
Citation: Toki, E.I.; Tatsis, G.; Tatsis,

V.A.; Plachouras, K.; Pange, J.;

Tsoulos, I.G. Applying Neural

Networks on Biometric Datasets for

Screening Speech and Language

Deficiencies in Child Communication.

Mathematics 2023, 11, 1643. https://

doi.org/10.3390/math11071643

Academic Editor: Francisco

Rodrigues Lima Junior

Received: 15 February 2023

Revised: 20 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Applying Neural Networks on Biometric Datasets for Screening
Speech and Language Deficiencies in Child Communication
Eugenia I. Toki 1,2, Giorgos Tatsis 1,3 , Vasileios A. Tatsis 1,4, Konstantinos Plachouras 1, Jenny Pange 2

and Ioannis G. Tsoulos 5,*

1 Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina,
Panepistimioupoli B’, 45500 Ioannina, Greece

2 Laboratory of New Technologies and Distance Learning, Department of Early Childhood Education,
School of Education, University of Ioannina, 45110 Ioannina, Greece

3 Physics Department, University of Ioannina, 45110 Ioannina, Greece
4 Department of Computer Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
5 Department of Informatics and Telecommunications, University of Ioannina, 47150 Kostaki Artas, Greece
* Correspondence: itsoulos@uoi.gr

Abstract: Screening and evaluation of developmental disorders include complex and challenging
procedures, exhibit uncertainties in the diagnostic fit, and require high clinical expertise. Although
typically, clinicians’ evaluations rely on diagnostic instrumentation, child observations, and parents’
reports, these may occasionally result in subjective evaluation outcomes. Current advances in artificial
intelligence offer new opportunities for decision making, classification, and clinical assessment. This
study explores the performance of different neural network optimizers in biometric datasets for
screening typically and non-typically developed children for speech and language communication
deficiencies. The primary motivation was to give clinicians a robust tool to help them identify speech
disorders automatically using artificial intelligence methodologies. For this reason, in this study,
we use a new dataset from an innovative, recently developed serious game collecting various data
on children’s speech and language responses. Specifically, we employed different neural network
approaches such as Artificial Neural Networks (ANNs), K-Nearest Neighbor (KNN), Support Vector
Machines (SVM), along with state-of-the-art Optimizers, namely the Adam, the Broyden–Fletcher–
Goldfarb–Shanno (BFGS), Genetic algorithm (GAs), and Particle Swarm Optimization algorithm
(PSO). The results were promising, while Integer-bounded Neural Network proved to be the best
competitor, opening new inquiries for future work towards automated classification supporting
clinicians’ decisions on neurodevelopmental disorders.

Keywords: SmartSpeech; neural networks; optimization; genetic algorithms; biometrical data

MSC: 92B20

1. Introduction

Neurodevelopmental disorders (NDs) are complex conditions affecting brain functions,
altering neurological development, and causing difficulties in social, cognitive, learning,
communication, behavior, and emotional functioning [1–3]. DSM-5 provides a framework
for diagnosis and describes that Neurodevelopmental Disorders (NDs), among others,
mainly include [1–4]:

• Autism Spectrum Disorders (ASD): are characterized by deficits in (i) social communi-
cation and social interaction and (ii) restricted repetitive patterns of behavior, interests,
and activities.

• Attention Deficit Hyperactivity Disorder (ADHD): is characterized by inattention,
impulsiveness, and hyperactivity, interfering with daily activities and functioning.
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• Intellectual Disability (ID): comprises impairments of general mental abilities that
impact adaptive functioning (determine how well an individual copes with everyday
tasks) in the conceptual, social, and practical domains. [4].

• Specific Learning Disorder (SLD): is characterized by difficulties in learning and
processing specific academic skills, such as reading, writing, or mathematics, despite
normal intelligence and adequate educational opportunities. These symptoms can
affect academic and daily functioning.

• Communication Disorders (CD): involve language disorder, speech sound disorder,
childhood-onset fluency disorder, and social (pragmatic) communication disorder
(difficulties in the social uses of verbal and nonverbal communication).

NDs commonly onset throughout development stages from young infancy to ado-
lescence and persist into adulthood or may go undiagnosed until one is an adult [1]. The
deficits’ severity in NDs varies and may co-occur with other disorders. These deficits can
affect the quality of life for individuals and their families, causing significant care needs
and extensive community assets [5,6].

Speech and language deficiencies can be early indicators of many neurodevelopmental
disorders. In addition, effective communication is critical to human development and
social interaction, suggesting developmental continuity from early years to later life [1,7].
To screen and diagnose the NDs’ various features, clinicians commonly rely on diagnostic
instrumentation, child observations, perceived behaviors, parent interviews, and testing,
occasionally resulting in subjective evaluation [5]. However, since clinical evaluations
include complex, challenging, non-standardized, multiparametric procedures, and un-
certainties in the diagnostic fit, they require high-level clinical expertise and objective
measurements [8]. Moreover, early identification and treatment of speech and language
deficiencies can help diminish NDs’ impact on an individual’s overall development and
functioning [9]. Thus, there is a highly demanding need to contribute to the need for
additional support in eliminating the over- or under-diagnosed child [10].

Recent advancements and innovations in artificial intelligence (AI) spark great interest
in their potential benefits in speech and language pathology and special education for indi-
viduals with developmental disabilities, learning disabilities, articulation disorders, voice
disorders, and more [9,11–16]. Computer science, mathematical algorithms, AI, and other
emerging technologies introduce new prospects to support clinical decision-making [10]
primarily for an accurate diagnosis, even in rare medical conditions [17–19]. The current
literature documents the growing attention in AI algorithms and automated measurement
tools for decision-making, classification, and clinical assessment in communication deficien-
cies and NDs in research [8–10,20]. The results of a pilot study of an integrated technology
solution, including a serious game using machine learning models and a mobile app for
monitoring ADHD behaviors, indicate ML’s potential in ADHD prediction based on game-
play data [8]. The applicability of eye-tracking data to aid the early screening of autism in
children reveals that using ML methods strongly suggests that eye-tracking data can help
clinicians for a quick and reliable autism screening [10]. In addition, for the classification of
developmental delay, the use of AI, serious games, and fine motor movements captured
from touching a mobile display have been suggested [9]. Moreover, online gamified testing
with a predictive machine learning model for individuals with dyslexia reports results that
correctly detect over 80% of the participants with dyslexia, presenting the potential of using
a ML approach for dyslexia screening [20].

Hence, this study aims to assist clinicians’ decision-making and support evaluation
procedures. To screen typically and non-typically developed children for speech and lan-
guage communication deficiencies, various neural networks adopting different optimizers
have been implemented and tested in a new biometric dataset to automatically classify
the individuals.

This study is organized into sections as follows: Section 1 explains the significance of
clinical evaluation procedures for NDs and speech and language deficiencies in children, the
importance of early and objective evaluation procedures, and includes a short description
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of the research’s motivation; Section 2 summarizes the required background knowledge on
neural networks and the implemented optimizers; Section 3 presents the methods used
in this paper, including the dataset and how the implemented neural networks have been
formulated in this research work; followed by Section 4 that presents the experimental
results, in which the provided results are discussed. Finally, the paper concludes with
Section 5, presenting the conclusions, limitations, and suggestions for future research.

2. Background Information

This section briefly provides the required background information for this study and
the corresponding algorithms. Specifically, it is devoted to Artificial Neural Networks
(ANNs), K-Nearest Neighbor (KNN), Support Vector Machines (SVM), and the corre-
sponding optimizers used in work, namely the Adam optimizer, the Broyden–Fletcher–
Goldfarb–Shanno (BFGS), Genetic algorithm (GAs), and Particle Swarm Optimization
algorithm (PSO).

ANNs are parametric machine learning tools [21,22] that utilize a series of parameters
commonly called weights or processing units. These tools have found application in a vari-
ety of scientific areas, such as physics [23–25], the solution of differential equations [26,27],
agriculture [28,29], chemistry [30–32], economics [33–35], and health [36,37]. In addition,
recently, neural networks have been used in solar radiation prediction [38], 3D printing [39],
and lung cancer research [40].

A neural network typically uses a special function, called the activation function, that
decides whether a neuron should be activated or not. A commonly used activation function
is the sigmoid function, defined as [21,22]:

σ(x) =
1

1 + ex (1)

The neural network has hidden nodes and each one is expressed as,

oi(x) = σ
(

wT
ι x + θi

)
(2)

where wi is the weight vector, and θi is the bias of the ith node. A neural network can be
defined as in the following equation,

(x) =
H

∑
i=1

vioi(x) (3)

where H is the total number of processing units, and vi stands for the output weight of the
ith node.

The training error of the neural network is defined as:

E
(

N
(→

x ,
→
w
))
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x i,
→
w
)
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where the set (
→
x i, yi), i = 1, . . . , M is the training dataset for the neural network,

→
x i stands

for the input vector, and yi stands for the assigned class. Essentially, the training of the
artificial neural network includes the determination of the optimal vector of

→
w parameters

through the minimization of Equation (4). During recent years, a variety of optimization
methods have been proposed to minimize this equation such as the Back Propagation
method [41,42], the RPROP method [43–45], Quasi Newton methods [46,47], Simulated
Annealing [48,49], GAs [50,51], and PSO [52,53].

BFGS is a widely used iterative optimization in various fields [54], including machine
learning algorithms [55]. Specifically, it approximates the inverse of the Hessian matrix
(the matrix of second-order partial derivatives) to determine the search direction in which
the objective function should be minimized. Furthermore, it updates the approximation in
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each iteration based on the gradient information. BFGS has good convergence properties,
is well-suited for problems with high dimensionality, and is often used in machine learning
to optimize the weights of neural networks. Despite its popularity, BFGS can be sensitive
to the choice of initial guess and may converge to a suboptimal solution in the case of
non-convex objective functions. However, convex optimization problems present fast and
reliable results.

GAs are a class of heuristic search algorithms inspired by the mechanics of natural
selection and genetics [56–58]. Precisely, GAs initialize a population of candidate solutions
by forming the corresponding problem’s parameters into chromosomes. The population
evolves through the application of genetic operators, such as selection, crossover, and
mutation. First, a fitness function is used to evaluate their value, and the best-performing
individuals are then selected to create a new population in the next generation. This
process is repeated until a satisfactory solution or termination criteria are met. GAs have
been applied to a wide range of optimization problems, including scheduling, resource
allocation, and neural networks, and have shown to be effective and efficient in many cases.

PSO is a computational optimization method introduced by Eberhart and Kennedy
in 1995 [59]. The main inspiration came from the social behavior of birds in a flock. PSO
initiates a population of particles representing candidate solutions to probe the search space.
Their positions are adjusted based on their own best solution and the overall best solution
found by the swarm or a predefined neighborhood. The algorithm iterates continuously,
and the best-found solution is reported. PSO proposed parameters such as population
number, inertia weight, cognitive and social acceleration, and maximum velocity. The
linear decrease in inertia weight determines how much the particles are influenced by
their previous velocity over time. The self-adaptation of inertia weight allows the swarm
to transition from exploring the solution space to exploiting the best-known solution,
effectively guiding the search toward the global optimum [60–62].

The INN is an advanced method of training artificial neural networks which identifies
the optimal interval for initializing and training artificial neural networks [63]. The location
of the optimal interval is performed using rules evolving from a genetic algorithm. The
method has two phases: (i) an attempt is made to locate the optimal interval, and (ii) the
artificial neural network is initialized and trained in this interval using a global optimization
method, such as a genetic algorithm. The method has been tested on various categorization
and function learning data, and the experimental results were incredibly encouraging [63].

The Adam optimizer is an adaptive gradient-based optimization technique frequently
used in machine learning algorithms [64]. The technique keeps a different learning rate for
the supplied neural network weights and adapts the learning rate as needed throughout
training. Adam is a standard optimization method that is well-known for being efficient
and for being able to handle sparse gradients.

The K-Nearest Neighbor (KNN) algorithm is a straightforward but effective classifica-
tion algorithm [65,66]. This algorithm differs as it does not use a training dataset to build a
model. It operates by locating the k training samples closest to the new data point in the
feature space and assigning it to the majority class or average value of these k neighbors.
KNN’s simplicity puts it in the top selections, but its performance is sensitive to the choice
of the number of nearest neighbors and the distance metric used.

Support Vector Machines (SVM) [67,68] is another popular and effective supervised
classification algorithm. The method finds the best decision boundary that maximally
separates the classes by maximizing the margin. The margin refers to the distance between
the decision boundary and the closest data points from each class. SVMs are known to be
effective in handling complex data distributions, and their performance is less sensitive to
overfitting than other machine learning algorithms. However, SVMs can be computation-
ally expensive and require careful kernel function and hyperparameter selection to achieve
optimal performance.
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3. Materials and Methods

We designed a serious game to collect and process players’ responses. This serious
game contains numerous activities on screening/assessment procedures for NDs [69]. The
game data are processed on a dedicated server back-end service to examine early clinical
screening/diagnostic patterns on specified domains or skills towards automated indications.

This study is part of the “Smart Computing Models, Sensors, and Early diagnostic
speech and language deficiencies indicators in Child Communication” research project
with the acronym “SmartSpeech”. SmartSpeech is an ongoing research project funded by
the Region of Epirus in Greece and the European Regional Development Fund (ERDF).

3.1. Data Description

The sample in our analysis consisted of children, with a total of 435 participants
with an average age of 9 years, of which 224 were males and 211 were females. The
339 participants had typical development (TD) (with no NDs), whereas 96 had NDs. We
categorized them according to DSM-5. More specifically, 17 had ASD, 18 had ADHD, 8 had
ID, 19 had SLD, and 42 had CD. Some of the participants exhibited more than one disorder.
The sample recruitment was conducted after various calls through health and educational
sectors supporting TD and non-TD children. Parents were informed of the nature and scope
of the project, the procedures, and the project approval by the Research Ethics Committee
of the University of Ioannina, Greece (Reg. Num.: 18435/15.5.2020), which complies with
the General Data Protection Regulation GDPR. Next, they signed the parent consent form.

The participation process included registration in the database and the completion of
questionnaires about the child’s developmental profile. Then, guided by the clinician, the
child played the interactive game explicitly designed for this purpose. Overall, at the end
of the process, the variables we used in the analysis came from the game’s scores and the
bio-signal measurements, i.e., heart rate and eye-tracking measurements.

The SmartSpeech game is designed in the Unity environment [70] and generates
several variables regarding scores on the game’s activity performances and biometric data.
The developed game activities represent the overall performance according to the known
developmental skills that children typically acquire. Several activities correspond to these
specific speech and language skills [69]. In addition to the scores based on direct responses
of the child/player via the touchscreen with clicks and hand movements, other biometric
data were also measured, namely voice, heart rate (HR), and gaze.

Voice was recorded in mp3 files when the child needed to answer verbally in a posing
question. For this purpose, a speech-to-text program was used [71], for which a Greek
model was trained [72] and used. The child was required to give about 40 verbal replies,
including but not restricted to naming objects, fruits, vegetables, and characters’ names.
The SmartSpeech game using this speech-to-text program transcribes the audio files into
text and then matches the child’s response with the correct answer in a manner of the
true–false outcome.

During the gameplay, the child wore a smartwatch with dedicated software developed,
which continuously captured the heart rate values in bpm (beats per minute) units. For
every game activity, we took the signal for the corresponding period and calculated three
metrics: the mean, the standard deviation, and the range of HR. Ideally, we would like to
have had the heart rate variability (HRV) in hand, but due to hardware limitations, this
was not possible. Hence, we used the dispersion statistics above as an alternative to the
mean baseline.

Furthermore, the game presented the child with several visual stimuli to detect the
areas on the screen that attracted the player’s focus. We conducted this procedure by
eye-tracking software [73] executed during the game by capturing the child’s gaze via
the tablet’s camera. When the viewer focused on a specific area, this led to a particular
metric called a fixation. The software gave these fixations, and we computed three standard
variables in eye-tracking [74]. These were:

1. The number of fixations (fixation count—FC);
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2. The time that passed until the first fixation (time to first fixation—TTFF);
3. The total duration of fixations (time spent—TS).

3.2. Data Formulation & Methods Description

As for the eye-tracking variables, the filtering process left only the fixations count and
the time spent on areas of interest. The time to first fixation had many missing values and
was removed from the dataset.

The dataset is divided into three subsets that correspond to the categories of (i) game
scores, (ii) heart rate statistics, and (iii) eye-tracker metrics. Each of these subsets constitutes
the set of input variables to the classification process. Several missing and non-valid data
were filtered out. Thus, our dataset was forced to reduce the number of cases, although
our initial dataset was larger. Ultimately, this also reduced instances of the pathological
population. The following tables summarize the input variables. Table 1 shows the variables
of the game scores. In total, 30 variables corresponded to the types described in Tables 1–3
that summarize the variables from the heart rate and eye tracking accordingly. A total
of 15 HR variables used all statistical means, standard deviations, and range. As for the
eye-tracking variables, the filtering process left only the fixations’ count and time spent on
areas of interest, 16 variables in total. The time to first fixation had many missing values
and was removed from the dataset.

Table 1. Variables from scores of the game activities.

Variable Description Count

Object recognition 6
Click on objects 7
Vocal intensity 1
Verbal response 6

Memory task 2
Emotion recognition 3

Hearing test 1
Puzzle solving 2
Moving objects 2

Total 30

Table 2. Variables from the heart rate statistics.

Variable Description Count

Mean HR 5
HR standard deviation 5

HR total range 5
Total 15

Table 3. Variables from the eye-tracking metrics.

Variable Description Count

Fixation counts 10
Time spent 6

Total 16

Table 4 shows the target variables defining the classes that were used. These variables
are binary, meaning either they had the condition or not. The Disorder variable denotes TD
and non-TD children. ASD, ADHD, ID, SLD, and CD variables suggest more specifically
the disorder as described above, according to DSM-5.

Descriptive statistics for the variables (means, St Ds) are summarized in Appendix A.
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Table 4. Target variables defining the classes.

Target Variable Name Description

Disorder Any disorder of the following
ASD Autism spectrum disorder

ADHD Attention deficit hyperactivity disorder
ID Intellectual disability

SLD Specific learning disorder
CD Communication disorders

4. Application Details and Experimental Results

In this section, the application details of the applied classifiers and their corresponding
parameterization are described in detail, followed by the experimental results.

Seven different classifiers were considered to assess their performance on the provided
dataset. Specifically, each neural network employed one layer with ten neurons, and four
different optimizers were adopted accordingly, namely BFGS [75], genetic algorithm [58,74,76],
PSO [77], and Adam [64]. The same population and chromosome number for PSO and genetic
algorithms was used, accordingly, N = 200. At the same time, the parameters of the rest
of the optimizers remained the same as in the original papers. Furthermore, an INN rule
construction method, a KNN method [65] with five neighborhoods, and an SVM method [68]
(using the freely available library libsvm [78]) were also considered for the comparisons.
Finally, the maximum number of iterations was set at 200 for fair comparisons.

The datasets were split into ten subsets using the 10-fold cross-validation technique
to estimate their performance reasonably. Nine of the produced subsets were used for
training, and the remaining one was used for the test. Thirty independent experiments
were conducted for each instance, calculating each algorithm and the average classification
error. For this purpose, different seed numbers were also used for each experiment using
the drand48() random number generator of the C programming language. The experiments
were performed using the freely available in-house software from https://github.com/
itsoulos/IntervalGenetic (accessed on 15 February 2023). The cells in the experimental
tables describe average results on the corresponding test set.

Additionally, neural network neurons were changed to examine the performance
disturbances, and, specifically, they ranged from 4 to 14. This experiment was conducted
for the three disorder datasets, and the results are graphically demonstrated in Figures 1–3.
Observing the related graphs shows that 8–10 processing nodes usually achieve the lowest
values in the control dataset in almost all techniques.
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Next, Tables 5–7 compare the utilized classification methods using error rate (%) for
the eye-tracking, heart rate, and game responses datasets.

Table 5. Comparison of classification methods using error rate (%) for the eye-tracking dataset.

Class BFGS Genetic PSO INN ADAM KNN SVM

Disorder 19.53 17.76 14.14 8.67 15.46 28.78 24.53
ASD 27.07 24.32 25.59 19.94 25.66 27.00 24.97

ADHD 27.30 23.42 23.42 19.69 25.45 29.00 30.00
ID 40.30 31.50 37.33 26.63 37.10 42.00 32.00

SLD 29.44 25.68 25.88 22.49 26.17 25.00 27.33
CD 29.46 25.49 27.96 23.78 26.97 26.33 24.67

Average 28.85 24.70 25.72 20.20 26.14 29.69 27.25
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Table 6. Comparison of classification methods using error rate (%) for the heart rate dataset.

Class BFGS Genetic PSO INN ADAM KNN SVM

Disorder 29.26 21.26 22.09 18.95 20.54 22.22 24.33
ASD 32.31 20.61 23.19 19.83 20.85 22.22 20.12

ADHD 34.11 21.11 26.69 19.89 21.43 25.56 23.33
ID 31.13 20.89 24.98 19.61 20.71 23.89 20.00

SLD 32.98 19.17 22.02 19.06 20.65 23.89 23.18
CD 31.61 20.17 20.48 20.02 21.22 23.89 24.63

Average 31.90 20.54 23.25 19.56 20.90 23.61 22.60

Table 7. Comparison of classification methods using error rate (%) for the game scores dataset.

Class BFGS Genetic PSO INN ADAM KNN SVM

Disorder 25.92 21.92 24.37 18.95 23.45 24.42 23.49
ASD 28.84 20.96 25.42 20.39 23.05 23.49 26.66

ADHD 29.64 21.54 29.62 21.52 23.47 26.51 24.80
ID 29.62 22.64 26.67 21.25 23.47 26.51 24.80

SLD 30.22 22.59 27.15 21.95 21.56 26.28 29.33
CD 30.61 22.25 25.92 22.57 23.28 23.25 23.91

Average 29.14 21.98 26.53 21.11 23.02 24.81 25.86

Table 8 shows the precision and recall metrics indicatively for Genetic and INN when
applied to this study’s datasets.

Table 8. Precision and recall metrics for Genetic and INN for corresponding datasets.

Dataset Genetic
Precision Genetic Recall INN

Precision
INN

Recall

Eye Tracking 0.76 0.73 0.88 0.84
Heart Rate 0.66 0.63 0.70 0.66

Game Responses 0.69 0.58 0.75 0.62

As can be observed from the tables presenting the experimental results, BFGS achieved
lower results for all instances and all datasets since it is a local optimization algorithm.
Specifically, BFGS achieved an average error rate of 28.85% for the eye-tracking dataset,
while the genetic and PSO have marginally better results. INN achieved the best average
error rate, namely 20.02%, indicating that it can detect the best areas that the weights
can range. INN is conducted in two phases. During the first phase, a branch and bound
algorithm locates the most promising intervals for the neural network parameters. In the
second phase, a genetic algorithm optimizes the neural network inside the interval located
in the first phase. Additionally, the experimental results indicated that Adam slightly
overcomes SVM and KNN in most cases.

Moreover, the average error rate concerning whether an individual has a disorder is
more profitable since the corresponding data are more extensive than those from other
instances, such as ID and ADHD. Furthermore, as mentioned in Section 3.2, gathering data
on child populations is challenging, with missing data reported. For instance, regarding
eye-track activities, there is in-line evidence of difficulty obtaining continuous and valid
measurements due to the child’s spontaneous movements [79]. The same patterns were
also applied in the heart rate and the game score datasets. INN proved better than the rest,
achieving a classification error of around 20% aligning with the results of precision and
recall rates. It is clear that the classification for “Disorder” for the eye-tracking dataset, thus
screening between TD and non-TD children, reports the best results for all the optimizers.
The highest performance is clearly achieved using the INN optimizer (8.67% error rate).

In the same way as this study, others have looked into the potential of drag-and-drop
data as a digital biomarker and proposed a classification model to categorize kids with



Mathematics 2023, 11, 1643 10 of 15

developmental disorders [9]. They created an algorithm for a deep-learning convolutional
neural network model with promising findings suggesting diagnoses of developmental
disorders. In a different study, the potential for the early detection of developmental
impairments in children was explored, using diagnostic information from the International
Classification of Diseases (ICD) and supplementary information, including prescription
history, treatment duration, and frequency records [80]. By combining four algorithms,
namely k-nearest neighbor, random forest, logistic regression, and gradient boosting, they
created the best model for the early diagnosis of impairments. Their classification model for
detecting disorders yielded high accuracy outcomes, just as in our study. It also specified
delivering diagnoses around a year earlier than the usual diagnostic age.

5. Conclusions

Screening and evaluating speech and language deficiencies and NDs is a challenging,
rigorous, and complex procedure that may occasionally result in misleading outcomes due
to uncertainties in the diagnostic fit, subjective evaluation, and clinical expertise. Delayed
or inaccurate evaluation eliminates chances for early identification and treatment, while if
detected in time, it can help diminish NDs’ impact on an individual’s overall development
and functioning. This highlights the significance of this study, using artificial intelligence
for automatic classification.

For this reason, in this study, a first attempt to enhance the clinician’s decision-making
assessment was conducted using machine learning methodologies. Specifically, the col-
lected data provided by a novel, recently developed serious game were used as a test
bed to estimate the classification performance of the proposed neural network algorithms.
The provided dataset includes a variety of variables stemming from the game, along with
biometrical data from a total of 435 participants. The experiments were conducted in
a series of different neural networks adopting a variety of optimizers, and the average
classification error was collected.

The results were promising, opening new inquiries for future research. INN proved
to be the most competitive algorithm, achieving an average classification error of 20%.
This performance may be further improved by using different optimization and machine
learning methodologies, and/or by increasing the number of participants, which we will
thoroughly examine in future work. The results of this study are expected to contribute
towards developing an innovative digital approach to support health care. They may be
valuable tools for the early identification of NDs, delivering objective metrics complemen-
tary to the clinician’s diagnosis, reducing screening and diagnostic costs, and enriching
clinician efficiency.
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Appendix A

Table A1. Means and standard deviations of game score variables for all classes.

Variables TD ASD ADHD ID SLD CD

Object
recognition

Var1 88.44 ± 28.07 90.00 ± 15.97 88.89 ± 32.34 79.00 ± 35.42 91.16 ± 24.53 91.19 ± 23.44
Var2 73.40 ± 31.61 62.29 ± 26.05 70.11 ± 32.23 62.25 ± 37.59 85.84 ± 28.04 69.52 ± 30.27
Var3 90.67 ± 23.03 88.00 ± 16.75 90.67 ± 25.14 79.00 ± 35.42 91.21 ± 26.90 87.19 ± 26.61
Var4 87.16 ± 22.36 82.71 ± 18.14 88.00 ± 22.93 87.63 ± 16.04 82.16 ± 18.66 77.86 ± 22.81
Var5 76.40 ± 29.45 55.18 ± 29.64 75.72 ± 30.71 62.25 ± 37.59 78.16 ± 29.21 70.07 ± 30.81
Var6 86.43 ± 26.27 76.12 ± 28.64 89.33 ± 20.53 94.38 ± 15.91 91.68 ± 18.65 80.19 ± 29.02

Click on
objects

Var1 6.20 ± 15.94 12.41 ± 20.18 3.72 ± 4.73 9.50 ± 23.10 4.32 ± 10.98 5.90 ± 10.59
Var2 67.90 ± 22.28 61.47 ± 18.27 64.78 ± 22.92 74.50 ± 19.65 67.21 ± 16.05 65.02 ± 22.09
Var3 4.94 ± 11.23 13.53 ± 24.99 7.22 ± 16.16 6.13 ± 12.22 6.00 ± 11.21 6.21 ± 14.07
Var4 68.42 ± 37.35 54.06 ± 40.26 58.44 ± 38.88 35.88 ± 35.41 67.00 ± 34.52 48.14 ± 34.59
Var5 79.35 ± 29.41 75.29 ± 29.61 87.78 ± 20.74 42.50 ± 49.50 86.32 ± 28.33 74.76 ± 33.66
Var6 43.42 ± 39.10 22.00 ± 30.43 34.17 ± 32.30 19.75 ± 38.25 32.84 ± 34.72 22.93 ± 27.20
Var7 90.86 ± 28.87 88.24 ± 33.21 94.44 ± 23.57 75.00 ± 46.29 94.74 ± 22.94 88.10 ± 32.78

Vocal
intensity Var1 37.73 ± 27.11 51.18 ± 23.12 47.67 ± 26.14 37.13 ± 26.25 56.21 ± 25.99 45.05 ± 29.03

Verbal
response

Var1 17.11 ± 37.72 5.88 ± 24.25 11.11 ± 32.34 12.50 ± 35.36 21.05 ± 41.89 7.14 ± 26.07
Var2 18.08 ± 23.68 26.06 ± 23.04 20.17 ± 20.91 5.25 ± 5.01 23.42 ± 25.62 12.38 ± 13.06
Var3 21.32 ± 22.10 18.47 ± 16.30 18.44 ± 15.81 7.38 ± 9.02 11.58 ± 13.03 13.00 ± 14.18
Var4 11.49 ± 15.74 19.41 ± 16.74 18.33 ± 16.87 12.38 ± 17.08 19.11 ± 16.74 10.21 ± 15.44
Var5 24.48 ± 43.06 11.76 ± 33.21 22.22 ± 42.78 0.00 ± 0.00 10.53 ± 31.53 9.52 ± 29.71
Var6 9.94 ± 20.78 11.65 ± 16.26 11.00 ± 19.61 0.00 ± 0.00 6.95 ± 17.67 5.50 ± 14.42

Memory task
Var1 18.06 ± 28.66 12.29 ± 20.16 17.17 ± 28.46 19.38 ± 37.84 14.53 ± 26.12 16.81 ± 28.71
Var2 44.18 ± 40.66 16.24 ± 27.72 48.50 ± 35.76 17.88 ± 27.54 56.53 ± 40.23 33.12 ± 34.76

Emotion
recognition

Var1 87.61 ± 33.00 64.71 ± 49.26 83.33 ± 38.35 87.50 ± 35.36 78.95 ± 41.89 83.33 ± 37.72
Var2 82.89 ± 37.72 76.47 ± 43.72 77.78 ± 42.78 75.00 ± 46.29 78.95 ± 41.89 85.71 ± 35.42
Var3 8.85 ± 28.44 5.88 ± 24.25 11.11 ± 32.34 0.00 ± 0.00 10.53 ± 31.53 4.76 ± 21.55

Hearing test Var1 27.08 ± 27.08 28.24 ± 31.67 32.22 ± 27.56 7.50 ± 14.88 22.11 ± 20.97 20.00 ± 20.24

Puzzle
solving

Var1 107.90 ± 63.30 108.00 ± 58.62 113.00 ± 43.56 71.00 ± 46.62 109.58 ± 54.94 130.74 ± 61.90
Var2 68.84 ± 31.74 70.12 ± 32.42 74.78 ± 31.04 68.25 ± 42.13 74.37 ± 29.53 70.12 ± 30.29

Moving
objects

Var1 72.98 ± 23.15 66.65 ± 28.17 69.06 ± 22.26 56.38 ± 33.49 72.95 ± 23.54 69.14 ± 19.48
Var2 29.37 ± 18.39 29.71 ± 14.19 34.67 ± 24.18 27.88 ± 19.93 33.47 ± 18.33 31.90 ± 17.75

Table A2. Means and standard deviations of heart-rate variables for all classes.

Variables TD ASD ADHD ID SLD CD

HR Mean

Var1 84.22 ± 15.53 84.20 ± 10.20 85.54 ± 13.32 84.80 ± 8.72 80.59 ± 11.74 85.25 ± 12.13
Var2 84.98 ± 15.98 85.23 ± 13.27 89.34 ± 15.48 82.70 ± 6.02 81.03 ± 10.01 86.01 ± 15.07
Var3 84.88 ± 14.44 85.80 ± 13.99 86.34 ± 14.20 84.53 ± 8.65 80.54 ± 9.45 84.22 ± 16.18
Var4 86.14 ± 16.66 86.90 ± 16.03 88.10 ± 12.81 80.88 ± 7.57 80.26 ± 14.67 87.11 ± 14.89
Var5 85.57 ± 16.76 86.53 ± 11.80 85.37 ± 13.81 83.15 ± 5.74 80.04 ± 14.82 84.16 ± 18.43

HR Std

Var1 2.96 ± 2.78 4.60 ± 2.38 4.30 ± 3.36 3.03 ± 0.88 2.23 ± 1.33 4.43 ± 3.43
Var2 3.76 ± 2.64 3.08 ± 1.80 5.44 ± 4.64 2.88 ± 1.97 2.33 ± 0.59 4.00 ± 3.35
Var3 4.20 ± 2.49 3.23 ± 1.20 5.14 ± 2.02 4.05 ± 1.30 4.79 ± 2.93 5.69 ± 3.15
Var4 2.64 ± 2.14 1.48 ± 0.36 3.69 ± 3.12 4.05 ± 2.76 3.71 ± 2.10 3.39 ± 2.61
Var5 0.66 ± 0.86 1.38 ± 2.25 1.06 ± 1.38 1.85 ± 2.01 0.60 ± 0.48 1.14 ± 1.51
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Table A2. Cont.

Variables TD ASD ADHD ID SLD CD

HR Range

Var1 10.62 ± 8.72 18.40 ± 12.27 14.27 ± 11.75 9.98 ± 2.94 7.43 ± 4.04 15.78 ± 11.14
Var2 13.88 ± 8.19 11.20 ± 4.94 19.67 ± 14.20 12.40 ± 8.75 10.59 ± 3.87 14.91 ± 10.87
Var3 17.67 ± 10.13 14.33 ± 2.72 21.47 ± 6.82 16.28 ± 5.82 17.77 ± 8.69 22.83 ± 10.30
Var4 9.17 ± 6.90 5.30 ± 1.55 12.40 ± 9.96 13.38 ± 8.00 13.99 ± 7.92 11.61 ± 8.35
Var5 1.61 ± 2.16 4.08 ± 6.81 2.66 ± 3.15 5.08 ± 6.24 1.40 ± 1.16 3.18 ± 4.30

Table A3. Means and standard deviations of eye-tracking variables for all classes.

Variables TD ASD ADHD ID SLD CD

Fixation
counts

Var1 8.32 ± 5.98 7.00 ± 8.04 7.27 ± 6.15 5.57 ± 5.26 5.12 ± 4.76 4.91 ± 5.43
Var2 11.38 ± 6.77 9.06 ± 7.37 12.87 ± 8.48 12.29 ± 5.19 12.71 ± 6.76 11.70 ± 7.39
Var3 3.36 ± 2.38 2.06 ± 1.91 4.07 ± 3.26 2.86 ± 2.27 3.29 ± 2.80 2.64 ± 2.04
Var4 3.36 ± 2.38 0.76 ± 1.02 1.58 ± 1.31 0.86 ± 0.79 1.60 ± 1.37 1.40 ± 1.19
Var5 2.10 ± 2.13 1.94 ± 2.44 2.40 ± 3.14 2.14 ± 3.98 2.53 ± 2.15 2.27 ± 2.83
Var6 2.10 ± 2.13 1.15 ± 1.54 1.29 ± 1.61 0.71 ± 1.00 1.48 ± 1.64 0.97 ± 0.90
Var7 1.47 ± 1.64 1.31 ± 1.35 1.20 ± 1.57 1.43 ± 0.98 1.18 ± 1.43 1.30 ± 1.19
Var8 1.99 ± 1.98 1.62 ± 1.78 2.27 ± 1.62 2.57 ± 1.99 2.00 ± 2.21 1.48 ± 1.96
Var9 1.28 ± 1.45 1.25 ± 1.44 1.80 ± 1.90 2.00 ± 2.00 1.59 ± 1.81 1.52 ± 1.64

Var10 2.32 ± 2.39 1.50 ± 1.59 2.13 ± 2.03 2.00 ± 1.29 1.82 ± 2.04 1.70 ± 1.93

Time spent

Var1 4.83 ± 4.25 3.36 ± 3.91 2.72 ± 2.52 2.38 ± 2.64 2.10 ± 2.34 2.61 ± 3.43
Var2 5.55 ± 3.96 3.71 ± 3.67 6.02 ± 4.41 4.13 ± 2.09 6.13 ± 4.13 5.78 ± 3.86
Var3 0.58 ± 0.77 0.87 ± 1.35 0.27 ± 0.31 0.92 ± 0.87 0.36 ± 0.40 0.55 ± 0.73
Var4 0.66 ± 0.79 0.73 ± 0.93 0.97 ± 0.97 0.84 ± 0.74 0.58 ± 0.64 0.51 ± 0.79
Var5 0.57 ± 0.80 0.38 ± 0.59 0.76 ± 0.92 0.97 ± 0.95 0.69 ± 0.83 0.75 ± 0.95
Var6 0.68 ± 0.82 0.46 ± 0.64 0.57 ± 0.76 0.56 ± 0.35 0.53 ± 0.76 0.52 ± 0.71
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