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Abstract: The problem of backfilling pipeline invalidation has become a bottleneck restricting the
application and development of backfilling technology. This study applied the whale optimization
algorithm and random forest (WOA–RF) to predict the invalidation risk of backfilling pipelines based
on 59 datasets from actual mines. Eight influencing factors of backfilling pipeline invalidation risk
were chosen as the input parameters of the WOA–RF model, and the risk level was selected as the
output parameters of the WOA–RF model. Furthermore, random forest, decision tree, artificial neural
network, k-nearest neighbor, and support vector machine models were also established according to
the collected datasets. The prediction performance of the six classification models was compared.
The evaluated results showed that the established WOA–RF hybrid model has the best prediction
performance and the highest accuracy (0.917) compared to other models, with the highest kappa
value (0.8846) and MCC value (0.8932). In addition, the performed sensitivity analysis showed that
the deviation rate is the most important influencing factor, followed by the internal diameter of the
pipeline. Eventually, the WOA–RF hybrid model was used to predict the failure risk level of the
backfilling pipelines of nine actual mines in Sichuan, China. The field datasets were collected through
field investigation, and engineering verification was carried out. The research results show that the
WOA–RF hybrid model is reasonable and effective for backfilling pipeline invalidation risk, and it can
provide a novel solution for backfilling pipeline invalidation, with good engineering practicability.

Keywords: the invalidation risk of a backfilling pipeline; whale optimization algorithm; random
forest; machine learning model

MSC: 68T09

1. Introduction

In the actual production process, the safety of pipelines has a great impact on social
and economic aspects, especially the invalidation risk of the pipeline. For example, the
transmission process of gas pipelines and oil pipelines is prone to leakage, pipeline ex-
plosion, and other accidents [1–3], and numerous research experts have conducted many
studies on this issue. Aljaroudi et al. [4] assessed the risk of offshore crude oil pipeline
failures and predicted the failure of offshore crude oil pipelines. Zhou et al. [5] performed
a risk assessment along natural gas pipelines, comprehensively considered the risks of
various major accidents, and analyzed the superimposed effect. Tabesh et al. [6] identified
the risks of horizontal directional drilling (HDD) pipeline installation, and many of the
serious and high-impact risks associated with HDD failures were avoided. Pillay et al. [7]
conducted a case study of the current high-pressure subsea pipeline, and the primary
research objective was to determine the adequacy of existing risk mitigation measures.
Yang et al. [8] analyzed the corrosion failure of submarine pipelines, proposed a method to
evaluate the condition of submarine pipelines by analyzing the observed abnormal events,
and proved the reliability of the model. Lu et al. [9] adopted the method of combining a risk
matrix and bow knot to carry out a comprehensive risk assessment of natural gas pipelines
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and verified the practicability of the model. Zhang et al. [10] used interval-based AHP
(IAHP) and the Technique for Order Preference by Similarity to an Ideal Solution methods
(TOPSIS) to identify the risks of hydropower projects to illustrate the application of the
hybrid model. Shin et al. [11] considered the effect of corrosion on the risk-based safety
management of underground pipelines and adopted risk-based pipeline management,
which achieved good results. Mazumder et al. [12] used a data-driven machine learning
algorithm for failure risk analysis of pipelines, and the application results illustrated its
computational efficiency over physics-based methods. Li et al. [13] proposed a dynamic
probabilistic approach to develop accident scenarios by finding fatigue failure causes and
derived events using a dynamic Bayesian network. Yu et al. [14] proposed a model that
systematically integrates a Bayesian network, fuzzy theory, and a hierarchical analysis
process to analyze the probability of pipeline failure, which can be used for quantitative
analysis of pipeline failure. Jayan et al. [15] utilized the Bayesian method and bow-tie
analysis to obtain the failure frequency of all possible causes of failure. However, the above
pipeline risk prediction research is mainly for gas and oil pipelines, not for backfilling
pipelines in mining engineering.

In the field of mining, the backfilling method, as a sustainable mining method, is
clean, efficient, and green and can effectively solve the problems of surface subsidence and
tailings accumulation [16,17]. In practical applications of backfilling mining, a reasonable
backfilling system is key to the success of the backfilling mining method. The backfilling
conveying pipeline is the throat of the whole backfilling system and the weakest link of
the whole backfilling system. Due to the complex environment of backfilling pipelines and
their uncertainty, the flow rate, hydraulic gradient, and other slurry fluid parameters and
transportation performance of backfilling pipelines are also more complex, and inevitably,
there are various potential risks in the production process. The failure of some components
in the system will affect the normal operation of the entire backfilling pipeline system,
resulting in the failure of the pipeline system, such as pipeline wear, explosion, slurry
leakage blocking, and other backfilling pipeline failure accidents [18,19]. Currently, many
mines at home and abroad have experienced backfilling pipeline failure accidents, which
have seriously affected the normal economic development of mining enterprises and have
also become a bottleneck restricting the application and development of mine backfilling
technology [20–22]. The problem of backfilling pipeline risk prediction is important, which
will affect the safety and stability of the backfilling system, but few domestic and foreign
scholars have conducted research on this problem. In this paper, a backfilling pipeline risk
level prediction model is developed based on intelligent algorithms, and the model provides
a decision basis for the failure risk prediction of mine backfilling pipelines. Therefore, it is
of great practical significance for the economic development and safe production of mining
enterprises to establish a risk prediction model of backfilling pipeline failure and accurately
predict the risk level of backfilling pipeline failure.

In recent years, with the development of artificial intelligence (AI) and other com-
puter fields, machine learning (ML) methods have been widely used in science and
engineering [23–29]. At present, the main prediction models include single and hybrid
models. For single prediction models, numerous studies have been conducted by domestic
and foreign experts. For example, Qi et al. [23] used the random forest (RF) algorithm to
predict the open stope hanging wall stability; Ghalambaz et al. [30] used the grey wolf
optimizer (GWO) to optimize the building energy, mainly to provide a good archive of
non-dominant optimal solutions; Goudos et al. [31] applied a particle swarm optimization
(PSO) algorithm to electromagnetic design problems; Naadimuthu et al. [32] used the adap-
tive neural fuzzy inference system (ANFIS) to design two fuzzy systems; Zhang et al. [33]
established a neural network for slope stability prediction, which can be used as a decision-
making basis for slope stability analysis. Moreover, for the hybrid model, some researchers
have conducted a lot of research, such as Li et al. [34] used SVM and ANN methods to
compare the vulnerability evaluation of an urban buried gas pipeline network, and the
results showed that this method was effective in practical applications; Mansour [35] pro-
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posed a Bayes classifier (BAYES) using independent component analysis and the naive
texture classification algorithm; Otero et al. [36] adopted the ant colony optimization(ACO)
algorithm to induce a decision tree (DT) with good results; Zhou et al. [37] used support
vector machine (SVM) optimized by the whale optimization algorithm (WOA) to predict
tunnel extrusion and made classified prediction for tunnel extrusion; Liu et al. [38] used
stochastic forest regression and the whale optimization algorithm (WOA) to evaluate the
regional flood resistance. The above methods have achieved some results in engineering,
showing the importance of machine learning. However, the following shortcomings still
exist in the actual prediction process of the models: (1) For a single model, its model
results will be worse than the hybrid model results. (2) Only a few models have been
used to predict the failure risk of backfilling pipelines, while other algorithms (such as
random forest or the whale optimization algorithm) have not been used, which will lead to
differences in the model calculation results.

Therefore, a hybrid model combined with the whale optimization algorithm and
random forest (WOA–RF) is established in this paper, and the model is applied to the
failure risk classification of backfilling pipelines. First, the failure risk database of the
mine backfilling pipeline is established, and eight influencing factors are comprehensively
considered as the input parameters. In addition, the performance of WOA–RF is compared
with other widely used ML models. Finally, sensitivity analysis is performed to evaluate the
contribution of each influencing factor to the model and determine the sensitivity variable.

The outline of this study is as follows: Section 2, “Engineering background and
database description”, describes the engineering background of fifty-nine mines and the
source of the database. Section 3, “Modeling methodology”, describes the principles and
components of the RF and WOA model. Furthermore, Section 4, “Modeling results and
discussion”, evaluates and compares all classification models, and the optimized model
is applied to sensitivity analysis and engineering validation. The study limitations are
introduced in Section 5, and the conclusions are given in Section 6.

2. Engineering Background and Database Description

Fifty-nine metal mines in China were investigated, including the Lilou Iron Mine,
Jinchuan Longshou Mine, Guizhou Kailin mine, Sanshandao Gold mine, Yunnan Dahong-
shan Copper Mine, Yunnan Dahongshan Iron Mine, Guanyinsi Lead Mine, etc. These
mines are distributed all over the country, with a mining depth of 500~1000 m. In addition,
70% of the mines have an annual output of more than 1 million tons, which are consid-
ered large and medium-sized mines; 30% of the mines are small mines. Furthermore, the
mining methods are mainly the sectional backfilling method, sectional drilling stage ore
drawing followed by the backfilling mining method, and the drift backfilling method. The
process flow of the backfilling system is relatively complex. First, the tailings and cement
and other cementing materials are vigorously mixed to form a qualified paste backfilling
slurry, and then it is pressurized by the backfilling pump and transported to the goaf to be
filled through the backfilling pipeline. However, in the whole backfilling process, due to
various factors, such as the volume fraction of backfilling slurry, the internal diameter of
the pipeline, deviation rate, etc., it is easy to cause backfilling pipeline failure, which will
affect normal mining production and easily cause mining safety problems, resulting in loss
of personnel and property. The location distribution of 59 metal mines is shown in Figure 1.

In this study, the data of failure risk classification standards were proposed by many
domestic and foreign researchers [39], as shown in Table 1. Considering the characteristics
of backfilling slurry and backfilling pipelines, fifty-nine metal mines across China were
selected, and eight influencing factors were chosen to establish the backfilling pipeline
failure risk dataset. Figure 2 shows that the modes of backfilling pipeline failure include
common failure forms: pipeline blockage, pipeline leakage, pipeline burst, and pipeline
wear. The risk grade assessment standard was divided into 4 risk levels: extremely dan-
gerous, significant risk, greater risk, and general risk, which were represented by Class 1,
Class 2, Class 3, and Class 4, respectively.
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Figure 1. The location distribution of 59 metal mines.

Based on the field survey of backfilling pipelines in fifty-nine metal mines in China,
the risk data of backfilling pipeline failure in fifty-nine mines are shown in Table 2. Eight
influence factors in each specific mine were set as input variables to predict the risk
level. The eight influence factors include the volume fraction of backfilling slurry, the
density of backfilling slurry, the internal diameter of the pipeline, the deviation rate, the
pipeline absolute roughness, the stowing gradient, the ratio of slurry flow rate with critical
velocity, and the weighted average particle size. The influencing factors (volume fraction of
backfilling slurry, density of the backfilling slurry, weighted average particle size, and ratio
of slurry flow rate to critical velocity) can reflect the characteristics of the backfill, and the
other four parameters (internal diameter of the pipeline, deviation rate, pipeline absolute
roughness, and stowing gradient) reflect the influence of the inherent parameters of the
backfilling pipeline on pipeline failure. Each influence factor is as follows:

The volume fraction of backfilling slurry is defined as the volume of the solute of the
backfilling slurry as a percentage of the total solution volume.

The density of the backfilling slurry refers to the mass of the backfilling slurry per
unit volume.

The deviation rate is the ratio of the depth of the drilling hole to the skews.
The internal diameter of the pipeline is the diameter inside the inner wall of the pipeline.
The absolute roughness of the backfilling pipeline refers to the average height of the

protruding part of the wall of the backfilling pipeline.
The stowing gradient is defined as the ratio of the total length of the backfilling

pipeline to the height difference of the vertical section of the pipeline in the backfilling
pipeline network.

The weighted average particle size is called the particle number average size.
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Table 1. The assessment criteria for the failure risk level of the backfilling pipeline.

Volume
Fraction of
Backfilling
Slurry I1/%

Density
of Backfilling

Slurry
I2/t.m−3

The Internal
Diameter of
the Pipeline

I3/mm

The
Deviation

Rate
I4/%

Pipeline
Absolute

Roughness
I5/um

Stowing
Gradient

I6

The Ratio
of Slurry Flow
Rate with the

Critical Velocity
I7

Weighted
Average

Particle Size
I8/mm

Risk
Level

≥50 ≥1.9 ≤100 ≥5 ≥500 ≥7 ≤1 ≥2.5 1
≥40~<50 ≥1.7~<1.9 >100~≤150 ≥3~<5 ≥300~<500 ≥5~<7 >1~≤1.2 ≥0.7~<2.5 2
≥30~<40 ≥1.5~<1.7 >150~≤200 ≥1~<3 ≥100~<300 ≥3~<5 >1.2~≤1.5 ≥0.3~<0.7 3

<30 <1.5 >200 <1 <100 ≥1~<3 <1.5 <0.3 4

Table 2. The statistical information of backfilling pipeline invalidation risk influence factors and level.

Sample of
Filling

Pipeline

Volume
Fraction of

Filling
Slurry
I1/%

Density
of Filling

Slurry
I2/t.m−3

Internal
Diameter

of the
Pipeline
I3/mm

Deviation
Rate
I4/%

Pipeline
Absolute

Roughness
I5/um

Stowing
Gradient

I6

The Ratio
of Slurry Flow
Rate with the

Critical
Velocity

I7

Weighted
Average
Particle

Size
I8/mm

Risk
Level

1 56 1.98 199 2.72 300 3.8 1.30 0.58 2
2 33 1.69 160 0.98 500 9.6 3.00 0.05 3
3 24 1.68 82 0.56 100 5.2 1.60 0.21 4
4 52 1.94 107 1.27 200 5.8 3.50 0.11 3
5 60 1.92 104 1.01 300 3.5 3.20 0.05 3
6 30 1.76 69 2.65 200 3.2 1.50 0.05 4
7 60 1.68 69 1.03 100 5 1.57 0.25 3
8 56 1.77 120 0.69 300 3 1.60 0.13 3
9 28 1.86 65 1.65 200 6.8 1.62 0.65 4

10 68 1.78 148 1.58 100 4.7 1.66 0.05 3
11 51 1.93 152 1.23 300 4.1 1.13 0.26 2
12 27 1.49 79 2.41 100 4.7 1.39 0.17 4
13 55 1.77 120 0.69 300 3 1.60 0.13 3
14 43 1.73 170 1.37 200 6.6 1.72 0.19 3
15 51 1.97 158 1.74 300 7.8 1.30 0.21 2
16 26 1.89 72 1.37 100 5.4 1.43 0.24 4
17 57 1.99 197 2.71 300 3.7 1.30 0.55 2
18 34 1.71 154 0.99 500 9.5 3.00 0.07 3
19 22 1.64 78 0.54 100 5.3 1.60 0.19 4
20 51 1.91 104 1.25 200 5.9 3.50 0.13 3
21 61 1.94 108 1.03 300 3.6 3.20 0.03 3
22 56 1.71 71 2.61 200 3.3 1.50 0.04 4
23 59 1.73 71 1.01 100 5.1 1.57 0.26 3
24 55 1.81 118 0.72 300 3.2 1.60 0.15 3
25 27 1.81 67 1.63 200 6.9 1.62 6.47 4
26 64 1.75 151 1.61 100 4.5 1.66 0.04 3
27 53 1.77 121 0.69 300 3.1 1.56 0.14 3
28 61 1.71 149 1.58 100 4.3 1.63 0.05 3
29 52 1.91 201 2.66 300 3.5 1.35 0.56 2
30 30 1.69 161 1.02 500 9.3 3.05 0.08 3
31 56 1.98 199 2.72 300 3.2 1.30 0.24 2
32 33 1.69 160 0.98 500 9.6 3.00 0.43 3
33 24 1.68 82 0.56 100 5.2 1.60 0.08 3
34 52 1.94 107 1.27 200 5.8 3.50 0.16 3
35 62 1.97 152 4.6 300 2.9 1.83 0.62 2
36 54 1.76 179 1.25 100 4.8 2.52 0.08 3
37 31 1.78 148 1.58 200 4.7 1.66 0.05 4
38 57 1.78 168 1.5 200 4.2 1.80 0.62 2
39 58 1.69 145 0.91 500 9.6 3.20 0.08 3
40 59 1.83 69 1.65 100 6.7 1.50 0.52 2
41 56 1.92 98 1.19 200 5.8 3.50 0.11 3
42 56 1.92 104 1.01 300 3.8 3.30 0.06 4
43 67 1.71 72 2.67 200 3.5 1.70 0.05 3
44 58 1.68 78 1.18 100 5.2 1.60 0.28 2
45 69 1.32 218 1.12 156 6.1 2.34 0.02 1
46 68 1.06 274 1.65 178 6.9 1.08 0.23 1
47 27 1.89 165 4.16 145 1.3 1.15 0.07 3
48 64 1.27 203 3.49 139 6.4 1.07 0.11 1
49 36 1.55 229 1.93 170 5.4 1.16 0.03 2
50 30 1.24 240 1.72 246 7.2 1.19 0.04 1
51 25 1.91 221 2.71 423 3.0 3.41 0.18 4
52 66 1.13 192 1.57 124 6.5 1.58 0.02 1
53 28 1.26 206 1.88 152 6.7 1.03 0.05 2
54 67 1.32 250 1.34 161 6.7 2.15 0.09 1
55 65 1.05 234 1.27 194 7.0 1.87 0.03 1
56 27 1.78 219 6.55 382 4.4 1.43 0.04 4
57 60 0.99 93 1.60 194 7.0 1.05 0.01 1
58 63 1.20 207 5.16 247 7.1 2.94 0.05 1
59 64 1.58 212 1.24 189 6.1 1.14 0.01 1
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Figure 2. Backfilling pipeline failure photos: (a) pipeline blockages; (b) pipeline wear; (c) pipeline
leakage; (d) pipeline burst.

To understand the correlation between input and output variables in the invalidation
risk data of a backfilling pipeline, the correlation coefficient matrix of the cumulative distri-
butions and statistical evaluation can be observed in Figure 3. Moreover, the diagonal line
of the matrix shows the probability distribution of each influence factor, the lower triangle
presents Pearson correlation coefficients, and the upper triangle shows a paired scatterplot
of the four classifications of the risk of failure of the backfilling pipeline data along the axis.
Figure 3 shows the poor correlation between the influencing factors (R < 0.5) [40,41], and
there is no clear distinction between the risk level of extremely dangerous, significant risk,
greater risk, and general risk. Therefore, the above correlation coefficient matrix analysis
indicates that the relevant parameters can be used for classification modeling of backfilling
pipeline failure risk prediction.
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3. Modeling Methodology
3.1. Random Forest

RF can effectively solve overfitting and provide an accurate decision tree. It has the ad-
vantages of low performance, simple implementation, accurate classification, high accuracy,
and fast classification speed [42–45]. The algorithm training steps are as follows [46–48]:

Step 1: The machine selects k training sample sets and k out-of-bag datasets by
resampling. The decision tree corresponding to the datasets outside the bag will vote on the
samples to obtain the prediction so that the ratio of misclassified samples to total samples
is the external bag error. It can be directly generalized using bag error assessment.

Step 2: Randomly select the best features from the feature parameters split attribute
nodes that are split for decision tree nodes.

Step 3: Train the decision tree with the training set and the extracted feature subset. K
decision trees are obtained from k training sample sets.

Step 4: Linearly integrate the output results of each decision tree to obtain the overall
output of the RF algorithm.

3.2. Whale Optimization Algorithm

The WOA was proposed by Mirjalili et al. in 2016 [49]. The algorithm can effectively
speed up the optimization rate, and the search strategy of the WOA also has certain
advantages in some problems [50]. It includes the following stages: 1© encircling the prey;
2© spiral bubble; and 3© searching for prey.

(1) Encircling prey
The WOA first determines the best search agent by identifying the location of prey

and surrounding it. Other search agents can relocate based on the best search agent. It is
mainly expressed by Equations (1) and (2):

D = |C→ · X→∗(t)− X→(t)| (1)
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X→(t + 1) = X→∗(t)− A→ · D→ (2)

where X→∗ is the best position vector obtained, X→ is the position vector, and A and C
represent the coefficient vectors and are calculated using Equations (3) and (4):

C→ = 2r→ (3)

A→ = 2a→r→ − a→ (4)

where r→ denotes a random vector, a linearly decreases from 2 to 0 with the progress of the
iteration, and r→ denotes a random number in [0, 1].

(2) Spiral bubble
Spiral foam hair is used to catch prey and create a spiral equation [51] according to the

distance between the whales and prey, as shown in Equation (5):

X→(t + 1) = D→′ · ebl · cos(2πl) + X→∗(t) (5)

where D→
′
=
∣∣∣X→∗(t)− X→(t)

∣∣∣ is the distance between the whale and its prey, b is a
constant that defines the shape of the logarithmic helix, and l is a random vector distributed
uniformly within [–1, 1].

The WOA selects bubble net predation or constricted enclosure based on the probabil-
ity p. Therefore, Equation (6) is as follows

xw(t + 1) =
{

xp(t)− A · D
D · ebl · cos(2πl) + xp(t)

p ≤ 0.5
p ≥ 0.5

(6)

where p ∈ [0, 1] and denotes the probability of predation mechanism probability.
(3) Searching for prey
The WOA requires a global search [52]. Equations (7) and (8) are as follows:

D = |C→ · X→rand(t)− X→| (7)

X→(t + 1) = |X→rand − A→ · D→| (8)

where Xrand represents a random position vector.
Therefore, the WOA was used to optimize the ability of RF in predicting the invalida-

tion risk of backfilling pipelines in this paper.

4. Modeling Results and Discussion
4.1. Evaluation Indicators

The performance evaluation indicators of the model were used to analyze and evaluate
the quality of the model. The area under the ROC curve is between [0, 1]. The classification
accuracy of the model is positively correlated with the area under the ROC curve [53,54].
The MCC is used to measure the classification performance of binary classification in ma-
chine learning [55,56]. This indicator combines true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). The calculation equation is shown in Equation (9).
In addition, the evaluation indicators of the model can be calculated through a confusion
matrix [57], as shown in Figure 4.

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)
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4.2. Development and Validation of the WOA–RF Model

The main steps of the WOA–RF prediction model analysis of backfilling pipeline
failure risk are as follows:

(1) Establish the datasets. Fifty-nine groups of mine backfilling pipeline failure risk
data in the database were investigated at many mines in various provinces in China,
and the dataset was then randomly divided into a training set (80%) and a testing set
(20%) according to the most commonly used splitting ratios of 80% and 20% for model
development and model verification, respectively [58,59]. Among them, the number of
different risk levels is uniformly distributed in 80% of the training sets and 20% of the
testing sets.

(2) Model development. Initialize the parameters of the RF model. In particular, the RF
model hyperparameters of n_estimators (N) and max_features (M) are optimized mainly
by the WOA algorithm. In this study, the WOA–RF hybrid model is proposed. Figure 5
shows the optimization analysis process of the WOA–RF model. Each whale position vector
is determined by the parameters of the RF model (“n_estimators” and “max_features”).
The WOA outputs the final parameters of the RF model after iterating the global optimal
position of the search algorithm. That is, the WOA first initializes the whale population,
then calculates the fitness of each search agent, and updates the position of the current
search agent, checking and correcting the search space boundary. Then, WOA outputs the
parameters of the hybrid model to analyze and evaluate the fitness.
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(3) Model validation. The relevant parameters of the WOA are constant b and random
numbers l and r, where l is distributed in [−1, 1], and r is distributed in [0, 1]. Therefore,
the WOA–RF hybrid model should first determine the optimal parameters of the model
and then optimize the prediction ability of the RF classifier through the WOA.

In addition, the objective function is defined as Equation (10). Equations (10) and (11)
are as follows:

Objective_ f unction = 1− ACC (10)

ACC = (TP + TN)/N (11)

(4) Evaluation of the optimal prediction model. It is important to investigate a reliable
WOA–RF model with optimal performance and optimal population size. To obtain the
optimal population size, 6 different population sizes (25, 50, 75, 100, 125, 150) were selected
and used in the model development process. Figure 6 shows the optimal fitting curve of the
WOA–RF model under different population values. It shows the variation in population
values with the increase in the number of iterations. The fitted values of the 6 fitted curves
generated by the WOA–RF model tend to stabilize at 75 iterations. The WOA–RF hybrid
model with different swarm sizes had the same performances in the training and testing
sets according to accuracy, kappa, and MCC. The WOA–RF model received an accuracy of
0.9167, a kappa of 0.8846, and an MCC of 0.8932.
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4.3. Comparison with Other Machine Learning Models

The WOA–RF hybrid model was tested and verified by testing datasets. According
to the most commonly used split ratios of 80% and 20%, the total datasets were divided
into 80% of training datasets and 20% of testing datasets; 20% of testing datasets were
randomly selected from the total sample datasets, and the testing datasets had not been
preprocessed and trained. This paper analyzed and compared different models from
the perspectives of the confusion matrix, performance evaluation indicators, and other
evaluation indicators. Based on the five evaluation indicators of the confusion matrix,
accuracy, precision, recall, ROC, and AUC, the performance of different models can be
measured. To test the accuracy of the WOA–RF, other models (RF, DT, ANN, KNN, and
SVM) were used to classify and compare the same sample data of backfilling pipeline
risk prediction. Figure 7 shows that compared with the RF, DT, ANN, KNN, and SVM
classification models, the classification results of the WOA–RF hybrid model showed better
performance. The accuracy of the RF, DT, ANN, KNN, and SVM classification models are
0.689, 0.500, 0.833, 0.500, and 0.750, respectively. Moreover, the kappa values from large to
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small are: 0.8846 (WOA–RF), 0.7714 (DT), 0.7714 (ANN), 0.6604 (SVM), 0.6364 (RF), and
0.3628 (KNN), and the MCC values from large to small are: 0.8932 (WOA–RF), 0.7790 (DT),
0.6364 (SVM), and 0.3628 (SVM), respectively. The WOA–RF hybrid model has the highest
accuracy, with an accuracy of 0.917. In addition, the correct number of classified cases can
also be obtained from the main diagonal of the confusion matrix. The numbers in the upper
diagonal and lower diagonal areas represent the number of classified cases with errors.
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Figure 8 represents the actual and predicted classification results on the training
and testing datasets. Fifty-nine samples of the training and testing datasets were on the
horizontal axis. The training set was distributed with 47 samples and the testing set with
12 samples. The categories of the samples are presented on the vertical axis. Figure 8 shows
the training set samples without error samples; testing set sample 55 with an actual category
of 4, which was misclassified as a category of 3; and the training and testing datasets with
error rates of 0 and 9.09%, respectively. However, many training and testing samples of
the other five models were wrongly classified. Therefore, the WOA–RF hybrid model
performs better and with higher accuracy in predicting the invalidation risk prediction of
backfilling pipelines.
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The test performance of different classification models on the invalidation risk of a
backfilling pipeline is listed in Table 3. According to Table 3, the WOA–RF model has better
prediction performance, and its model has the best precision, recall, and F1-score. Therefore,
the WOA–RF model is a better classification model for invalidation risk prediction of
backfilling pipelines. The ROC curve and AUC value of different individual classifications
of different categories are shown in Figure 9. Figure 9 shows that the WOA–RF, RF, and
SVM models performed similarly in Category 1 prediction and were superior to the DT,
ANN, and KNN models; the WOA–RF and RF models performed similarly in Category
2 prediction and were superior to the DT, ANN, KNN, and SVM models; the WOA–RF,
RF, ANN, and SVM models performed similarly in Category 3-based prediction and were
superior to the DT and KNN models; and the WOA–RF model was superior to the RF,
DT, ANN, KNN, and SVM models in Category 4 prediction. Therefore, the results in
Figure 9 show that the WOA–RF model is a better classification model for invalidation risk
prediction of backfilling pipelines.
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Table 3. Testing performance of different classifiers for the invalidation risk of the backfilling pipeline
problem: extremely dangerous (Class 1), significant risk (Class 2), greater risk (Class 3), and general
risk (Class 4).

Precision Recall F1-Score Precision Recall F1-Score

WOA–RF RF
class1 1.00 1.00 1.00 class1 1.00 1.00 1.00
class2 1.00 1.00 1.00 class2 1.00 1.00 1.00
class3 1.00 0.80 0.89 class3 1.00 0.80 0.89
class4 0.75 1.00 0.86 class4 0.75 1.00 0.86

DT ANN
class1 1.00 1.00 1.00 class1 1.00 1.00 1.00
class2 0.67 1.00 0.80 class2 0.67 1.00 0.80
class3 1.00 0.80 0.89 class3 1.00 0.80 0.89
class4 0.67 0.67 0.67 class4 0.67 0.67 0.67
KNN SVM
class1 0.50 1.00 0.67 class1 0.67 1.00 0.80
class2 0.40 1.00 0.57 class2 0.67 1.00 0.80
class3 1.00 0.40 0.57 class3 1.00 0.80 0.89
class4 0.00 0.00 0.00 class4 0.50 0.33 0.40
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Additionally, the training datasets and testing datasets of six models (the WOA–RF,
RF, DT, ANN, KNN, and SVM models) were compared and analyzed by using the Taylor
chart. The results are shown in Figure 10. Figure 10 shows that the WOA–RF model was
superior to the other models in the training datasets and testing datasets.
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4.4. Sensitivity Analysis of Predictor Variables

To accurately predict the failure risk level of backfilling pipelines, the relationship
and influence of various influencing factors should be comprehensively considered and
evaluated [60–63]. Eight influencing factors (volume fraction of backfilling slurry, density
of backfilling slurry, internal diameter of the pipeline, deviation rate, pipeline absolute
roughness, stowing gradient, ratio of slurry flow rate with critical velocity, and weighted
average particle size) were used for evaluation, all of which would have a certain impact
on the risk prediction of backfilling pipelines. Further study on the importance of each
influencing variable is needed.

Figure 11 shows the importance score of influencing variables on the backfilling
pipeline invalidation risk. The horizontal coordinate is the weight coefficient of each input
factor, and the vertical coordinate is the English representation of the eight input factors.
Obviously, according to the analysis in Figure 10, the deviation rate, the ratio of slurry
flow rate with critical velocity, and weighted average particle size were the most important
factors in the WOA–RF model, and the average particle size and internal diameter of the
pipeline are sensitive variables affecting the risk grade prediction of backfilling the pipeline,
accounting for 0.175, 0.1558, 0.151, and 0.165 of the total variables, respectively. It accounted
for more than two-thirds of the importance score for all variables. The importance scores
of the variables affecting the prediction of the failure risk grade of a backfilling pipeline
were ranked in descending order: deviation rate (0.175) > internal diameter of the pipeline
(0.165) > ratio of slurry flow rate with critical velocity (0.1558) > weighted average particle
size (0.151) > density of backfilling slurry (0.105) > volume fraction of backfilling slurry
(0.099) > stowing gradient (0.09) > pipeline absolute roughness (0.057). It can be seen from
Figure 10 that most of the influencing variables have importance scores, and these influence
variables are the basic input parameters of most engineering projects. In addition, different
importance scores may be obtained when different datasets and classification models are
adopted. More representative results can be obtained as more effective backfilling pipeline
invalidation risk level cases become available in the future.
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4.5. Engineering Validation

The WOA–RF hybrid model was applied to predict the invalidation risk level of the
backfilling pipeline of nine actual mines in Sichuan, China, including Sichuan Xinyuan
Gacun Mine, Danba Dulanggou Gold Mine, Sichuan Soluogou Gold Mine, Huili Lala Cop-
per Mine, Liwu Copper Mine, Damaopo Lead Zinc Mine, Huidong Yinchanggou Copper
Polymetallic Mine, Guanyinshan Lead Zinc Polymetallic Mine, and Huili Tianbaoshan
Copper Lead Zinc Polymetallic Mine. Figure 12 shows the locations of the nine metal
mines. To maximize the recovery of metal mine resources, the nine metal mines have
adopted the backfilling method for mining, and their backfilling pipelines run the risk
of pipeline leakage, burst, blockages, wear, etc. Long-term follow-up research on the
backfilling pipelines of the mines by on-site technicians and sample data of the failure
risk level of the backfilling pipes of these mines have been obtained. Table 4 shows that
the relevant parameters are used to predict the invalidation risk level of the backfilling
pipelines. Then, the WOA–RF model is used for prediction analysis, and the prediction
results are also shown in Table 4. The prediction results show that the WOA–RF model
is scientific and reasonable, has certain promotion and application value, and has good
engineering practicability.
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Table 4. Application of the WOA–RF model in practical engineering.

Engineering

Volume
Fraction of

Filling
Slurry
I1/%

Density
of Filling

Slurry
I2/t.m−3

Internal
Diameter

of the
Pipeline
I3/mm

Deviation
Rate
I4/%

Pipeline
Absolute

Roughness
I5/um

Stowing
Gradient

I6

The Ratio
of Slurry Flow
Rate with the

Critical
Velocity

I7

Weighted
Average
Particle

Size
I8/mm

Risk
Level

Predicted
Level

Gacun Xinyuan
mine 62 1.94 205 5.78 300 3.5 1.45 2.65 1 1

Dulang
gou gold mine 30 1.32 74 1.37 100 5.6 1.47 0.25 4 4

Guanyinshan
mine 57 1.85 150 3.71 400 6.7 1.10 0.75 2 2

Liwu copper
mine 45 1.65 154 2.10 250 4.5 1.42 0.47 3 3

Suoluo
Gou gold mine 28 1.45 215 0.54 85 5.3 1.60 0.19 4 4

Huili Lala
copper mine 51 1.51 180 1.25 200 5.9 3.50 0.43 3 3

Damaopo Lead
Zinc Mine 66 2.05 92 5.57 524 7.5 0.78 2.00 1 1

Tianbaoshan
polymetallic

Mine
58 1.76 136 1.88 152 6.7 1.03 0.95 2 2

Yinchanggou
Copper mine 68 1.98 90 1.34 512 6.7 2.15 3.09 1 1

5. Study Limitations

Although the WOA–RF hybrid model achieved good results in the failure risk pre-
diction of backfilling pipelines, some study limitations should be addressed in the future.
For example, the influencing factors to consider the failure risk of backfilling pipelines are
limited. In actual mining engineering, the influencing factors are more difficult to count
and obtain accurately. In addition, the predictive performance of a single classification
model is lower than that of a hybrid classification model. For this kind of prediction
problem, other high-performance models can be adopted to build more complex models in
the future. Meanwhile, the prediction accuracy of the model can be greatly improved by
introducing an appropriate optimization algorithm. In addition, the classification accuracy
of the optimized model can be further improved, and the generalization error of the hybrid
model can be reduced by extending the database of the invalidation risk of backfilling
pipelines and using the data enhancement algorithm.

6. Conclusions

In this paper, an optimized whale optimization algorithm and random forest hybrid
model was proposed. Based on fifty-nine mine cases, the possibility of backfilling pipeline
failure risk was evaluated. The dataset was randomly divided into a training set and testing
set for model development and model verification, respectively. The WOA–RF hybrid
model was established to classify the backfilling pipeline failure risk. Compared with
other classification models (random forest, decision tree, artificial neural network, k-nearest
neighbor, and support vector machine), the main research results are as follows:

(1) The WOA–RF model has the highest accuracy, with an accuracy of 0.917, showing
that the WOA–RF model has a good classification effect and is also a better ML classifier
for backfilling pipeline risk prediction.

(2) The sensitivity analysis of predictive variables shows that the deviation rate is the
most important influencing factor. The ratio of the slurry flow rate to the critical velocity,
weighted average particle size, and internal diameter of the pipeline are the most sensitive
variables that affect the prediction of the backfilling pipeline risk level.

(3) The WOA–RF hybrid model was used to verify the failure risk of backfilling
pipelines in nine actual mines in Sichuan, China. The predicted results were consistent
with the failure cases of backfilling pipelines in the field investigation.
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Nomenclature

RF random forest
DT decision tree
ANN artificial neural network
AI artificial intelligence
HDD Horizontal directional drilling
GWO grey wolf optimizer
ACOA ant colony optimization
MCC Matthews correlation coefficient
ROC the receiver operating characteristic
TN true negative rate
FP false positive
FPR false positive rate
TOPSIS technique for order preference by similarity to an ideal solution methods
WOA whale optimization algorithm
SVM support vector machine
KNN k-nearest neighbor
ML machine learning
ANFIS adaptive neural fuzzy reasoning system
BAYES bayes classifier
PSO particle swarm optimization
IAHP interval-based AHP
AUC area under curve
TP true positive rate
TPR true positive rate
N the number of the samples
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