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Abstract: Visual object tracking using visible light images and thermal infrared images, named
RGB-T tracking, has recently attracted increasing attention in the tracking community. Deep
neural network-based methods becoming the most popular RGB-T trackers, still have to balance
the robustness and the speed of calculation. A novel tracker with Siamese architecture is proposed
to obtain the accurate object location and meet the real-time requirements. Firstly, a multi-modal
weight penalty module is designed to assign different weights to the RGB and thermal infrared
features. Secondly, a new pixel matching module is proposed to calculate the similarity between
each pixel on the search and the template features, which can avoid bringing excessive background
information versus the regular cross-correlation operation. Finally, an improved anchor-free
bounding box prediction network is put forward to further reduce the interference of the back-
ground information. The experimental results on the standard RGB-T tracking benchmark datasets
show that the proposed method achieves better precision and success rate with a speed of over
34 frames per second which satisfies the real-time tracking.

Keywords: RGB-T tracking; weight penalty; pixel matching; anchor-free

MSC: 68T01; 68T07; 68T45

1. Introduction

Visual object tracking is a significant research direction in the field of computer vision,
with widespread applications in domains such as video surveillance, unmanned aerial
vehicle (UAV) navigation, and other related fields [1]. The objective of visual object tracking
is to estimate the position and dimensions of an object bounding box throughout a complete
video sequence based on the ground truth box of the initial frame. Most tracking method-
ologies rely on RGB images, which employ the extracted features of RGB images to estimate
and predict the position of objects. Nonetheless, the outcomes obtained solely from the
information provided by visible light images are not optimal in challenging scenarios with
limited lighting conditions, such as during night-time, rain, and fog.

RGB-T object tracking is a methodology that incorporates information from both
RGB images and thermal infrared (TIR) images to predict the location of an object [2].
RGB and TIR images possess complementary attributes. RGB images are susceptible to
illumination changes while providing more detailed information, and TIR images are
unaffected by illumination while lacking texture and detail information. Consequently,
RGB-T object tracking that leverages the complementary features of RGB and TIR images
exhibits superior performance.

Currently, MDNet-based [3] RGB-T trackers have achieved good tracking accuracy [4–7],
but the tracking speed of these trackers cannot meet the requirements of real time; Siamese-
based trackers are faster and can meet real-time requirements [8–10], but there is a certain gap
in performance compared with some advanced trackers. Hence, most of the current RGB-T
trackers are difficult to simultaneously satisfy the requirements of robustness and speed. We
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designed an RGB-T tracker based on the Siamese network, which can achieve good accuracy
while meeting the real-time speed requirements.

Our contributions can be summarized as follows:

1. A multi-modal weight penalty module is proposed to fully use the advantages of the
two modal features and deal with various complex illumination challenges.

2. A pixel-matching module and an improved anchor-free position prediction network
are proposed to suppress the influence of cluttered background on the localized object
and locate the object accurately and quickly for tracking.

3. A new end-to-end RGB-T tracker based on Siamese-net is proposed, which can satisfy
the robustness and real-time tracking. The experimental results on two standard
datasets show our new tracker is effective.

The rest of this paper is arranged as follows. Section 2 reviews some related works on
RGB-T object tracking and briefly introduces some existing RGB-T trackers. In Section 3,
our new tracker is described in detail from three aspects. Section 4 the related experiments
and results are present for the proposed tracker. Section 5 discusses the advantages and
disadvantages of our tracker. In Section 6, the conclusion and future work are given.

2. Related Works

RGB-T object tracking algorithms can be divided into traditional algorithms, algo-
rithms based on correlation filtering, and algorithms based on deep learning. Traditional
algorithms mainly employ hand-crafted features such as Histogram of Oriented Gradi-
ent (HOG), Scale-Invariant Feature Transform (SIFT), coupled with motion estimation
algorithms such as Kalman filter [11] and particle filter [12], to achieve tracking.

Correlation filter-based algorithms obtain the output response by correlating the filter
template with the object candidate region features and determining the object position
according to the response peak. Zhai et al. [13] proposed an RGB-T tracking algorithm
based on a cross-pattern correlation filter, in which correlation filtering was applied to
each modality. A low-rank constraint was introduced to jointly learn the filter for modality
collaboration. Yun et al. [14] proposed a discriminative fusion correlation learning model,
which obtained the fusion learning filter through early estimation and late fusion, to
improve the tracking performance of a discriminative correlation filter. Xiong et al. [15]
proposed an RGB-T dual-modal weighted correlation filter tracking algorithm in which a
weight map was jointly solved by dual-modal information, and the weight map guided
the solution of the correlation filter for inferring the object occlusion. Due to the limited
representational capacity of hand-crafted features, the accuracy and robustness of these
two tracking algorithms are affected.

Deep learning algorithms based on data-driven deep neural networks build track-
ers with powerful feature representation capabilities, significantly improving accuracy
and robustness compared to the previous two algorithms. Xu et al. [16] proposed an
RGB-T pixel-level fusion tracking algorithm based on convolutional neural networks,
taking thermal infrared images as the fourth channel of visible light images. Li et al. [17]
proposed a multi-adapter convolutional network, which extracts shared and specific
information of RGB-T bimodally through different adapters. ZHU et al. [18] designed
a feature aggregation and pruning module for the RGB-T tracking network. The ag-
gregation module provides rich RGB-T feature representation for the target object, and
the pruning module removes noise or redundant features from the aggregated RGB-T
features. Lu et al. [19] proposed a dual-selection conditional network to fully utilize
bimodal discriminative information and suppress data noise and designed a flow-based
resampling strategy to cope with sudden camera movement. Due to the additional
modality, additional computations are required. The above algorithms mostly adopt the
idea of generating candidate regions, which requires multiple forward propagations of
the network, thus affecting the tracking speed.

In recent years, Siamese networks have achieved high accuracy and speed in visible
light object tracking, such as SiamFC [20], SiamRPN++ [21], and SiamBAN [22], and the
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same type of method has also been applied to RGB-T object tracking. ZHANG et al. [23]
proposed a deep learning tracking method based on pixel-level fusion, which first fused
visible light and thermal infrared images, and then inputted Siamese networks for tracking.
Zhang et al. [24] extracted features of visible light and thermal infrared images separately
using two Siamese networks and then fused multi-layer features of the bimodal system
and used multi-layer fusion features for tracking.

3. Method

In this section, we first describe the Siamese network architecture of the RGB-T tracker
in detail and introduce the improved anchor-free position prediction network. Then, we
introduce the two main modules of our tracker, including the multi-modal weight penalty
module and the pixel-matching module.

3.1. Siamese Network Architecture

The overall network framework of our RGB-T Siamese tracker is shown in Figure 1.
The Siamese network comprises a template branch and a search area branch. Each branch
is divided into two branches: the RGB images branch and the thermal infrared images
branch, which extract the features of these two images, respectively. The two branches
have the same structure and share parameters. The resnet50 combined with FPN [25] is
employed as the backbone for feature extraction to obtain the features extracted from the
second, third, and fourth convolutional layers. Firstly, the multi-modal feature penalty
module weights the RGB and TIR modality features. Then, the template and search
features of the two modalities are sent to the pixel-matching module for the matching
operation, and then the response maps of the two modalities are fused. The fused maps are
directed into a regression and classification subnetwork similar to SiamCAR [26]. Diverging
from SiamCAR, distinct strategies are employed for positive sample determination, and
improvements are made to the regression branch.
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Figure 1. The overall architectural diagram of the proposed algorithm. The overall network consists
of four main components: a double Siamese network for feature extraction, an MWPM for enhancing
multi-modal features, a PMM for generating fusion response maps, and an anchor-free position
prediction network for generating bounding boxes.

When the location (x, y) falls into the center region of any ground truth box, it is
considered as a positive sample, as shown in the red part in Figure 2. The part inside the
marked box near the edge often belongs to the background part, and this part of the points
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that belong to the negative sample is incorrectly classified as the positive sample. This
will lead to classification errors in the classification branch, causing trouble in learning the
model. In addition, for this anchor-free method, the convolutional features in the central
part are richer, and the object edge can be better predicted only by the features in the central
part. Therefore, we choose the center region of the box centered at (cx, cy) to be defined
as the subframe (cx − rs, cy − rs, cx + rs, cy + rs), where s is the stride of the FPN layer
currently in place and r is the hyperparameter of 1.5, as shown in the yellow part of Figure 2.
In this way, most anchor points close to the edge inside the label box and falling on the
background are labeled as negative samples so that our model converges faster and the
final performance is better.
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The regression branch of the network produces a regression feature map Areg, which
has dimensions of 25 × 25 × 4. Each position (i, j) in Areg can be mapped back to the
corresponding location in the search area (x, y). The regression objective of Areg at (i, j) is a
four-dimensional vector t(i,j) = (l, t, r, b), which can be calculated as:

l =
x − x0

s
, r =

x1 − x
s

, t =
y − y0

s
, b =

y1 − y
s

(1)

l, t, r, b are the distances from position (x, y) to the four sides of the object bounding
box. (x0, y0) and (x1, y1) denote the upper left and lower right corners of the ground truth
bounding box. To better adapt to the size of the FPN, the total steps before the feature
mapping are increased.

Using the four-dimensional vector t(i,j), the Generalized Intersection over Union
(GIOU) metric can be computed to measure the similarity between the predicted and
ground truth bounding boxes. The GIOU comprehensively assesses the spatial overlap
between the predicted and true bounding boxes, considering their size, location, and shape.
Then, the reg loss can be obtained as:

Lreg =
1

∑ I
(

t(i,j)
)∑i,j I

(
t(i,j)

)
LGIOU

(
Areg(i, j), t(x,y)

)
(2)

The LGIOU denotes the GIOU loss function, as defined in [27], whereas the function
I (·) corresponds to the indicator function introduced in [26].

The final score Sx,y at tracking is defined as the square root of the product of the predicted
centrality Cenx,y and the corresponding classification score Clsx,y, as in Equation (3).

Sx,y =
√

Clsx,y × Cenx,y (3)
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3.2. Multi-Modal Weight Penalty Module (MWPM)

The features of RGB images and thermal infrared images extracted from the backbone
have different effects on object tracking. Previous research on the attention module for
RGB object tracking focused on the importance of the channel of each feature, assigning
higher weights to relatively larger contribution feature channels and lower weights to
smaller contribution features. These methods successfully utilize mutual information
from different dimensional features. However, they lack consideration of the contributing
factors of weights, which can further suppress unimportant channels or pixels. We use
the contributing factors of the weights to represent the contribution of each modal feature.
Batch normalization scale factor is used, which uses standard deviations to represent the
importance of the weights. To comprehensively consider the contribution of all the features
in RGB and TIR modalities towards object representation, we design a multi-modal weight
penalty module, which evaluates the features of the two modalities as a whole and then
assigns the corresponding weights to the deep features.

The MWPM utilizes the variance of training model weights to highlight salient fea-
tures. Compared with previous attention mechanisms, no additional calculations and
parameters are required, such as full connection and convolution. The scaling factor in
batch normalization (BN) [28] is directly used to calculate the attention weight, and the
non-significant features are further suppressed by adding regularization terms. For the
channel attention submodule, the scaling factor reflects the magnitude of the change in
each channel and indicates the channel’s importance, as shown in Equation (4).

BN(xi) = γx̂i + β (4)

where x̂i is the normalized eigenvalue, and γ and β are the learnable reconstruction
parameters that allow our network to learn to recover the feature distribution of the
original network. The scaling factor is the variance in BN. The larger the variance indicates
that the more dramatic the channel changes, the richer the information contained in the
channel will be and the greater the importance will be, while the channel information with
little change is singular and less important.

Cout =
γci

∑c
j=0 γci

(BN(Cin)) (5)

Sout =
γsi

∑N
j=0 γsi

(BN(Sin)) (6)

The channel attention is shown in Equation (5), Cin denotes the input features, Cout
denotes the final obtained output features, and γci is the scaling factor for each channel.
If the same normalization method is used for each pixel in space, the spatial attention
Equation (6) can be obtained.

As shown in Figure 3, in the channel attention module, RGB and TIR features are first
concatenated along the channel dimension to obtain a joint feature representation of the
template and search features:

UF = cat(FRGB, FT) (7)

Then, the feature weight penalty is applied to UF and the output obtained is:

(Fv, Fi) = Split(δ(
γci

∑c
j=0 γci

(BN(UF)))) (8)

where δ (·) denotes sigmoid activation and Split is an operation that splits features along
the channel dimension. For the integration method for two submodules, we adopt a
method in which the channel attention is in front and the spatial attention is behind. Firstly,
the channel attention module is used to reduce the weight of the less significant feature
channels, and then the spatial attention module is used to suppress the background noise.
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3.3. Pixel Matching Module (PMM)

The RGB object tracking algorithm based on the Siamese network has good perfor-
mance in accuracy and speed, but when matching template features and search features,
their commonly used cross-correlation operations will bring a lot of background infor-
mation in the deep network, resulting in inaccurate matching. One observation is that in
RGB-T tracking tasks, the objects to be tracked are mostly small, especially the GTOT [29]
and RGBT234 [30] datasets, and a relatively large template is taken to obtain robust
features. Therefore, when a template image of 127 × 127 is inputted, the proportion
of objects in the template is very small. With the increase in network depth, especially
in deep networks such as ResNet50 [31], even the feature points in the final output
correspond to a large receptive field of the input. The size of template features is large,
and the corresponding true matching region is much larger than the ideal matching
region. Therefore, a large amount of background information will be introduced and
overwhelm the features of the object, making it difficult to distinguish the object from
similar objects in the background.

To solve the above problems, we use the pixel matching module to calculate
the similarity between each pixel on the search and template features. The tem-
plate feature is transformed into a 1 × 1 kernel, so that the matching area is only of
size 1 × 1 and the background information is greatly reduced. The spatial kernel
focuses on information from each region of the template, while the channel kernel
pays more attention to the overall information of the template. The template feature is
decomposed into space and channel kernels with a size of 1 × 1, which reduces the
matching area while suppressing background interference and accurately collects the
response points of the target area.

P1(i, j)[m] = X f (i, j)·Zm
f s, m = 1, 2 . . . , n (9)

P2(i, j)[n] = P1(i, j)·Zm
f c, n = 1, 2 . . . , c (10)

As shown in Figure 4, the template feature Z with the dimension of Hz × Wz × C,
which is split into HZ × WZ 1 × 1 × C kernels and C 1 × 1 × n (n = wz × hz) kernels
from the spatial and channel aspects, respectively. Then, search frame feature X is passed
through these two filters. Firstly, the similarity between each pixel of the search feature and
the spatial dimension template feature is calculated, as in Equation (9). Then, the similarity
with the channel kernel can be calculated, as in Equation (10). Finally, the output feature P2
is obtained. This operation does not require convolution, just matrix multiplication, which
can improve the speed of our tracker.
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of the search feature and the spatial kernel, and then calculate the similarity between it and the
channel kernel.

4. Results

Our network was implemented in python using PyTorch and trained and tested on
RTX3060ti based on three publicly benchmark datasets: the GTOT dataset, RGBT234, and
LasHeR [32]. We used LasHeR as the training dataset to train our model and then tested
it on GTOT and RGBT234, respectively. To evaluate the algorithms, this paper used two
common evaluation indicators, precision rate (PR) and success rate (SR). PR represents the
percentage of frames whose distance from the center of the prediction box to the center of
the ground truth box in the video sequence is less than a predetermined threshold. The
threshold for the GTOT dataset is 5 pixels, and that for the RGBT234 dataset is 20 pixels.
SR represents the percentage of frames whose overlap rate between the predicted output
position box and the ground truth box is greater than the threshold. When the overlap
threshold is greater than 0.7, it indicates successful tracking. We compared the performance
of the proposed tracker with the advanced RGB-T tracker and RGB tracker, evaluated our
main components, and analyzed their effectiveness.

4.1. Results on GTOT

We tested our tracker on the GTOT dataset and compared it with seven advanced
trackers, including MANet [17], DAPNet [18], MACNet [33], ECO [34], DAT [35], SGT [36],
and SiamDW [37].

Figure 5 shows the graphs of our tracker compared with other trackers on the dataset
GTOT. The curves with different colors and lines in the figure represent different trackers.
It can be clearly seen that our tracker outperforms the other seven trackers. Specifically, the
PR of the tracker proposed in this paper is 1.6% higher than MANet, and the SR differs from
MANet by 0.2%; the PR and SR are 2.5% and 1.7% higher than MACNet, respectively. This
proves that our proposed tracker can achieve robust tracking. In addition, our proposed
tracker achieves a very efficient operating speed. Compared with the better-performing
trackers, MANet, DAPNet, MACNet, etc., our tracker achieves the leading efficiency with
a real-time operation speed of 34 FPS, which proves that our proposed tracker can achieve
the real-time standard for object tracking.

The GTOT dataset contains seven different attributes: occlusion (OCC), large-scale
variation (LSV), fast motion (FM), low illumination (LI), thermal crossover (TC), small object
(SO), and deformation (DEF). The attribute-based comparison shows the capability of our
proposed tracker to handle these challenging situations. As shown in Table 1, our tracker
achieves a definite lead in performance under the challenges of large-scale variation and
low illumination while obtaining the best performance overall. In addition, our tracker also
shows high performance under four attributes: fast motion, thermal crossover, deformation,
and small objects. This shows that our tracker can continuously adapt to the changes of the
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object during tracking using the pixel matching module and improved full convolutional
anchor-free tracking head to reduce the negative impact of background information, thus
improving the robustness of object tracking. At the same time, it shows that the introduction
of a multi-modal weight penalty module can fully exploit the information of the two modes
of RGB-T and make use of the interaction of dual-modal information to better cope with
the problem of motion blur caused by fast motion and poor single-modal imaging caused
by environmental factors.
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Table 1. Attribute-based accuracy and success rate (PR/SR) is obtained by using different trackers on
the GTOT dataset. Red, green, and blue numbers represent the best one, the second-best one, and the
third-best one, respectively.

Attributes OOC LSV FM LI TC SO DEF ALL

SiamDW 63.4/49.2 72.0/55.7 63.2/48.4 68.8/55.1 68.4/53.6 73.2/53.4 69.8/55.9 68.8/55.0
ECO 77.5/62.2 85.6/70.5 77.9/64.5 75.2/61.7 81.9/65.3 90.7/69.1 75.2/59.8 77.0/63.1
DAT 77.2/59.2 78.6/62.4 82.0/61.5 76.0/60.9 80.9/62.6 88.6/64.4 76.9/63.3 77.1/61.8
SGT 81.0/56.7 84.2/54.7 79.9/55.9 88.4/65.1 84.8/61.5 91.7/61.8 91.9/73.3 85.1/62.8
DAPNet 87.3/67.4 84.7/64.8 82.3/61.9 90.0/72.2 89.3/69.0 93.7/69.2 91.9/77.1 88.2/70.7
MACNet 86.7/67.6 84.2/66.2 84.4/63.3 90.1/70.7 89.3/68.6 93.2/67.8 92.2/74.4 88.5/69.8
MANet 88.2/69.6 86.9/70.6 87.9/69.4 91.4/73.6 88.9/70.2 93.2/70.0 92.3/75.2 89.4/72.4
Ours 84.8/67.6 93.2/74.5 87.0/70.0 94.8/73.9 88.9/70.4 93.2/72.0 94.6/73.2 91.0/72.2

4.2. Results on RGBT234

We tested our tracker on the RGBT234 dataset and compared it with eight advanced
trackers, including DAPNet, MDNet, SGT, DAT, ECO, C-COT [38], SiamDW + RGBT,
and SOWP [39].

Figure 6 shows that the experimental results of our tracker on the RGBT234 dataset are
PR = 77.5% and SR = 54.8%, which achieves excellent performance compared with other
algorithms. Specifically, the PR of the tracker proposed in this paper is 0.9% higher than
that of DAPNet, which ranks second in the figure, and the SR is 1.1% higher than that of
DAPNet. By comparing the experimental results with various trackers on the above two
RGB-T datasets, it can conclude that the tracker in this paper achieves better performance
both in terms of precision and success rate. This proves our proposed tracker can cope with
various complex environments and achieve robust tracking.
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To explicitly show the tracking performance of our tracker, we provide three sequences
for comparison, which cover different challenging attributes in the RGBT234 dataset in
Figure 7. As shown in A, our method performs well. In contrast, other trackers lose
the object when occlusion or camera motion occurs caused by the object moving. This
indicates that our PMM and the improved positive sample selection strategy are effective,
enabling our tracker to adapt to environmental changes continuously and reducing the
negative impact of background information. Thereby, the robustness of object tracking
can be enhanced. In B, the illumination, which is low in the object region, and the object,
which has a similar temperature to other objects or the background environment, make it
almost invisible in the thermal image. However, our algorithm outperforms other trackers,
indicating that MWPM enables our tracker to fully use multi-modal information. In C, our
algorithm can still achieve precise localization and predict the best bounding box even
when the object size changes during its motion.
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5. Discussion

The results on the above datasets show that our tracker performs well under challeng-
ing conditions such as large-scale changes, fast motion, deformation, and small objects.
These show that the combination of the pixel-matching module and the improved fully
convolutional anchor-free position prediction network effectively distinguish the object
from other similar objects in the scene and make up for the lack of the ability of the Siamese
network to distinguish the similarity between the tracking object and the background.

In addition, the outstanding performance in low illumination, thermal crossover,
and other scenarios shows that the utility of the multi-modal weight penalty module
enables us to make full use of the correlation and complementarity of information between
RGB and TIR modalities, which improves the quality of fusion features and improves the
performance of the tracker. This is particularly important in scenarios where tracking using
only RGB modality information may not be sufficient to achieve accurate tracking.

Although our tracker has achieved excellent performance in most scenarios, it has
room for improvement. For example, when the target object is partially or completely
occluded by other objects in the scene, the performance of the tracker is significantly
reduced. This is because our tracker relies on a combination of appearance and motion
cues to track the object destroyed by occlusion. We will take measures such as updating
online to minimize the impact of occlusion on our tracker performance. Furthermore, our
proposed method currently requires RGB-T data, and how to extend it to other modalities
needs further study.

Overall, our results show that the proposed tracker is effective in dealing with
various challenges encountered in object tracking. Meanwhile, the real-time running
speed of 34 FPS fully meets the real-time requirements.

6. Conclusions

This paper proposes a novel high-speed, robust RGB-T tracker. A multi-modal weight
penalty module is designed, which enables the new tracker to take full advantage of two
modal features to cope with various lighting challenges. Combined with the proposed
pixel-matching module and an improved anchor-free bounding box prediction network,
the new tracker can effectively suppress the effects of cluttered backgrounds and obtain the
position of objects more accurately and quickly. The new tracker achieves the advanced
performance on two publicly available RGB-T benchmark datasets through the extensive
experimental demonstrations.

In future work, we will continue to explore how to better integrate multi-modal
information for object tracking and design more excellent algorithms dealing with the
object occlusion problems.
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