21/5 0.1586257234 0.0295454423 0.0001987361
28/5 0.0842093003 0.0083555208 −0.0000415991
7 0.0446671512 0.0023548325 −0.0000527572

εθ εθ εθ

η for Equation (29) for Equation (A1) for Equation (A3)

0 0 0 0
7/10 1.607455882179920 × 10−6 9.742094708720117 × 10−8 1.154538486203282 × 10−6

7/5 2.035591219806676 × 10−6 2.419851896640068 × 10−8 2.186829855102545 × 10−6

14/5 6.897985110887461 × 10−7 1.286033818881371 × 10−7 1.518143775084551 × 10−6

7/2 5.753703639754804 × 10−6 6.013523504849738 × 10−8 1.126029875720986 × 10−6

21/5 2.407287287453652 × 10−6 1.271883639693272 × 10−7 1.857745851002750 × 10−6

28/5 5.843302489164093 × 10−6 7.561148052809274 × 10−8 8.526737934899268 × 10−7

7 2.319736837258501 × 10−6 5.142016535871277 × 10−8 1.977883636694968 × 10−7

Table 2. Comparison between the corresponding dual approximate solutions θ given by Equations
(30), (A2) and (A4) and the corresponding numerical results for k = 0.25 and different values of the
Prandtl parameter pr (absolute errors: εθ = |θnumerical − θ̄OHAM|).

pr = 0.5 pr = 1 pr = 2.5

η θnumerical θnumerical θnumerical

0 1 1 1
7/10 0.7858094356 0.6190556769 0.3688458421
7/5 0.6228249648 0.3691930827 0.1074930546
14/5 0.4085135781 0.1323390363 0.0072619140
7/2 0.3388566718 0.0822984147 0.0019692645
21/5 0.2852286001 0.0530118448 0.0006029330
28/5 0.2095004124 0.0244710236 0.0001201557
7 0.1593196243 0.0127723199 0.0000713911
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Table 2. Cont.

θ̄OHAM θ̄OHAM θ̄OHAM

η given by Equation (30) given by Equation (A2) given by Equation (A4)

0 1 1 1
7/10 0.7858136455 0.6190546849 0.3688476879
7/5 0.6228223796 0.3691937408 0.1074929959
14/5 0.4085152511 0.1323390010 0.0072605998
7/2 0.3388541904 0.0822992211 0.0019705677
21/5 0.2852266049 0.0530118072 0.0006039728
28/5 0.2095026184 0.0244705609 0.0001187666
7 0.1593190414 0.0127728948 0.0000719311

εθ εθ εθ

η for Equation (30) for Equation (A2) for Equation (A4)

0 0 0 0
7/10 4.209839553404038 × 10−6 9.919631346333446 × 10−7 1.845765404961952 × 10−6

7/5 2.585204789018469 × 10−6 6.580974769021530 × 10−7 5.869076206976853 × 10−8

14/5 1.673009802138914 × 10−6 3.525957825711856 × 10−8 1.314288065634369 × 10−6

7/2 2.481370770357482 × 10−6 8.064145169128789 × 10−7 1.303131223448148 × 10−6

21/5 1.995245388297650 × 10−6 3.768198066078643 × 10−8 1.039826044727616 × 10−6

28/5 2.205963331475269 × 10−6 4.627662200211435 × 10−7 1.389042267445562 × 10−6

7 5.828584578315699 × 10−7 5.749493005424017 × 10−7 5.400103917853105 × 10−7

Table 3. Comparison between the heat transfer coefficient θ̄′(0) obtained by means of the OHAM
for different values of the Prandtl number pr and the parameter k, respectively, in the case of the
first-order approximate solution.

Numerical Solution OHAM Solution Absolute Errors

pr k θ′numerical(0) θ̄′OH AM(0) εθ′(0) = |θ′numerical(0)− θ̄′OH AM(0)|

0.5 0.15 −0.3727417350 −0.3727417250 1.000000127149292 × 10−8

0.5 0.25 −0.4014940569 −0.4014939569 9.999999639465074 × 10−8

0.5 0.5 −0.4686586964 −0.4686585964 9.999899136525770 × 10−8

1 0.15 −0.6171741875 −0.6171740875 9.999999328602627 × 10−8

1 0.25 −0.6608537627 −0.6608537527 1.000000671158574 × 10−8

1 0.5 −0.7647932545 −0.7647931545 9.999999373011548 × 10−8

2.5 0.15 −1.1185512466 −1.1185511466 9.999999783794067 × 10−8

2.5 0.25 −1.1923711840 −1.1923710840 9.999999694976225 × 10−8

2.5 0.5 −1.3666535048 −1.3666534948 1.000000171558213 × 10−8

Table 4. Comparison between the heat transfer coefficient θ̄′(0) obtained by means of the OHAM
for different values of the Prandtl number pr and the parameter k, respectively, in the case of the
corresponding dual approximate solution.

Numerical Solution OHAM Solution Absolute Errors

pr k θ′numerical(0) θ̄′OH AM(0) εθ′(0)

0.5 0.15 −0.3238611974 −0.3238611874 1.000000138251522 × 10−8

0.5 0.25 −0.3473663384 −0.3473662384 9.999999683873995 × 10−8

0.5 0.5 −0.4014554630 −0.4014554530 1.000000332540551 × 10−8
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Table 4. Cont.

Numerical Solution OHAM Solution Absolute Errors

pr k θ′numerical(0) θ̄′OH AM(0) εθ′(0)

1 0.15 −0.5929179987 −0.5929179887 9.999954753148188 × 10−9

1 0.25 −0.6393617637 −0.6393617537 9.999972516716582 × 10−9

1 0.5 −0.7402284508 −0.7402283508 9.999999661669534 × 10−8

2.5 0.15 −1.1110208487 −1.1110208387 1.000000215967134 × 10−8

2.5 0.25 −1.1848129415 −1.1848129315 1.000000104944831 × 10−8

2.5 0.5 −1.3591246415 −1.3591246315 1.000000637851883 × 10−8

Table 5. Integral of the square residual given by Equation (31) respectively, for different values of the
parameters k and pr.

The First Solution The Corresponding Dual Solution

k pr
∫ ∞

0 R2
θ̄
(η) dη

∫ ∞
0 R2

θ̄
(η) dη

0.15 0.5 6.575432601542083 × 10−9 2.908978433213571 × 10−10

0.25 0.5 2.692683749426807 × 10−8 6.130825386312505 × 10−8

0.5 0.5 2.877470397657074 × 10−10 2.329753093802392 × 10−7

0.15 1 4.686687280794850 × 10−9 4.935777384019864 × 10−8

0.25 1 2.769513856968707 × 10−10 3.168740967468855 × 10−9

0.5 1 1.390428703762422 × 10−9 9.337205151229265 × 10−6

0.15 2.5 2.424695938193004 × 10−6 1.109703562037575 × 10−6

0.25 2.5 2.547691207587611 × 10−7 8.786794816590718 × 10−8

0.5 2.5 3.953512700816478 × 10−10 5.589488626508835 × 10−6

5.1. Influence of the Prandtl Number pr

From Figures 2–5 we can notice that the variation of the temperature θ̄(η) decreases
with the increasing of the Prandtl number pr, for some fixed values of the parameter k.

the first solution Θ
�

for pr = 0.5, 1, 2.5

2 4 6 8 10
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
HΗL

Figure 2. Variation of the temperature θ̄(η) given by Equations (29), (A1) and (A3) with the Prandtl
number pr = 0.5, 1, 2.5 for k = 0.15: OHAM solution (with lines) and numerical solution (dashing
lines), respectively.
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the dual solution Θ
�

for pr = 0.5, 1, 2.5

2 4 6 8 10
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
HΗL

Figure 3. Variation of the temperature θ̄(η) given by Equations (30), (A2) and (A4) with the Prandtl
number pr = 0.5, 1, 2.5 for k = 0.15: OHAM solution (with lines) and numerical solution (dashing
lines), respectively.

the first solution Θ
�

for pr = 0.5, 1, 2.5

2 4 6 8 10
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
HΗL

Figure 4. Variation of the temperature θ̄(η) given by Equations (29), (A1) and (A3) with the Prandtl
number pr = 0.5, 1, 2.5 for k = 0.25: OHAM solution (with lines) and numerical solution (dashing
lines), respectively.

the dual solution Θ
�

for pr = 0.5, 1, 2.5

2 4 6 8 10
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
HΗL

Figure 5. Variation of the temperature θ̄(η) given by Equations (30), (A2) and (A4) with the Prandtl
number pr = 0.5, 1, 2.5 for k = 0.25: OHAM solution (with lines) and numerical solution (dashing
lines), respectively.
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5.2. Influence of the Temperature Distribution Parameter k

Additionally, Figures 6 and 7 show that the variation of the temperature θ̄(η) decreases
with the increase in the parameter k for some fixed values of the Prandtl number pr.

the first solution Θ
�

for pr = 1 and
k = 0.15, 0.25, 0.5

1 2 3 4 5
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
HΗL

Figure 6. Variation of the temperature θ̄(η) given by Equations (A1), (A7) and (A9) with the parameter
k = 0.15, 0.25, 0.5 for pr = 1: OHAM solution (with lines) and numerical solution (dashed lines),
respectively.

the dual solution Θ
�

for pr = 1 and
k = 0.15, 0.25, 0.5

1 2 3 4 5
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
HΗL

Figure 7. Variation of the temperature θ̄(η) given by Equations (A2), (A8) and (A10) with the
parameter k = 0.15, 0.25, 0.5 for pr = 1: OHAM solution (with lines) and numerical solution (dashed
lines), respectively.

From all the Tables 1–5 and Figures 2–7 we can summarize that the OHAM solutions
are effective and very accurate.

The advantages of the modified OHAM technique by comparison of the OHAM-
solutions with the corresponding iterative solutions obtained by means of the iterative
method developed in [51] are presented below.

The Equations (5) and (6) convert in the following system:
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f ′1(η) = f2(η)
f ′2(η) = f3(η)
f ′3(η) = 2 f 2

2 (η)− f1(η) f3(η)
θ′1(η) = θ2(η)

θ′2(η) = pr ·
(

k · f2(η)θ1(η)− f1(η)θ2(η)
) , (32)

where f1(η) = f (η), f2(η) = f ′(η), f3(η) = f ′′(η), θ1(η) = θ(η), θ2(η) = θ′(η).
By integration of the system (32) over the interval [0, η], the following expressions

are obtained:

f1(η) = f1(0) +

η∫
0

f2(s) ds

f2(η) = f2(0) +

η∫
0

f3(s) ds

f3(η) = f3(0) +

η∫
0

(
2 f 2

2 (s)− f1(s) f3(s)
)

ds

θ1(η) = θ1(0) +

η∫
0

θ2(s) ds

θ2(η) = θ2(0) +

η∫
0

pr ·
(

k · f2(s)θ1(s)− f1(s)θ2(s)
)

ds

. (33)

The iterative algorithm is written as:

f1,0(η) = f1(0) , f1,1(η) = N1( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

f2,0(s) ds ,

f2,0(η) = f2(0) , f2,1(η) = N2( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

f3,0(s) ds ,

f3,0(η) = f3(0) , f3,1(η) = N3( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

(
2 f 2

2,0(s)− f1,0(s) f3,0(s)
)

ds ,

θ1,0(η) = θ1(0) , θ1,1(η) = N4( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

θ2,0(s) ds ,

θ2,0(η) = θ2(0) , θ2,1(η) = N5( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

pr ·
(

k · f2,0(s)θ1,0(s)− f1,0(s)θ2,0(s)
)

ds ,

· · ·

f1,m(η) = N1

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N1

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

f2,m(η) = N2

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N2

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

f3,m(η) = N3

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N3

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

θ1,m(η) = N4

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N4

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

θ2,m(η) = N5

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N5

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

m ≥ 2 .

(34)
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By carrying out the iterative method, the solutions of the Equations (5) and (6) have
the form:

f1iter (η) =
∞

∑
m=0

f1,m(t) , f2iter (η) =
∞

∑
m=0

f2,m(η) , f3iter (η) =
∞

∑
m=0

f3,m(η) , θ1iter (η) =
∞

∑
m=0

θ3,m(η) , θ2iter (η) =
∞

∑
m=0

θ2,m(η) .

Using five iterations, with the initial conditions f1(0) = 0, f2(0) = 1, f3(0) =
−1.2818085481, θ1(0) = 1, θ2(0) = −0.6608537627 (presented in the Table 3) and the
physical constants k = 0.25, pr = 1, taking into account of the algorithm (33), the iterative
solutions become:

f1iter (η) =
5

∑
m=0

f1,m(η) = η − 0.6409042740η2 + 0.3333333333η3 − 0.1602260685η4+

+0.0744091621η5 − 0.0160226068η6 + 0.0016144588η7 + 0.0008177037η8 ,

θ1iter (η) =
5

∑
m=0

θ1,m(η) = 1− 0.6608537627η − 0.3304268813η2 − 0.1101422937η3−

−0.0275355734η4 − 0.0055071146η5 .

(35)

A comparison between the OHAM solutions f̄OHAM, θ̄OHAM and the corresponding
iterative solutions f1iter , θ1iter given in Equation (35) is highlighted graphically in Figures 8
and 9 and tabularly in Table 6, respectively.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Η

0.2

0.4

0.6

0.8

f
�
HΗL

Figure 8. Comparison between the approximate analytical solution f̄ (η), of the Equation (5) given by
Equation [50], the iterative solution f1iter (η) given by Equation (35) and the corresponding numerical
solution: numerical solution (with lines), OHAM solution (dashed lines), and iterative solution
(dotted curve), respectively.
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
Η

-1.0

-0.5

0.5

1.0

Θ
�
HΗL

Figure 9. Comparison between the approximate analytical solution θ̄(η), of the Equation (6) given
by Equation (A1), the corresponding numerical solution and the iterative solution θ1iter (η) given by
Equation (35): numerical solution (with lines), OHAM solution (dashed lines), and iterative solution
(dotted curve), respectively.

The precision and efficiency of the OHAM method (using just one iteration) against
to the iterative method described in [51] (using five iterations) arising from the presented
comparison.

Table 6. Comparison between the approximate analytical solution f̄ (η) given by Equation [50], the
iterative solution f1iter (η) given by Equation (35) and the corresponding numerical solution.

η fnumerical f̄OH AM [50] f1iter

0 0 0 0
1/10 0.0939089690 0.0939087919 0.0939089962
1/5 0.1767959477 0.1767950192 0.1767969422

3/10 0.2501798542 0.2501779276 0.2501903246
2/5 0.3153313350 0.3153286203 0.3153863643
1/2 0.3733200865 0.3733170634 0.3735172090
3/5 0.4250519374 0.4250491302 0.4256065973

7/10 0.4712981406 0.4712959627 0.4726209608
4/5 0.5127187008 0.5127173844 0.5155172621

9/10 0.5498810935 0.5498806830 0.5552901957
1 0.5832753856 0.5832757722 0.5930217087

Case Study

In the following we apply our analytical results in the case of the hydraulic oil with a
large application at the hydraulic drive systems as turbines, pumps, naval propellers.

We consider the fluid flow scenario from a hydraulic installation with the following
values of the characteristic quantities: the reference velocity u0 = 0.05 [m/s], the reference
temperature T0 = 40, the kinematical viscosity ν = 46 · 10−6 [m2/s] and the environmental
temperature T∞ = 22, respectively.

The analytical obtained results in our paper using the specific physical sizes, are
presented in Figures 10 and 11 for the first solution and in Figures 12 and 13 for the
corresponding dual solution, respectively.
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Figure 10. The vector field (u, v) from Equation (4) for hydraulic oil at a temperature of 40 ◦C, in the
case of the first-solution given by Equation [50].
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21.02

21.04

T@oCD

Figure 11. The 3D-profile of the temperature T from Equation (4) for k = 0.25, pr = 1 for hydraulic
oil at a temperature of 40 ◦C, in the case of the first-solution given by Equation (A1).

The obtained results are in agreement with the Fluid Mechanics [52,53].
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Figure 12. The vector field (u, v) from Equation (4) for hydraulic oil at a temperature of 40 ◦C, in the
case of the corresponding dual solution given by Equation [50].
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Figure 13. The 3D-profile of the temperature T from Equation (4) for k = 0.25, pr = 1 for hydraulic
oil at a temperature of 40 ◦C, in the case of the corresponding dual solution given by Equation (A2).

6. Conclusions

The steady boundary layer flow and heat transfer over a stretching sheet were analyzed
by using a nonlinear differential equation. The variation of the temperature θ(η) decreases
with the increase in the Prandtl number pr for some fixed values of the parameter k. As a
result, we can observe a decrease in the fluid temperature. This shows that more heat is
released from the sheet and the Prandtl number decreases in the boundary layer thickness.
Therefore, the heat transfer rate increases.

The processes with strongly nonlinear behaviors appear in different technological
applications. Thus, an approximate analytical solution is a more realistic option.
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The OHAM treatment related to the heat and mass transfer problem without partial
slip in the flow of a viscous fluid over an exponentially stretching sheet without suc-
tion/blowing is considered and provides an accurate solution for the nonlinear differential
equation with initial and boundary conditions.

In this paper, the thermal effects of the Prandtl number and the temperature distri-
bution parameter are analytically analyzed. The variations of the dimensionless surface
temperature and heat transfer characteristics with the governing parameters are graphed
and tabulated. In particular, the analytically obtained results are applied from the hy-
draulic system.

The advantage of the method applied in this work is the efficiency by only one
iteration. Other advantages, including accuracy, flexibility, validity and convergence, of
the approximate solutions are highlighted by comparing the OHAM solutions with the
corresponding iterative solutions.

Some characteristics of the heat and mass transfer, such as the vector field (u, v) and
the temperature profile T are graphically depicted in a case study of the hydraulic oil using
the obtained approximate solutions via OHAM.

This study is useful for many engineering applications of heat and mass transfer
problems such as strand casting processes, polymeric liquids, the extraction of metals and
polymers, glass-fiber production, and physiological fluid dynamics.
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Nomenclature/Notation
Symbols Names
u, v Velocity components (m/s)
x, y Cartesian coordinates (m)
ν Kinematical viscosity (m2/s)
µ Viscosity
ρ Fluid density
U∞ Velocity of uniform flow
u0, T0 Reference velocity and reference temperature
N Velocity slip factor
l Characteristic length
pr Prandtl number
k Parameter of temperature distribution
T∞ Environment temperature (K)
η Independent dimensionless variable
f (η) Stream function
θ(η) Temperature
OHAM solution approximate analytical solution by means of the modified Optimal Homotopy

Asymptotic Method

Appendix A

In this section there are presented in details the first-order approximate solution
given by Equation (28) and the corresponding dual solution for different values of the
physical parameters.
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(a2) the parameter k = 0.25, the Prandtl number pr = 1.

θ̄(η) = 1.1600261597 · e−0.9234397221·η + (1− 0.3362966408 · η)e−2.0276266018·η+
+(−1.3520589334 + 0.2475145276 · η − 0.0094831510 · η2)e−2.0138501698·η+
+(0.1720819672 + 0.0218466525 · η − 0.0001162030 · η2)e−0.9096632901·η+
+(0.0199508065 + 0.0189709502 · η + 0.0059452174 · η2)e−4.0277003397·η

(A1)

and the corresponding dual approximate solution becomes:

θ̄(η) = 0.2369245422 · e−0.5134938585·η + (1 + 1.0513455728 · η)e−1.6176807383·η+
+(0.0238401179− 0.0020255651 · η + 0.0000568573 · η2)e−0.1207882199·η+
+(0.8098858748 + 0.2652845586 + 0.0285288295 · η2)e−2.4499501993·η+
+(−1.0706505351 + 0.4609131356 · η + 0.0444370182 · η2)e−1.2249750996·η

(A2)

(a3) the parameter k = 0.25, the Prandtl number pr = 2.5.

θ̄(η) = −0.0000694691 · e−0.0373028427·η + (1− 0.6822337697 · η)e−1.1414897224·η+
+(−0.4228006041− 0.1276408784 · η − 0.7048478809 · η2)e−2.0265756010·η+
+(−0.2530559522− 0.5915096926 · η − 0.3170935172 · η2)e−4.0531512020·η+
+(0.6759260256 + 0.0914555047 · η − 0.0099048402 · η2)e−0.9223887212·η

(A3)

and the corresponding dual approximate solution becomes:

θ̄(η) = 0.0001260254 · e−0.0745075617·η + (1− 0.0964643097 · η)e−1.1786944415·η+
+(−0.3203284037 + 1.8308083903 · η − 0.0762347077 · η2)e−2.6623999026·η+
+(−0.3417840921− 0.4098840584 · η − 0.0321843260 · η2)e−1.5582130229·η+
+(0.6619864704 + 0.8089615723 · η + 0.3222124279 · η2)e−5.3247998053·η

(A4)

(a4) the parameter k = 0.15, the Prandtl number pr = 0.5.

θ̄(η) = 1.0983077175 · e−0.4534958469·η + (1 + 0.4654950159 · η)e−1.5576827266·η+
+(−1.5363389724 + 0.3221215358 · η − 0.0234501255 · η2)e−1.1308627520·η+
+(0.0026808712 + 0.0000481427 · η + 1.652544 · 10−6 · η2)e−0.0266758723·η+
+(0.4353503835 + 0.1426803574 · η + 0.0157885694 · η2)e−2.2617255040·η

(A5)

and the corresponding dual approximate solution becomes:

θ̄(η) = 0.5391981597 · e−0.4822945356·η + (1 + 0.5250981944 · η)e−1.5864814153·η+
+(0.3818837053− 0.0092643162 · η + 0.0000912270 · η2)e−0.1278543543·η+
+(0.3480470015 + 0.1414195195 · η + 0.0192266212 · η2)e−2.4640824681·η+
+(−1.2691288666 + 0.2082420703 · η + 0.0374340788 · η2)e−1.2320412340·η

(A6)

The influence of the temperature distribution parameter k on the heat transfer is
presented below. In this way, we provide the approximate analytical solutions for the case
of pr = 1.5 and different values for k.

(a5) In this case, we consider k = 0.5 and pr = 0.5.

θ̄(η) = 0.0007206409 · e−0.0000131202·η + (1− 0.1316345278 · η)e−1.1042000000η+

+(−1.0617752958− 0.2671398226 · η − 0.0590973088 · η2)e−1.5423591909·η+
+(0.9992265151− 0.0158696110 · η + 0.0001546813 · η2)e−0.4381723112·η+
+(0.0618281397 + 0.0411022791 · η + 0.0096407838 · η2)e−3.0847183818·η

(A7)

and the corresponding dual approximate solution is:

θ̄(η) = 0.5513428358 · e−0.1531064052·η + (1 + 2.1654964846 · η)e−1.2572932849·η+
+(−0.5837332313 + 0.1717462354 · η − 0.3926304130 · η2)e−2.2051877057·η+
+(0.4350443625 + 0.4520872315 · η + 0.1673037370 · η2)e−4.4103754114·η+
+(−0.4026539670− 1.6609327359 · η + 0.2537560261 · η2)e−1.1010008259·η

(A8)
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(a6) In the second case, if k = 0.15 and pr = 1, then:

θ̄(η) = 2.0683347602 · e−0.9155012717·η + (1 + 0.6833539452 · η)e−2.0196881514·η+
+(−0.8031347222− 0.7492677018 · η − 0.1062182432 · η2)e−2.2813648143·η+
+(−1.2654357598 + 0.0862848192 · η − 0.0427535328 · η2)e−1.1406824071·η+
+(0.0002357217 + 0.0000111023 · η + 2.111508 · 10−7 · η2)e−0.0364955274·η

(A9)

and the corresponding dual approximate solution is:

θ̄(η) = 0.1878857950 · e−0.4637756403·η + (1 + 1.2766230888 · η)e−1.5679625200·η+
+(0.0201352353− 0.0009567685 · η + 0.0000525361 · η2)e−0.0600476542·η+
+(1.1008756684 + 0.3253629902 · η + 0.0338366627 · η2)e−2.3284690680·η+
+(−1.3088966989 + 0.5018533528 · η + 0.0380250588 · η2)e−1.1642345340·η

(A10)

(a7) In the third case, if k = 0.15 and pr = 2.25:

θ̄(η) = 0.0752690301 · e−1.3036641988·η + (1− 0.7216448042 · η)e−2.4078510785·η+
+(−0.3478069740− 0.4476541650 · η − 0.2238753041 · η2)e−6.1184936238·η+
+(0.6232764356 + 0.4531574839 · η − 0.1414849066 · η2)e−1.9550599322·η+
+(−0.3507384917 + 0.1210593773 · η + 1.3248866865 · η2)e−3.0592468119·η

(A11)

and the corresponding dual approximate solution is:

θ̄(η) = −0.0094833474 · e−1.8199222326·η + (1 + 4.8903828049 · η) · e−2.9241091123·η+
+(−0.2794803592− 3.8038471274 · η − 1.1301670707 · η2)e−3.4371389008·η+
+(0.2022965663 + 0.1763166133 · η − 0.0935804838 · η2)e−1.7185694504·η+
+(0.0866671403− 0.0267283075 · η + 0.0022982197 · η2)e−0.6143825706·η

(A12)
In this way, we can construct other accurate approximate solutions.
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